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On the program it says this is a keynote speech—and I don’t know
what a keynote speech is.

This talk will:

- Provide some background on quantum computing
- Plant some seeds for the panel discussions and later talks
- Speculate about where the field is going
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What did Feynman say:

 the problem is, how can we simulate the quantum mechanics?

we can say: Let the computer itself be built
of quantum mechanical elements which obey quantum mechanical laws.

Feynman was interested in Quantum Simulation:
when quantum computers simulate other quantum systems
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45 Years of Microprocessor Trend Data
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classical chips hit “the wall of too small”
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Si atom radius ~0.2nm;
at 22nm, current
“Ivy Bridge” processors
~100 atoms wide

11nm is on Intel’s roadmap
~50 atoms wide;
dielectric thickness ~6 atoms

Quantum effects inevitable!
Anticipated by Feynman...
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“... It seems that the laws of physics present no barrier to reducing the size of
computers until bits are the size of atoms, and quantum behavior holds sway.”

Richard Feynman (1981)
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“... It seems that the laws of physics present no barrier to reducing the size of
computers until bits are the size of atoms, and quantum behavior holds sway.”

Richard Feynman (1981)
Quantum computers naturally

operate at the atomic scale

They offer a path beyond
Dennard scaling

And so much more. ..
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When we
compute
using
quantum

laws: . s Exponential speedup
Best classical: 0 (2™~ (108(m)™™y in strong-coupling and high-precision
Best quantum: 0 (n3) regimes

Best possible classical: Q(N) Exponential speedup
Best possible quantum: O(VN) Return x in time O (log(n))
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Hot off the press

Exponential Quantum Speed-ups for Semidefinite

Programming with Applications to Quantum Learning
Fernando G. S. L. Brandao, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin,

Krysta M. Svore, Xiaodi Wu
uant—ph cs.DS arXiv:1710.02581v1

Best classical: O(n)

Best quantum: O (polylog(n))
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@ Cybersecurity:
@ Breaking public key cryptography
(Shor’s algorithm)
@ Provably secure encryption
(guaranteed by the laws of quantum physics)

— o — — TR e S P

@ Exponentially faster simulation of quantum mechanics A. Khandala et al., Nature 549, 242 (2017)

w> discovery & first-principles design of Ne®e e Fle®egs Hzl odegsl
novel materials, pharmaceuticals, ... jof) oo . @o ‘L —@-o
Q Quantum SpeedUpS in Optimization Molecular electronic structure on a superconducting QC

s===) Machine learning, verification & validation, supply chain & logistics, finance, ...
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ADVANCING QUANTUM INFORMATION
NATIONAL CHALLENGES AND OPPOR'

QuantumManifesto

A New Era of Technology Draft - March 2016

South ChinaMorning Post  CHINA HK ASIA WORLD COMMENT BUSINESS TECH LIFE CULTURE SPORT WEEKINASIA POST MAG STYLE .TV

= @+ Chlna building world’s biggest quantum research facility
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+ companies

ADVANCING QUANTUM INFORMAT Satya Nade”a, MiCFOSOft CEO, in h|S new 2017 bOOk ”Hit REfrESh”:
NATIONAL CHALLENGES AND OPP

the battle over qguantum computing is “an arms race” as important as Al or
MO \/irtual and augmented reality, though it has “gone largely unnoticed”

Committee on Homeland and National Se ‘ b R
OF THE NATIONAL SCIENCE AND TECHN OLOG : % = ¥ ‘- I:'//" . ._,‘ 5 PUBLISHED : Monday, 11 September, 2017, 8:46am

o5 UPDATED : Monday, 11 September, 2017, 1:38pm
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Interagency Working Group on Quantum Informatio
of the Subcommittee on Physical Sciences
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Erwin Schrodinger (1887-1961) ! &
quantum pioneer, |
inventor of famous cat

The superposition principle

cat)= a‘0>+b‘1> = “qubit”
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-mﬁeﬁ’—»useful resource Erwin Schrodinger (1887-1961) & s

quantum ploneer

The superposition principle inventor of famous cat

cat)=a|0)+blL) = “qubit”
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classical quantum

random walk with gradient descent superposition, interference, tunneling
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Every real quantum computer interacts with its environment (don’t we all)

The environment acts as an uncontrollable observer, making random measurements

Destroys the quantum computer’s superposition states
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Every real qguantum system interacts with its environment.

The environment acts as an uncontrollable observer, making random measurements

Destroys the quantum computer’s superposition states.

Edited by Daniel A. Lidar and Todd A. Brun

Quantum
Exrror
Corr%cnon

S\ i

Bad news for qguantum computation:

Theorem: A sufficiently decohered quantum
computer can always be efficiently simulated
on a classical computer.

—
—

Solution: Quantum Error Correction
Quantum computers will never scale up without it!
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adiabatic/annealing model —
special purpose optimizer
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readout

qubit

RSN ERENER

circuit model — universal (general purpose)

What is a quantum computer — really?

A representative sample

Very unlike
classical
computers!

|

circuit model — universal
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USC-Lockheed Martin Quantum Computing Center

« multi-$M investment by Lockheed Martin in three
generations of D-Wave quantum annealers

» Operational at USC since 2011. Followed by Google/NASA
Google/NASA (2013), Los Alamos National Lab (2016),
iZOlG), &TDS/ORNL/Uof T
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USC-Lockheed Martin Quantum Computing Center IARPA Quantum Enhanced Optimization Program
« multi-$M investment by Lockheed Martin in three - multi-$M / Syr contract awarded to USC this year
generations of D-Wave quantum annealers e Goal. build a new 100-qubit quantum annealer using
« Operational at USC since 2011. Followed by Google/NASA high-coherence (Al) superconducting flux qubits, for
Google/NASA (2013), Los Alamos National Lab (2016), quantum optimization and sampling applications
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Factoring state of the art:
using 5 Ca* trapped ions...

15=3x%x5

with 99% confidence

143 has also been factored (= 11 x 13), but using liquid-
state nuclear magnetic resonance -- a non-scalable QC
technology

_> Focus on more attainable near-term goals

09000 O

Shor: 15 base 2 Shor: 15 base 7 Shor: 15 base 8 Shor: 15 base 11 Shor: 15 base 13
SSO =0.97 SSO =0.96 SSO =0.97 SSO =0.90 SSO =0.97

1.2

_o -
© =)

o
o

Output state:
relative ratio of probabilities

o
~

0.0
01234567 01234567 01234567 01234567 01234567
QFT output state

T. Monz et al. Science 351 ,1068-1070 (2016)
(Blatt group)
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¢ Quantum simulation

»» Quantum supremacy
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Advantage in Quantum Simulation
Goal: Demonstrate that a quantum computer performs a useful simulation task
of another quantum system
that is beyond the capability of any classical computer
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Simulation of quantum magnetism, using trapped ions

srameanet wantterromagnee T
paramagnet to antiferromagnet

in the transverse field Ising model « 22um
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Simulation of quantum magnetism using trapped ions

Quantum phase transition from A
paramagnet to antiferromagnet
in the transverse field Ising model

Emergence and Frustration of Magnetism with
Interactions in a Quantum Simulator
R. Islam et al.
Science 340, 583 (2013);
AYAAAS DOI: 10.1126/science.1232296 “

B/Jg =0.25
—— BlJg =0.01

3 4 5 6 7 8 9
Distance r (sites)



=12 USC University of The impact of qguantum computing:

{1V Southern Calitornia short term (<5yrs)

More ambitious goal: “Quantum Supremacy”

Demonstrating that a quantum computer performs a (possibly useless!) computational task
that is beyond the capability of any classical computer

Relies on a complexity-theoretic assumption of the form:
“If this task could be executed efficiently on a classical computer then
the polynomial hierarchy would collapse (e.g., P = NP)”

Why is this important?
« Foundational: would refute the ‘extended Church—Turing thesis’, that classical computers
can simulate any physical process with polynomial overhead

 Practical: would greatly increase our confidence in the eventual feasibility of large-scale
gquantum computing
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Quantum supremacy example: Boson Sampling

* Problem: Sample from the distribution of detections of
non-interacting photons propagating through a random
linear optics circuit

= Estimated to be classically hard already for 7 photons
(Latmiral et al., New J. Phys. (2016))

= 5 photons already demonstrated (wang et al., Nature Photon. (2017))

= New estimates for beating current-best classical algorithms (Neville et al., Nature Phys. (2017)):
- >50 photons in well-defined modes
- low-loss photon propagation in thousands of modes

- thousands of high-efficiency detectors " Maynot be practical in <5yrs after all
- precise setting of millions of phase shifters
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Quantum supremacy example: Random Circuit Sampling

random 1-qubit gate

= Problem: Sample from the distributionof | . . . .. UCSB (Glooglle)
strings output by a random circuit — e |

] ] *—e ] L

nnn *-—e [ ] L

time

= Estimated to be classically hard for ~50 qubits
(Boixo et al., arXiv:1608.00263) . I . I .

= Current 9 qubit “gmon” experiments on track __/'I Dol 2 l l ! ' '
(Neill et al., arXiv:1709.06678) 2'q”b't9ateﬂ: 1°1° 8

= Google hopes to reach 50 qubits and a
quantum supremacy demo in <lyr
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Partial quantum supremacy: limited quantum speedup

= Problem: Find the lowest-energy
spin configurations of spin glasses

= A notorious NP-hard problem
(Barahona, 1982)

= We’ve demonstrated a speedup for
D-Wave against classical simulated
annealing and “‘spin-vector Monte
Carlo” (7. Albash & DL, arXiv:1705.07452)

time-to-solution as a function of problem size

DW2KQ

SA _ -4
j SVMC -
;0%1 _4--':: - 1
Wope T« - -4 2100 |
et ot
o« - ¢ §
¢ _ e
650'76 ,J##‘H
gﬁg,r”' .
10 12 14 16

L

number of qubits = 8 x L2
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Partial quantum supremacy: limited quantum speedup

time-to-solution as a function of problem size

= Problem: Find the lowest-energy DWZKQ

iE
spin configurations of spin glasses 1 sA -4
| svmcC ¥
: 1 sQA ¥
= A notorious NP-hard problem | PRI SOl i |
(Barahona, 1982) PP A e
= ii B __,"
) 4«4-- L _
= We’ve demonstrated a speedup for PUP
D-Wave against classical simulated e
annealing and “spin-vector Monte -
Carlo”, but not against ] | |
(T. Albash & DL, 10 12 14 16

arXiv:1705.07452) L
number of qubits = 8 x L2

We remain hopeful we’re on the right track!
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Quantum Supremacy — the race Is on

However It Is achieved:

Quantum computation that exceeds
the reach of classical computers
will mark the beginning of a
new era of quantum science
Feasible in <5 years
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[’m no oracle; let’s ask PageRank

GO gle quantum computers will Q,
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GO gle quantum computers will Q,

quantum computers will never work — #1 answer
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{1V Southern Calitornia longer term (>5yrs)

GO gle quantum computers will Q,

quantum computers will never work — #1 answer
quantum computers will change everything «——— #2 answer
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GO gle quantum computers will Q,

| quantum computers will change everything)

Thanks!



