

May 30, 2018

#FujitsuWorldTour

FUJITSU

shaping tomorrow with you

What is Big Data?

Big Data consists of extensive datasets - primarily in the characteristics of volume, variety, velocity, and/or variability - that require a scalable architecture for efficient storage, manipulation, and analysis.

[NIST SP1500-1]

Why are Security and Privacy important for Big Data?

- Volume of data is growing exponentially
 - 90% of the data in the world today was created in the last two years (Source: http://www-01.ibm.com/software/data/bigdata/)
 - Global big data market revenues were forecasted to reach \$12.4 Billion in 2014 growing to \$23.8 Billion in 2016, according to the firm Visiongain and IDC
- Data breach is costly
 - Average cost of breach for single record is \$200
 - With 20% probability 10,000 records get breached (in 2 year time frame) in any organization
 - With 20% probability organization will lose \$2M in two years!!!
- Data breach damages company reputation

Figure 19. Probability of a data breach involving a minimum of 10,000 to 100,000 records

2014 Cost of Data Breach Study Global Analysis

Benchmark research sponsored by IBM Independently conducted by Ponemon Institute May 2014

NIST Big Data Public Working Group (NBD-PWG)

Goal

Develop a secured reference architecture that is vendor-neutral, technology- and infrastructure-agnostic to enable any stakeholders (data scientists, researchers, etc.) to perform analytics processing for their given data sources without worrying about the underlying computing environment.

5 Subgroups (July 2013 – now)

- Definitions & Taxonomies
- 2 UC & Requirements
- 3 Security & Privacy
- 4 Reference Architecture
- 5 Standards Roadmap

Deliverables

- 1 Big Data Definitions
- 2 Big Data Taxonomies
- 3 Big Data Requirements & Use Cases
- 4 Big Data Security & Privacy
- 5 Big Data Architectures White Paper Survey
- 6 Big Data Reference Architecture
- 7 Big Data Standards Roadmap

Version 1 Released

V1 (high-level Reference Architecture components and descriptions) for Big Data Interoperability Framework

NIST Special Publication 1500-4

NIST Big Data Interoperability Framework: Volume 4, Security and Privacy

Final Version 1

NIST Big Data Public Working Group Security and Privacy Subgroup

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP,1500-4

> National Institute of Standards and Technology U.S. Department of Commerce

Released on September 16, 2015

http://bigdatawg.nist.gov

NIST SP1500-1 Definitions

NIST SP1500-4 Security & Privacy NIST SP1500-2 Taxonomies

NIST SP1500-5 Architecture Survey – White Paper

NIST SP1500-7 Standards Roadmap NIST SP1500-3 Use Cases & Requirements

NIST SP1500-6 Reference Architecture

6

Version 2 draft is in NIST review phase

NIST Special Publication 1500-4

DRAFT: NIST Big Data Interoperability Framework: Volume 4, Security and Privacy

> NIST Big Data Public Working Group Security and Privacy Subgroup

> > DRAFT Version : August 7, 201

https://bigdatawg.nist.gov/V2_output_docs.php

National Institute of Standards and Technology U.S. Department of Commerce Public comments received on 21 September 2017

https://bigdatawg.nist.gov/home.php

A 10,000-feet view

Emergent S&P Considerations

(Big) Scaling

Retarget to Big Data infrastructural shift

Distributed computing platforms like Hadoop

Non-relational data stores

(Data) Mixing

Control visibility while enabling utility

Balancing privacy and utility

Enabling analytics and governance on encrypted data

Reconciling authentication and anonymity

S&P Requirements Emerging due to Big Data Characteristics

Variety

Traditional encryption schemes hinder organization of data based on semantics.

Volume

Threat models for multi-tiered data storages are complex and evolving.

Velocity

Distributed computing infrastructures and nonrelational data storages require retargeting of traditional security mechanisms.

S&P Requirements Emerging due to Big Data Characteristics

Veracity

Keeping track and ensuring integrity of the ownership, source and other metadata of individual data is a complex and sophisticated requirement, given the movement of data between nodes, entities and geographical boundaries.

Big Data

Volatility

Indefinitely persistent data requires evolving S&P considerations. With the passage of time, roles may evolve and governance may shift depending on the merger and disappearance of responsible organizations.

Variety

Conceptual Classification of S&P Topics

Operational Classification of S&P Topics

S&P doesn't compose!

System A and System B have known data flow restrictions

S&P doesn't compose!

System A and System B have known data flow restrictions.

Combined system can have unexpected data flows!

S&P doesn't compose!

There is a need for Architectural Thinking

NIST Big Data Reference Architecture

Big Data Security Reference Architecture

Use Cases

Retail/Marketing

Healthcare

Cyber-security

Government

Industrial

Consumer Digital Media Usage

Nielsen Homescan: Family level Retail **Transactions**

> Web Traffic Analysis

Health Information Exchange

Network Protection

Military

Education

Aviation: Sensor Data Storage and Analytics

Transportation: Cargo Shipping

Pharma Clinical Trial Data Sharing

Genetic Privacy

Emerging Cryptographic Technologies

Technology	Data Provider	Application Provider	Feature	Visibility
Homomorphic Encryption	Encrypts data	Stores encrypted data	Capability to perform computations	Only at Data Provider
Functional Encryption	Encrypts data	Stores encrypted data	Capability to perform computations	Result of allowed computations visible at Application Provider
Access Control Policy- Based Encryption	Encrypts data	Stores encrypted data	No capability to perform computations	Only for entities which have a secret key satisfying the access control policy
Secure Multi-Party Computation	Plaintext data	Stores plaintext data	Collaborative computation among multiple Application Providers	Application Providers do not learn others' inputs. They only learn the jointly computed function.
Blockchain	Plaintext or encrypted data	Decentralized	Immutable decentralized database	Transaction logging in a decentralized, untrusted environment
Hardware primitives for secure computations	Encrypts data	Stores encrypted data	Capability to perform computations. Verified execution.	Controllable visibility at Application Provider.

Secure Outsourcing of Computation

Suppose you want to send all your sensitive data to the cloud: photos, medical records, financial records, etc.

You could send everything encrypted

- But wouldn't be much use if you wanted the cloud to perform some computations on them
- What if you wanted to see how much you spent on movies last month?

Solution: Fully Homomorphic Encryption

- Cloud can perform any computation on the underlying plaintext, all the while the results are encrypted!
- Cloud has no clue about the plaintext or the results

Fully Homomorphic Encryption (FHE)

- With FHE, computation on plaintext can be transformed into computation on Ciphertext
- As a use case, a cloud can keep and process customer's data without ever knowing the contents
 - Only customer can decrypt the processed data
 - End to end security of customer data

Access Control Policy-based Encryption

- Traditionally access control has been enforced by systems Operating Systems, Virtual Machines
 - Restrict access to data, based on access policy
 - Data is still in plaintext
 - Systems can be hacked!
 - Security of the same data in transit is ad-hoc
- What if we protect the data itself in a cryptographic shell depending on the access policy?
 - Decryption only possible by entities allowed by the policy
 - Keys can be hacked! but much smaller attack surface
 - Encrypted data can be moved around, as well as kept at rest uniform handling

Identity-based Encryption

Public-Key Encryption

ID-based Encryption

Policy-Based Encryption

Blockchain Technology in Practice Today

Cryptocurrency

Asset and ownership management

Transaction logging for audit and transparency

Bidding for auctions and contract enforcement

Smart Contracts

Recommendations

- Many technologies address S&P requirements of Big Data projects
- Which technology to use involves a lot of risk/benefit analysis
- Consider sensitivity of the data, cost of breach and cost of securing systems when doing this analysis
- For example, for the task of running software on encrypted data at rest, there are at least three possibilities:

Take Away Points

- Think S&P at the time of architecting the overall system
 - Not as an afterthought
- In S&P, 1+1 = 0, NOT 2, definitely NOT 4!
 - Does not compute compose
 - Re-analyze S&P when adding new features or joining systems
- Cryptography magic is on the way
 - Stay tuned and patient
- Read NIST Big Data Interoperability Framework SP1500 documents
 - Especially Volume 4: Security and Privacy

Thank you! Any Questions?

Arnab Roy Fujitsu Laboratories of America

aroy@us.fujitsu.com

shaping tomorrow with you