Fujitsu, Oct. 11, 2016

Proving Bitcoin Solvency

Dan Boneh Stanford University

Joint work with

Gaby Dagher, Benedikt Bunz, Joe Bonneau, and Jeremy Clark

... but first: Computer Security at Stanford

<u>Alex Aiken</u>

software analysis

<u>Dan Boneh</u>

applied Crypto, web security

David Dill

verification and secure Voting

Dawson Engler static analysis

David Mazières

Op. Systems

Phil Levis IoT Security

John Mitchell protocol design, online ed.

Mendel Rosenblum

VM's in security

Security events at Stanford

- Annual security workshop //forum.stanford.edu/events/2016security.php
- Security seminar //crypto.stanford.edu/seclab/sem.html
- Computer security courses //seclab.stanford.edu/
- Stanford Advanced Computer Security Certificate //scpd.stanford.edu/computerSecurity/

New Bitcoin course

Courses:

- CS55N (freshmen seminar): ten ideas in computer security
- CS155: Computer Security

CS251: Blockchain technologies: Bitcoin and friends

- CS255: Intro to Crypto
- CS259: Security analysis of network protocols
- CS355: Graduate course in cryptography

Stanford Advanced Computer Security Certificate http://scpd.stanford.edu/computerSecurity/

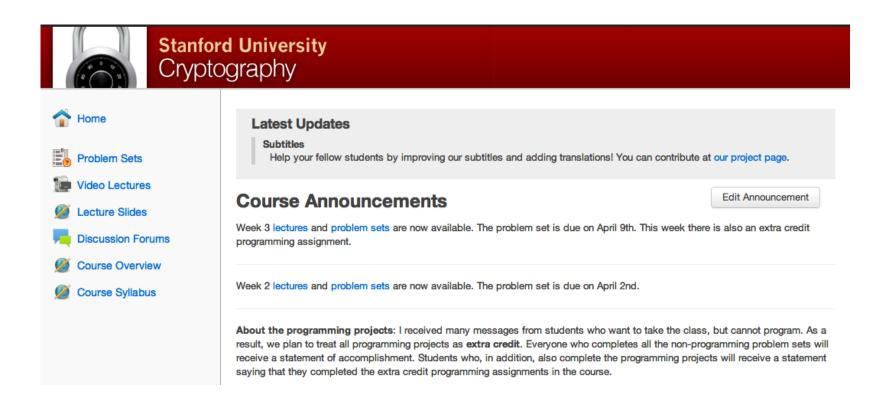
New Bitcoin course

Courses:

- CS55N (freshmen seminar): ten ideas in computer security
- CS155: Computer Security

CS251: Blockchain technologies: Bitcoin and friends

CS255: Intro to Crypto

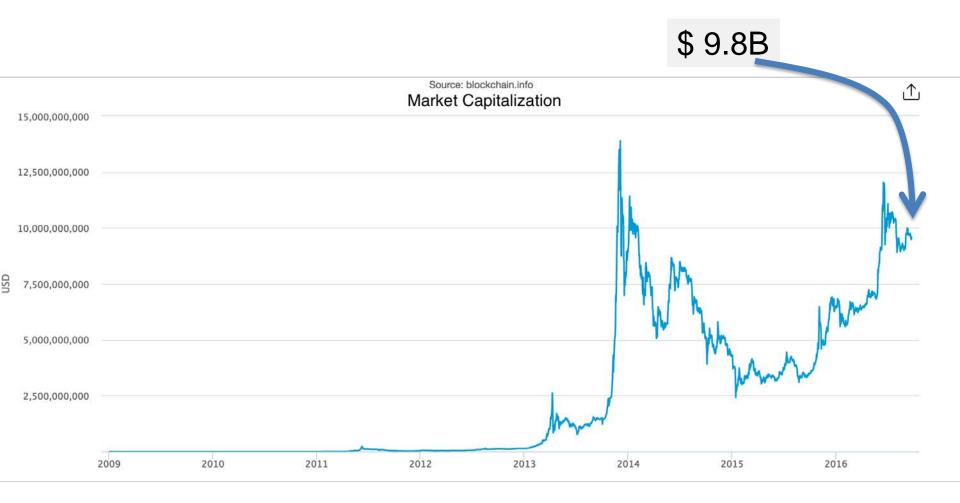

• CC2EO. Coourity analysis of notwork protocols

Try our homeworks and projects

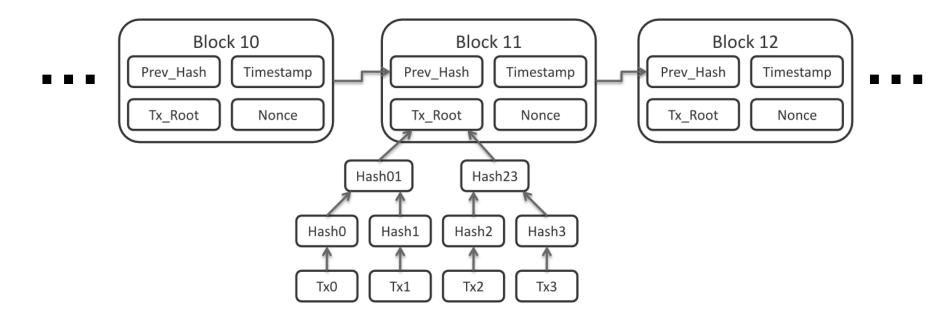
Online Courses

//www.coursera.org/learn/crypto

Course open to the public


Proving Bitcoin Solvency

Dan Boneh Stanford University


Joint work with

Gaby Dagher, Benedikt Bunz, Joe Bonneau, and Jeremy Clark

Bitcoin: first successful crypto currency

More than a currency: the blockchain

Non-currency applications:

- Document management --- ensuring freshness
- Asset management

Solvency trouble

Technology | Fri Feb 28, 2014 2:30pm EST

Mt. Gox files for bankruptcy, hit with lawsuit

TOKYO | BY YOSHIFUMI TAKEMOTO AND SOPHIE KNIGHT

Solvency trouble

Mt. Gox: lost roughly US\$450M Subsequent price crash

~50% have failed! [Moore, Christin 2013]

Bitcoin: ensuring solvency

The problem: a Bitcoin "exchange" has:

- *obligations* to customers, and
- *assets* that it holds (knows secret key for assets)

Goal: prove assets ≥ obligations (solvency) without revealing any info about assets or obligations (i.e., a zero-knowledge proof)

Dagher-Bunz-Bonneau-Clark-Boneh (ACM CCS 2015):

an efficient zero-knowledge protocol for this problem

Danger

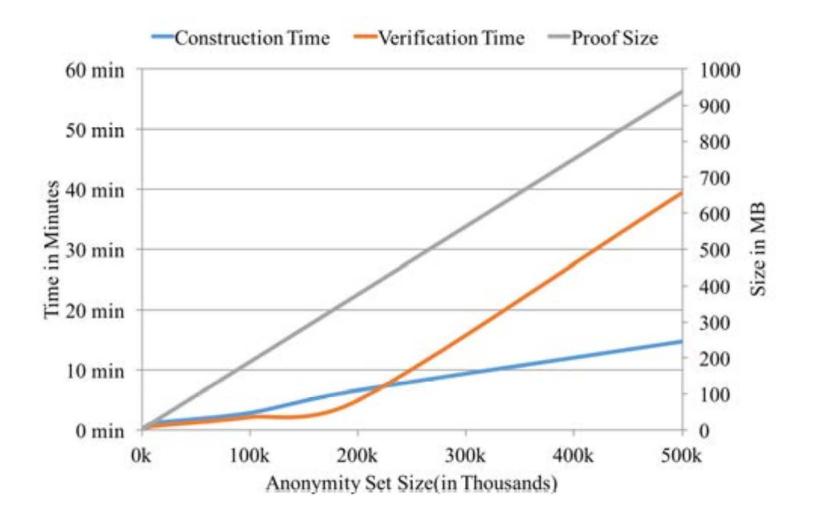
Running protocol daily would have detected Mt. Gox troubles early

How?

<u>Sub-protocol 1</u>: create commitment **O** to total obligations:

- Commitment is binding, but reveals nothing about obligations
- Every user is given a secret key that lets it verify that its account balance is (uniquely) included in total sum

<u>Sub-protocol 2</u>: create commitment **A** to total assets:


- Let pk₁, ..., pk_n be public keys (addresses) on the block chain
- The exchange knows *sk* for a <u>subset</u> of these addresses
- Exchange proves:

sum of balances for which it knows sk is value(A)

nothing is revealed about which addresses the exchange owns

<u>Sub-protocol 3</u>: prove value(A) ≥ value(O)

Experiments

Deployment

- Open source
- Supporting cold storage:

• An exchange stores the bulk of its assets in cold storage

⇒ cannot use assets in a daily solvency proof

 <u>Solution</u>: valet key ("blinding" of secret key) sufficient for proof of solvency, but not to spend funds

