A New Golden Age for Computer Architecture

David Patterson
UC Berkeley and Google
February 2023

Outline

- Computer Architecture 1960-2010 (10 minutes)
- Computer Architecture Today (10 minutes)
- Domain Specific Architectures for Machine Learning (5 minutes)
- Reducing CO2 emissions of Machine Learning (5 minutes)
- Conclusion
- Q\&A

Computer Architecture 1960-2010

Instruction Set Architecture?

- Software talks to hardware using a vocabulary
- Words called instructions
- Vocabulary called instruction set architecture (ISA)

- Most important interface since determines software that can run on hardware
- Software is distributed as instructions

IBM Compatibility Problem in Early 1960s

By early 1960's, IBM had 4 incompatible lines of computers!

701	$\vec{~}$	7094
650	$\vec{\sim}$	7074
702	$\overrightarrow{-}$	7080
$1401-7010$		

Each system had its own:

- Instruction set architecture (ISA)
- I/O system and Secondary Storage: magnetic tapes, drums and disks
- Assemblers, compilers, libraries,...

- Market niche: business, scientific, real time, ...
IBM System/360 - one ISA to rule them all

Control versus Datapath

- Processor designs split between datapath, where numbers are stored and arithmetic operations computed, and control, which sequences operations on datapath
- Biggest challenge for computer designers was getting control correct

Maurice Wilkes invented the idea of microprogramming to design the control unit of a processor*

- Logic expensive vs. ROM or RAM
- ROM cheaper and faster than RAM
- Control design now programming
* "Micro-programming and the design of the control circuits in an electronic digital computer," M. Wilkes, and J. Stringer. Mathematical Proc. of the Cambridge Philosophical Society, Vol. 49, 1953.

Microprogramming in IBM 360

Model	M30	M40	M50	M65
Datapath width	8 bits	16 bits	32 bits	64 bits
Microcode size	$4 \mathrm{k} \times 50$	$4 \mathrm{k} \times 52$	$2.75 \mathrm{k} \times 85$	$2.75 \mathrm{k} \times 87$
Clock cycle time (ROM)	750 ns	625 ns	500 ns	200 ns
Main memory cycle time	1500 ns	2500 ns	2000 ns	750 ns
Price $(1964 \$$)	$\$ 192,000$	$\$ 216,000$	$\$ 460,000$	$\$ 1,080,000$
Price $(2023 \$)$	$\$ 1,860,000$	$\$ 2,090,000$	$\$ 4,450,000$	$\$ 10,460,000$

Fred Brooks, Jr.

IC Technology, Microcode, and CISC

- Logic, RAM, ROM all implemented using same transistors
- Semiconductor RAM ~ same speed as ROM
- With Moore's Law, memory for control store could grow
- Since RAM, easier to fix microcode bugs
- Allowed more complicated ISAs (CISC)
- Minicomputer (TTL server) example:
- Digital Equipment Corp. (DEC)
- VAX ISA in 1977
- 5 K x 96b microcode

Microprocessor Evolution

- Rapid progress in 1970s, fueled by advances in MOS technology, imitated minicomputers and mainframe ISAs
- "Microprocessor Wars": compete by adding instructions (easy for microcode), justified given assembly language programming
- Intel iAPX 432: Most ambitious 1970s micro, started in 1975
- 32-bit capability-based, object-oriented architecture, custom OS written in Ada
- Severe performance, complexity (multiple chips), and usability problems; announced 1981
- Intel 8086 (1978, 8MHz, 29,000 transistors)
- "Stopgap" 16-bit processor, 52 weeks to new chip
- ISA architected in 3 weeks (10 person weeks) assembly-compatible with 8 bit 8080
- IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was late)
- Estimated PC sales: 250,000
- Actual PC sales: $100,000,000 \Rightarrow 8086$ "overnight" success
- Binary compatibility of PC software \Rightarrow bright future for 8086

Analyzing Microcoded Machines 1980s

- UNIX proves even operating systems can be written in HLL
- Compilers now source of measurements
- John Cocke group at IBM
- Worked on a simple pipelined processor, 801 minicomputer (ECL server), and advanced compilers inside IBM
- Ported their compiler to IBM 370, only used
simple register-register and load/store instructions (similar to 801)
- Up to $3 x$ faster than existing compilers that used full 370 ISA!
- Emer and Clark at DEC in early 1980s*
- Found VAX 11/780 average clock cycles per instruction $(\mathrm{CPI})=10$!

John Cocke

- Found 20% of VAX ISA $\Rightarrow 60 \%$ of microcode, but only 0.2% of execution time!

[^0]
From CISC to RISC

- Use RAM for instruction cache of user-visible instructions
- Contents of fast instruction memory change to what application needs now vs. ISA interpreter
- Use simple ISA
- Instructions as simple as microinstructions, but not as wide
- Enable pipelined implementations
- Compiled code only used a few CISC instructions anyways

Berkeley and Stanford RISC Chips

RISC-I (1982) Contains 44,420 transistors, fabbed in 5
$\mu \mathrm{m}$ NMOS, with a die area of $77 \mathrm{~mm}^{2}$, ran at 1 MHz

RISC-II (1983) contains 40,760 transistors, was fabbed in $3 \mu \mathrm{~m}$ NMOS, ran at 3 MHz , and the size is $60 \mathrm{~mm}^{2}$

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in $3 \mu \mathrm{~m}$ \& $4 \mu \mathrm{~m}$ NMOS, ran at $4 \mathrm{MHz}(3 \mu \mathrm{~m})$, and size is $50 \mathrm{~mm}^{2}(4 \mu \mathrm{~m})$ (Microprocessor without Interlocked Pipeline Stages)

"Iron Law" of Processor Performance: How RISC can win

$$
\frac{\text { Time }}{\text { Program }}=\frac{\text { Instructions }}{\text { Program }} * \frac{\text { Clock cycles }}{\text { Instruction }} * \frac{\text { Time }}{\text { Clock cycle }}
$$

- CISC executes fewer instructions / program (~ $3 / 4$ instructions) but many more clock cycles per instruction ($\sim 6 \times \mathrm{CPI}$)
\Rightarrow RISC $\sim 4 x$ faster than CISC
"Performance from architecture: comparing a RISC and a CISC with similar hardware organization," Dileep Bhandarkar and Douglas Clark, Proc. Symposium, ASPLOS, 1991.

Computer Architecture Today

CISC vs. RISC Today

PC Era

- Hardware translates x86 instructions into internal RISC instructions
- Then use any RISC technique inside MPU
- > 350M / year !
- x86 ISA eventually dominates servers as well as desktops

PostPC Era: Client/Cloud

- IP in SoC chip vs. MPU chip
- Value die area, energy as much as performance
- >25B total / year in 2022
- 99\% Processors today are RISC
- RISC-V a free and open ISA (billions of cores per year in 2022)

Lessons from RISC vs CISC

- Less is More
- It's harder to come up with simple solutions, but they accelerate progress
- Importance of the software stack vs the hardware
- If compiler can't generate it, who cares?
- Importance of good benchmarks
- Hard to make progress if you can't measure it
- For better or for worse, benchmarks shape a field
- Take the time for a quantitative approach vs rely on intuition to start quickly

Moore's Law Slowdown in Intel Processors

Moore, Gordon E. "No exponential is forever: but 'Forever’ can be delayed!" Solid-State Circuits Conference, 2003.

Technology \& Power: Dennard Scaling

Energy scaling for fixed task is better, since more and faster transistors

Power consumption based on models in "Dark Silicon and the End of Multicore Scaling," Hadi Esmaelizadeh, ISCA, 2011

Bespoke Chiplet Solution

- As Moore's Law diminishes, semiconductor wafer costs rising faster than performance gains from latest technology
- Instead of increasingly larger chips in latest technology, use clever packaging and smaller chips ("chiplets"), some in older technologies
- AMD EPYC Rome: 1 I/O chiplet in 12 nm $+\leq 8$ core complex chiplets in 7 nm
- Intel Sapphire Rapids: 4 chiplets, each with a subset of cores and IOs
- Save money (smaller chips have higher yield, some use old tech) and allows bigger systems (more transistors)
- More Cores, but cores no faster
- May Improve throughput, not latency

- Have to scale memory bandwidth too

Technology plateaus

Domain Specific Architectures for Machine Learning

Exciting New Frontier for Computer Architects

- Doubling transistor count but no longer at fixed cost or fixed power
- From 2x every two years to $2 x$ every 10 years
- Slowing Moore’s Law \& Dennard Scaling \Rightarrow Domain Specific Architectures (DSA)
- Do few things very well, but do everything poorly
- What to accelerate?

Observation: Programming a computer to be clever is harder than programming it to learn to be clever

More computational power needed (just as Moore's Law is winding down!)

Tensor Processing Units (TPU) Origin Story

- 2013: Prepare for success-disaster of new DNN apps
- Scenario with 100M users speaking to phones 3 minutes per day: If only CPUs, need double times whole data center fleet!

- Goal: Custom hardware to reduce the Total Cost of Ownership (TCO) of DNN inference phase by 10x
- Must run existing apps developed for CPUs and GPUs
- Very short development cycle
- Started TPU v1 project 2014, running in datacenter 15 months later: Architecture invention, compiler invention, hardware design, build, test, deploy

Reasons for TPU v1 Success

- 1 large 2D multiplier vs many smaller 1D units - Matrix multiplies benefit from 2D HW
- Narrower data types vs 32-bit FI Pt
\Rightarrow more efficient computation / memory
- TPU v1 drops CPU/GPU features (caches, branch predictors) \Rightarrow saves area \& energy
\Rightarrow reuse transistors for domain-specific on-chip memory
- Announced to world May 16, 2016
- "We've been running TPUs inside our data centers for more than a year, and have found them to deliver an order of magnitude better-optimized performance per watt for ML?"

The Launching of "1000 Chips"

 - Intel acquires DSA chip companies- Nervana: (\$0.4B) August 2016
- Movidius: (\$0.4B) September 2016
- MobilEye: (\$15.3B) March 2017
- Habana: (\$2.0B) December 2019
- Alibaba, Amazon build inference chips
- >100 startups (\$3B/yr) launch own bets
- Coarse-Grained Reconfigurable Arch: SambaNova, ...
- Analog computing: Mythic, ...
- Full silicon wafer computer: Cerebras, ...
- Academia: TPUv1 paper ~4000 citations
 Most influential since RISC or Pentium Pro?

Dire Projections of Carbon Emissions for ML Training

Malthusian Predictions about ML.Training

- Environmental cost to improve ML task (2024)?* "The answers are grim: Training such a model would cost US $\$ 100$ billion and would produce as much carbon emissions as New York City does in a month. And if we estimate the computational burden of a 1 percent error rate, the results are considerably worse."

Thompson, N.C., et al., October 2021. Deep Learning's Diminishing Returns: The Cost of Improvement is Becoming Unsustainable, IEEE Spectrum

- "In fact, by 2026, the training cost of the largest AI model predicted by the compute demand trend line would cost more than the total U.S. GDP." [\$20T]

Lohn, J. and Musser, M., January 2022.

* The ML task is object recognition using the Imagenet benchmark Google to reduce the error rate for an ML task ${ }^{\star}$ to a 5% from 11.5% today.

THE WORD "SUSTAINABLE" IS UNSUSTAINABLE.

How to document energy use and $\mathrm{CO}_{2} \mathrm{e}$ emissions

KWh $=\underline{\text { Hours to train }} \times \underline{\text { Number of Processors }} \times$ Average Power per Processor $\times \underline{\text { PUE }}$

- Many cloud companies publish quarterly PUE for all metros (e.g., Iowa, Oklahoma)
- Power Usage Effectiveness: energy overhead "wasted" in datacenter (doesn't get to computers); if overhead is $50 \%, \mathrm{PUE}=1.5$
- ML experts already know Hours to Train and Number of Processors
- Average Power per Processor:
- Measure power while running
$\mathrm{tCO}_{2} \mathrm{e}=\mathrm{KWh} \times \mathrm{tCO}_{2} \underline{\text { e per } \mathrm{KWh}}$
- Ask datacenter operator for energy cleanliness: $\underline{\mathrm{tCO}}_{2}$ e per KWh
- Varies 10x by location

Energy efficiency in ML can be improved by 4 (multiplicative) best practices "4Ms of ML Energy Efficiency"

1. Model. Transformer (2017) to Primer (2021) is 4x
2. Machine. P100 (2017) to newest GPU/TPU (2021) is 14 x
3. Mechanization (datacenter efficiency). PUE from on premise average to Cloud average is 1.4 x
4. Maps (geographic location, energy source). Avg \%Carbon Free Energy Google(2017) to Oklahoma \%CFE is 9x (2021)

Putting it all together: The Supercomputer Fugaku

- Rather than use off-the-shelf CPUs or GPUs, designed a custom chip based on RISC (A64FX)
- $\sim 160,000$ nodes, ~ 400 racks, ~ 440 PetaFLOPS/s 64 b FI PT, ~ 1 ExaFLOPS/s 32b, 30 MegaWatts
- Fastest in all 4 high performance computing benchmarks for 4 times
- Top500, Graph500, HLP-AI, High Performance Conjugate Gradients (HPCG)
- Fast MLPerf HPC v1.0 ML training benchmark (CosmoFlow)
- Increased performance 100x but power increased only $3 x \Rightarrow 33 x$ in perf/Watt
- Improved Machine of the 4 Ms

Conclusion and Lessons Learned

- Moore's Law is slowing, Dennard scale is dead
- Chiplet allow more cores per package,
 but transistors not cheaper, helps only some applications
- More dramatic impact possible for DSAs than General Purpose CPUs
- Architects must learn a wider range of topics for DSAs, from algorithms to packaging technologies
- As opposed to running SPEC benchmarks on a software CPU simulator
- DNN models still growing and changing fast
- Running DNNs well potentially has large commercial impact
- Lower CO2e of training big models if follow best practices: Best model, Best machine, Best mechanization (data center efficiency), Best map (clean energy)

[^0]: * "A Characterization of Processor Performance in the VAx-11/780," J. Emer and D.Clark, ISCA, 1984.

