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Instruction Set Architecture? 

• Software talks to hardware using a vocabulary

– Words called instructions

– Vocabulary called 

instruction set architecture 

(ISA)

• Most important interface since 

determines software that can run on hardware 
– Software is distributed as instructions
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IBM Compatibility Problem in Early 1960s

By early 1960’s, IBM had 4 incompatible lines of computers!
701 ➡ 7094

650 ➡ 7074

702 ➡ 7080

1401 ➡ 7010

Each system had its own:
▪ Instruction set architecture (ISA)

▪ I/O system and Secondary Storage: 

magnetic tapes, drums and disks

▪ Assemblers, compilers, libraries,...

▪ Market niche: business, scientific, real time, ...

IBM System/360 – one ISA to rule them all
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Control versus Datapath
▪ Processor designs split between datapath, where numbers are stored and 

arithmetic operations computed, and control, which sequences operations on 

datapath

▪ Biggest challenge for computer designers was getting control correct

▪ Maurice Wilkes invented the 

idea of microprogramming to 

design the control unit of a 

processor*

▪ Logic expensive vs. ROM or RAM

▪ ROM cheaper and faster than RAM

▪ Control design now programming
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* "Micro-programming and the design of the control circuits in an electronic digital computer," 

M. Wilkes,  and J. Stringer. Mathematical Proc. of the Cambridge Philosophical Society, Vol. 49, 1953.

https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/papers/wilkes52.pdf


Microprogramming in IBM 360

Model M30 M40 M50 M65

Datapath width 8 bits 16 bits 32 bits 64 bits

Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns 

Main memory cycle time 1500 ns 2500  ns 2000 ns 750 ns

Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2023 $) $1,860,000 $2,090,000 $4,450,000 $10,460,000

7Fred Brooks, Jr.



IC Technology, Microcode, and CISC

▪ Logic, RAM, ROM all implemented using same transistors

▪ Semiconductor RAM ~ same speed as ROM

▪ With Moore’s Law, memory for control store could grow

▪ Since RAM, easier to fix microcode bugs

▪ Allowed more complicated ISAs (CISC)

▪ Minicomputer (TTL server) example: 

- Digital Equipment Corp. (DEC) 

- VAX ISA in 1977

▪ 5K x 96b microcode
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Microprocessor Evolution
▪ Rapid progress in 1970s, fueled by advances in MOS technology, 

imitated minicomputers and mainframe ISAs

▪ “Microprocessor Wars”: compete by adding instructions (easy for microcode), 

justified given assembly language programming

▪ Intel iAPX 432: Most ambitious 1970s micro, started in 1975

▪ 32-bit capability-based, object-oriented architecture, custom OS written in Ada

▪ Severe performance, complexity (multiple chips), and usability problems; announced 1981

▪ Intel 8086 (1978, 8MHz, 29,000 transistors)

▪ “Stopgap” 16-bit processor, 52 weeks to new chip

▪ ISA architected in 3 weeks (10 person weeks) assembly-compatible with 8 bit 8080 

▪ IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was late) 
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▪ Estimated PC sales: 250,000

▪ Actual PC sales: 100,000,000 ⇒ 8086 “overnight” success

▪ Binary compatibility of PC software ⇒ bright future for 8086



Analyzing Microcoded Machines 1980s
▪ UNIX proves even operating systems can be written in HLL

▪ Compilers now source of measurements

▪ John Cocke group at IBM

▪ Worked on a simple pipelined processor, 801 minicomputer 

(ECL server), and advanced compilers inside IBM

▪ Ported their compiler to IBM 370, only used 

simple register-register and load/store instructions (similar to 801)

▪ Up to 3x faster than existing compilers that used full 370 ISA!

▪ Emer and Clark at DEC in early 1980s*

▪ Found VAX 11/780 average clock cycles per instruction (CPI) = 10!

▪ Found 20% of VAX ISA ⇒ 60% of microcode, but only 0.2% of execution time!
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* "A Characterization of Processor Performance in the VAx-11/780," J. Emer and D.Clark, ISCA, 1984.

John Cocke

https://www.cs.auckland.ac.nz/courses/compsci703s1c/archive/2007/resources/EmerClark.pdf
https://www.cs.auckland.ac.nz/courses/compsci703s1c/archive/2007/resources/EmerClark.pdf
https://www.cs.auckland.ac.nz/courses/compsci703s1c/archive/2007/resources/EmerClark.pdf


From CISC to RISC

▪ Use RAM for instruction cache of user-visible instructions
▪ Contents of fast instruction memory change to what application needs now    

vs. ISA interpreter

▪ Use simple ISA 
▪ Instructions as simple as microinstructions, but not as wide

▪ Enable pipelined implementations

▪ Compiled code only used a few CISC instructions anyways
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Berkeley and Stanford RISC Chips
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RISC-I (1982) Contains 44,420 transistors, fabbed in 5 
µm NMOS, with a die area of 77 mm2, ran at 1 MHz

RISC-II (1983) contains 40,760 transistors, was fabbed 
in 3 µm NMOS, ran at 3 MHz, and the size is 60 mm2

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in 3 µm & 
4 µm NMOS, ran at 4 MHz (3 µm ), and size is 50 mm2 (4 µm) 
(Microprocessor without Interlocked Pipeline Stages)

Fitzpatrick, Daniel, John Foderaro, 

Manolis Katevenis, Howard Landman, 

David Patterson, James Peek, Zvi 

Peshkess, Carlo Séquin, Robert 

Sherburne, and Korbin Van Dyke. "A 

RISCy approach to VLSI." ACM 

SIGARCH Computer Architecture News

10, no. 1 (1982)

Hennessy, John, Norman Jouppi, Steven 

Przybylski, Christopher Rowen, Thomas 

Gross, Forest Baskett, and John Gill. 

"MIPS: A microprocessor architecture." In 

ACM SIGMICRO Newsletter, vol. 13, no. 

4, (1982).

Dave

John

https://dl.acm.org/citation.cfm?id=859524
https://www.researchgate.net/profile/Norman_Jouppi/publication/234795328_MIPS_A_microprocessor_architecture/links/00b495185e2fb79958000000/MIPS-A-microprocessor-architecture.pdf


▪ CISC executes fewer instructions / 

program (~ ¾ instructions) 

but many more clock cycles per 

instruction (~ 6x CPI) 

⇒ RISC ~ 4x faster than CISC
“Performance from architecture: comparing a RISC 

and a CISC with similar hardware organization,” 

Dileep Bhandarkar and Douglas Clark, Proc. 

Symposium, ASPLOS, 1991.

Time   = Instructions Clock cycles __Time___
Program         Program     *   Instruction  *  Clock cycle

“Iron Law” of Processor Performance: How RISC can win
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http://www-inst.eecs.berkeley.edu/~cs252/sp17/papers/RISC-vs-CISC.pdf
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CISC vs. RISC Today

PC Era

▪ Hardware translates x86 

instructions into internal 

RISC instructions 

▪ Then use any RISC 

technique inside MPU

▪ > 350M / year !

▪ x86 ISA eventually 

dominates servers as well 

as desktops

PostPC Era: Client/Cloud

▪ IP in SoC chip vs. MPU chip

▪ Value die area, energy as much as 

performance

▪ >25B total / year in 2022

▪ 99% Processors today are RISC

▪ RISC-V a free and open ISA 

(billions of cores per year in 2022)
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Lessons from RISC vs CISC

● Less is More

○ It’s harder to come up with simple solutions, but they accelerate progress

● Importance of the software stack vs the hardware

○ If compiler can’t generate it, who cares?

● Importance of good benchmarks

○ Hard to make progress if you can’t measure it

○ For better or for worse, benchmarks shape a field

● Take the time for a quantitative approach vs rely on intuition to 

start quickly 

16



Moore’s Law Slowdown in Intel Processors

17

Moore, Gordon E. "No exponential is forever: but ‘Forever’ can be delayed!" 

Solid-State Circuits Conference, 2003.

15xWe’re now in the 

Post Moore’s Law Era



Technology & Power: Dennard Scaling

Power consumption 

based on models in 

Esmaeilzadeh 

[2011]. 18

Energy scaling for fixed task is better, since more and faster transistors

Power consumption 

based on models in 

“Dark Silicon and the 

End of Multicore 

Scaling,” Hadi 

Esmaelizadeh, ISCA,

2011

http://www.iuma.ulpgc.es/users/nunez/clases-micros-para-com/clases-mpc-slides-links/PH%20COD%20book%20ManyCore%20SMP%20OpenMP/ISCA11%20dark%20silicon%20the%20end%20of%20manycore%20era%20gpu%20etc.pdf


Bespoke Chiplet Solution

● As Moore’s Law diminishes, 
semiconductor wafer costs rising faster 
than performance gains from latest 
technology

● Instead of increasingly larger chips in 
latest technology, use clever packaging 
and smaller chips (“chiplets”), some in 
older technologies

○ AMD EPYC Rome: 1 I/O chiplet in 12 nm 
+ ≤ 8 core complex chiplets in 7 nm

○ Intel Sapphire Rapids: 4 chiplets, each with a 
subset of cores and IOs

● Save money (smaller chips have higher 
yield, some use old tech) and allows 
bigger systems (more transistors)

● More Cores, but cores no faster
○ May Improve throughput, not latency
○ Have to scale memory bandwidth too

19

https://en.wikichip.org/wiki/amd/cores/rome
https://en.wikichip.org/wiki/intel/microarchitectures/sapphire_rapids


Technology plateaus
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Domain Specific Architectures for 
Machine Learning
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Exciting New Frontier for Computer Architects

● Doubling transistor count but no longer at fixed cost or fixed power

● From 2x every two years to 2x every 10 years 

● Slowing Moore’s Law & Dennard Scaling ⇒ Domain Specific Architectures (DSA)
○ Do few things very well, but do everything poorly

● What to accelerate?
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artificial intelligence
Science of making things smart
Program logical rules top down to create   

artificial expert

machine learning
Get computers to produce rules bottom up 

programmers cannot specify

Observation:  Programming a computer to be clever is harder

than programming it to learn to be clever

neural networks
Techniques to learn from labeled data
Inspired by neurons in brain
From explainable machine learning 

to hard-to-explain machine learning

Cloud to AI

24



More computational power needed

(just as Moore’s Law is winding down!)

25



Tensor Processing Units (TPU) Origin Story

● 2013: Prepare for success-disaster of new DNN apps
● Scenario with 100M users speaking to phones 3 minutes per day:

If only CPUs, need double times whole data center fleet!

● Goal: Custom hardware to reduce the Total Cost of Ownership 
(TCO) of DNN inference phase by 10x
● Must run existing apps developed for CPUs and GPUs

● Very short development cycle 
● Started TPU v1 project 2014, running in datacenter 15 months later:

Architecture invention, compiler invention, hardware design, build, test, deploy

26



● 1 large 2D multiplier vs many smaller 1D units 

● Matrix multiplies benefit from 2D HW

● Narrower data types vs 32-bit Fl Pt 

⇒ more efficient computation / memory 

● TPU v1 drops CPU/GPU features (caches, branch predictors) 

⇒ saves area & energy 

⇒ reuse transistors for domain-specific on-chip memory

● Announced to world May 16, 2016
● “We’ve been running TPUs inside our data centers for more 

than a year, and have found them to deliver an order of 

magnitude better-optimized performance per watt for ML.” 27

Reasons for TPU v1 Success



The Launching of “1000 Chips”
● Intel acquires DSA chip companies

● Nervana:    ($0.4B)  August 2016

● Movidius:    ($0.4B) September 2016

● MobilEye: ($15.3B)  March 2017

● Habana:      ($2.0B)  December 2019

● Alibaba, Amazon build inference chips

● >100 startups ($3B/yr) launch own bets
● Coarse-Grained Reconfigurable Arch: SambaNova, ...

● Analog computing: Mythic, …

● Full silicon wafer computer: Cerebras, …

● Academia: TPUv1 paper ~4000 citations

● Most influential since RISC or Pentium Pro?
28

Helen of Troy

by Evelyn De Morgan

https://dl.acm.org/doi/10.1145/3079856.3080246
https://en.wikipedia.org/wiki/Pentium_Pro
https://en.wikipedia.org/wiki/Helen_of_Troy_(painting)
https://en.wikipedia.org/wiki/Evelyn_De_Morgan
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Dire Projections of Carbon Emissions 
for ML Training
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● Environmental cost to improve ML task (2024)?* 
“The answers are grim: Training such a model 
would cost US $100 billion and would produce as 
much carbon emissions as New York City does in a 
month. And if we estimate the computational 
burden of a 1 percent error rate, the results are 
considerably worse.”

Thompson, N.C., et al., October 2021. 
Deep Learning's Diminishing Returns: The Cost of 

Improvement is Becoming Unsustainable, IEEE Spectrum

Malthusian Predictions about ML Training

* The ML task is object recognition using the Imagenet benchmark 
to reduce the error rate for an ML task* to a 5% from 11.5% today.

● “In fact, by 2026, the training cost of the largest AI 
model predicted by the compute demand trend 
line would cost more than the total U.S. GDP.”
[$20T]

Lohn, J. and Musser, M., January 2022. 
AI and Compute—How Much Longer Can 

Computing Power Drive Artificial Intelligence Progress?
Center for Security and Emerging Technology

https://ieeexplore.ieee.org/document/9563954/
https://ieeexplore.ieee.org/document/9563954/
https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-Drive-Artificial-Intelligence-Progress.pdf
https://cset.georgetown.edu/wp-content/uploads/AI-and-Compute-How-Much-Longer-Can-Computing-Power-Drive-Artificial-Intelligence-Progress.pdf
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https://xkcd.com/1007/

https://xkcd.com/1007


How to document energy use and CO2e emissions

KWh = Hours to train ✕ Number of Processors ✕ Average Power per Processor✕ PUE

● Many cloud companies publish quarterly PUE for all metros (e.g., Iowa, Oklahoma )

○ Power Usage Effectiveness: energy overhead “wasted” in datacenter 

(doesn’t get to computers); if overhead is 50%, PUE = 1.5

● ML experts already know Hours to Train and Number of Processors

● Average Power per Processor:  

○ Measure power while running 

tCO2e = KWh ✕ tCO2e per KWh

● Ask datacenter operator for energy cleanliness: tCO2e per KWh

○ Varies 10x by location
32

https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/


Good News: Reduce energy 100x, CO2e 1000x!
CO2 equivalent emissions (CO2e) include greenhouse gases

Energy efficiency in ML can be improved 
by 4 (multiplicative) best practices
“4Ms of ML Energy Efficiency” 

33Thanks to Cliff Young for 4M mnemonic!

1. Model. Transformer (2017) to 
Primer (2021) is 4x

2. Machine. P100 (2017) to newest 
GPU/TPU (2021) is 14x

3. Mechanization (datacenter 
efficiency). PUE from on premise 
average to Cloud average is 1.4x

4. Maps (geographic location, energy 
source).  Avg %Carbon Free Energy 
(2017) to Oklahoma %CFE is 9x (2021)

Cloud
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Putting it all together: The Supercomputer Fugaku 

● Rather than use off-the-shelf CPUs or GPUs, designed a custom chip based on 

RISC (A64FX)
○ ~160,000 nodes, ~400 racks, ~440 PetaFLOPS/s 64b Fl PT, ~ 1 ExaFLOPS/s 32b, 30 MegaWatts

● Fastest in all 4 high performance computing benchmarks for 4 times
○ Top500, Graph500, HLP-AI, High Performance Conjugate Gradients (HPCG)

● Fast MLPerf HPC v1.0 ML training benchmark (CosmoFlow)

● Increased performance 100x but power increased only 3x ⇒ 33x in perf/Watt
○ Improved Machine of the 4Ms



Conclusion and Lessons Learned               
● Moore’s Law is slowing, Dennard scale is dead

● Chiplet allow more cores per package,

but transistors not cheaper, helps only some applications

● More dramatic impact possible for DSAs than General Purpose CPUs

● Architects must learn a wider range of topics for DSAs, 

from algorithms to packaging technologies
○ As opposed to running SPEC benchmarks on a software CPU simulator

● DNN models still growing and changing fast
○ Running DNNs well potentially has large commercial impact

● Lower CO2e of training big models if follow best practices: Best model, Best 

machine, Best mechanization (data center efficiency), Best map (clean energy)

36


