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negligence. FSEU is not liable for consequential damages. 
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shall stay in full effect. 
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1 Introduction 

This document provides a collection of useful hints on how to optimize the graphics performance of an 

application running on MB86R1X „Emerald-X‟. The first chapter provides general hints that are independent 

of the used graphics API (2D or 3D). This is followed by chapters that focus on the 2D API (Pixel Engine) 

respectively 3D API (OpenGL ES 2.0). 

1.1 Scope 

Only graphics driver aspects are covered by this application note. 
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2 General Optimization 

This chapter discusses optimizations that are independent of the API used for drawing. They are based on 
the following general rules on how to improve graphics performance: 

 Minimize memory bandwidth consumption 

 Only redraw your graphics when needed 

 Minimize the area that needs to be (re)drawn 

2.1 Make use of the display controllers layer concept 

The display controllers in MB86R1X „Emerald-X‟ support multiple layers (see the MB86R1X „Emerald-X‟ HW 
manual for a detailed description of the layer concept). In the MB86R1X „Emerald-X‟ graphics driver, a 
display controller layer corresponds to a window (see the graphics driver Display API for details). Consider 
the following aspects when using window(s) (layer and window are interchangeable in the following section): 

 Make your window(s) as small as possible. Usually they don‟t need to cover the full screen. 

 Use separate windows if you have graphics content with different update rates. Example: One layer 
contains a speedometer that is redrawn with 60 fps and another layer holds the status bar that gets 
redrawn with 1 fps. 

 Carefully use overlapping windows: Overlapping windows increase the required memory bandwidth 
as the display controller has to fetch the pixel data of all windows and blend them together real-time 
during display refresh. Overlapping windows make sense if you have 

o high redraw rates. In this case, blending the images together before display would result in a 
higher memory bandwidth. 

o display regions with different redraw rates. This includes static background images with 
dynamic content in the front. 

Otherwise it‟s better to blend the graphics together in one window before it gets displayed.  

 Use the minimal color depth required for your application. This minimizes the memory bandwidth 
required to display the window. Every window can have a different color depth. 

2.2 Optimize display controller 0/1 layer assignment to avoid pixel distortion 

If you face pixel distortion on the display caused by a memory bandwidth shortage, i.e. the display controller 

can‟t read the pixel data fast enough (function mmlGdcDispGetAttribute() can be used to check this) consider 

the following: 

 Do only use odd or even display controller layers (e.g. L0, L2, L4, L6 or L1, L3, L5, L7) if possible. 

Reason: The layer pairs L0/L1, L2/L3, L4/L5 and L6/L7 share the same pixel prefetch buffer. If only 

one layer of a layer pair is enabled, it can use the whole prefetch buffer. Otherwise the prefetch 

buffer size available to a layer is halved. This results in a reduced memory latency tolerance for 

these layers. In case you need more than 4 layers, combine layers with a 16 bpp format or layers 

that are located in non-overlapping display areas. 

 If pixels at the start of a display line show distortion, it can be caused by a non-optimal display timing: 

The time between HSYNC and first active pixel is to short (the display controller starts to fetch the 

pixels of a line just after the HSYNC). To solve this problem, modify the display timing to increase 

the time between HSYNC and first active pixel.  
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2.3 Use 2D graphics operations instead of 3D graphics operations where 
possible 

2D graphics operations are almost always faster than 3D graphics operations. Therefore use 2D instead of 
3D graphics operations where possible. Please note that 2D and 3D graphics operations can also work on 
the same framebuffer. As 2D and 3D graphics operations run in parallel, you might see a performance 
increase just by loading the 2D and 3D pipeline more evenly. 

2.4 Use multiple threads for graphic content with different update 
requirements 

Put all graphics calls for the window(s) with the same redraw requirement, i.e. frame rate, into one thread. 
Use multiple threads if you have different redraw requirements. By setting the thread priority and the 
graphics command queue priority (see function mmlGdcConfigSetAttribute() in the graphics driver) you can 
make sure real-time graphics content is handled with higher priority than non-realtime graphics content. 
Consider to limit the frame rate by setting the swap interval (2D: mmldGdcDispSyncWindowSwap(), 3D: 
elgSwapInterval()). This can be used to get a constant frame rate and/or better distribution of graphics 
performance among threads. 

2.5 Use the non-blocking sync mechanisms provided by the graphics driver 

In a graphics application there should never be the need to wait for the 2D or 3D drawing to be finished by 
calling mmlGdcPeFinish() or glFinish(). These calls wait until all 2D/3D graphics operations have been 
finished which result in 2D/3D pipeline bubbles. Try to use the non-blocking sync mechanism instead (see 
graphic driver Sync API for details). Do also consider your buffer requirements (triple vs. double buffering) to 
avoid waits caused by unavailable buffer. 

2.6 Enable warnings in the release version of the graphics driver to get 
warnings for inefficient application code 

The release version of the graphics driver prints out warnings for inefficient application code (e.g. precision of 
vertex shader attributes is different from precision of vertex data in memory). The print out of warnings has to 
be enabled in the graphics driver (see graphic driver Error Reporting API for details). Note that the 
production version of the graphics driver doesn‟t contain these checks! 

2.7 Check GPU and Pixel Engine load 

The graphics driver offers hooks to query the GPU and Pixel Engine load. This can be used to find out if the 

graphics performance of an application is limited by the GPU or Pixel Engine (load would be 100%) or the 

application itself is causing the performance limitation (e.g. CPU load to high, i.e. graphics calls can‟t be 

generated fast enough; application contains waits). Under Linux you can access this information as follows: 

cat /proc/driver/emeralddisplay/card 

Note that the load is measured between 2 successive calls of “cat /proc/driver/emeralddisplay/card”, so the 

first print-out must be ignored. 

It is helpful to combine the GPU/Pixel Engine load measurement with the CPU load measurement. 
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3 2D - Pixel Engine 

This chapter discusses optimizations for applications using the Pixel Engine API. Please note that some of 
the following hints influence the processing speed directly (like filter settings) but most hints influence the 
required memory bandwidth and in this case not only the 2D pixel processing speed but also the memory 
bandwidth left over for a parallel running 3D processing. 

3.1 Optimize Color Format  

Use the smallest possible color format for source (and frame buffers). For instance alpha bitmaps can be 
defines as 8 bit per pixel (bpp) buffers without color information. In many cases even 4, 2 or 1 bpp bitmaps 
can be used without visible artifacts. 
In some cases also reduced customized color formats are sufficiently. For instance an image without alpha 
channel and a constant red value can be defined as 16 bpp format with 8 bits for green and 8 bits for blue 
values.  

3.2 RLD sources 

Try to use run length encoded images if the processing properties allow it (rotation and scaling is not 
possible for RLD sources). 

3.3 Use combined blit operations 

For instance a render process with the following steps: 
- clear frame buffer 

- copy background to frame buffer  

- blend new rotated needle over the background 

can be realized with a single blit operation: 
- blend the rotated needle over the background source and write the result to the frame buffer 

3.4 Use nearest filter if no bilinear filtering is required 

For instance a rotated alpha source used to define the transparency for a scale does not require bilinear 
filtering.  

3.5 Reduce background redraw area 

Use the PixEng driver API to read back the draw area of the last blit operation and refresh only the affected 
area for the next frame.  

3.6 Generic hints for complex scenes 

Especially for scene with complex 2D content the hints using layers and threads are important. The tutorial 
example 2d_threading shows different ways to control the render speed of different render jobs by  

- Using more than 2 render buffers to avoid wait operations 

- Change the swap interval (function mmlGdcDispSyncWindowSwap()) for layers  

- Change the graphics command queue priority (mmlGdcConfigSetAttribute() with parameter 
MML_GDC_CONFIG_ATTR_GFX_PRIORITY) 

- Change the thread processing priority 
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4 3D - OpenGL ES 2.0 

This chapter discusses optimizations for applications using the OpenGL ES 2.0 API. 

4.1 General 

4.1.1 Minimize OpenGL state changes 

With every OpenGL state change, 
1. The complete rendering pipeline has to be flushed 

2. The new state is set 

3. Rendering continues using the new OpenGL state 

These pipeline flushes slow down rendering significantly. 

4.1.1.1 What causes an OpenGL state change? 

Following is a list of OpenGL calls that cause a pipeline flush. Only the most commonly used calls are 
mentioned: 

 glBlendXXX() 

 glClear() 

 glDepthXXX() 

 glEnable(), glDisable() 

 glFinish() 

 glFrontFace() 

 glScissor() 

 glStencilXXX() 

 glTexImage2D() 

 glTexParameterXX() 

 glUniformXXX() 

 glUseProgram() 

4.1.1.2 How to minimize OpenGL state changes? 

 Render objects together that use the same rendering state, e.g. 

o Render objects together that use the same texture (avoids flushing the texture cache) 

o Render objects together that use the same shader program (avoids changing shader 
programs). 

o Render objects together that use identical fragment operations. 

o Position meshes of complex objects already in model space. This avoids changing the MVP 
(ModelViewProjection) matrix between meshes. An example would be a car: You can 
position the parts of a car (doors, tyres, rims etc.) using the MVP matrix or have one model 
which has the meshes already positioned correct. Only use the MVP matrix if meshes of an 
object need to move independently from each other. 
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 Try to group several texture images into one texture image so texture changes are minimized. 

4.1.2 Use vertex buffer objects (VBO’s) 

VBO‟s reside in VRAM and are copied there only once at load time. In contrast, for objects drawn without 
VBO‟s the vertex data has to be copied from CPU memory to VRAM every time the object is drawn. 

4.1.3 Simplify meshes 

Although this is an obvious hint, it is mentioned here as its performance gain is very high. Usually the 
polygon count of models can be drastically reduced without impacting the visual appearance. 

4.1.4 Use LOD (Level of Detail) management 

Use simplified models (lower polygon count) when objects are far away from the viewer. As objects get 
closer, switch to more detailed models. 

4.1.5 Only draw objects that are visible 

In some scenes, it is easy to determine at application level if an object is completely hidden or not. Although 
no pixels are drawn for such objects, they still have to pass the vertex and fragment processing stage 
(fragment processing only if the triangle is not thrown away after vertex processing). If objects can‟t be 
eliminated from rendering, think about the following ways to minimize the number of triangles/fragments that 
need to be drawn: 

 Use scissoring 

 Use backface culling 

4.1.6 Do only clear buffers that need to be cleared 

Usually there is no need to clear the color buffer as the complete frame is redrawn. 

4.1.7 Use the Pixel Engine to draw background images instead of textured 
triangles 

The Pixel Engine is much faster as it does a simple memory copy operation instead of feeding all pixels 
through the 3D rendering pipeline. Note that the Pixel Engine can access the OpenGL color, stencil and 
depth buffers. So you can also save/restore the color, stencil and depth buffer of a static background image. 
See the Surface API for the OpenGL driver for details. 

4.1.8 Use triangle strips/fans instead of triangles 

In triangle strips/fans, vertices are shared between adjacent triangles. These shared vertices are only 
processed once by the vertex shader. 

4.1.9 Choose as low precision as possible (without rendering artefacts) on 
vertex, normal, color and texture coordinates 

Lower precision data requires less memory space, i.e. less memory bandwidth to read it by the GPU. Usually 
lower precision data is processed faster by the shader. See “Optimizing Shader Programs” for details. 
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4.1.10 Interleave vertex data (attributes) in memory 

Vertex attributes (vertex coordinates, normals, texture coordinates etc.) can be put into separate buffers or 
interleaved into one single buffer. Interleaved data can be read more efficiently from memory as it is one 
continuous data stream. Following is an example to illustrate the difference between interleave/non-
interleaved data: 
/* Interleaved vertex data */ 

typedef struct { 

GLfloat x,y,z; /* vertex coordinates */ 

GLfloat nx,ny; /* normal vector */ 

GLfloat s,t;   /* texture coordinate */ 

} v_t; 

 

v_t v_data0[] = {...}; 

 

/* Non-interleaved vertex data */ 

GLfloat v_data1_vertex[]  = {...};  /* vertex coordinates (x,y,z) */ 

GLfloat v_data1_normal[]  = {...};  /* normal vector (nx, ny) */ 

GLfloat v_data1_texture[] = {...};  /* texture coordinates (s, t)*/ 

4.1.11 Use glDrawArray()’s with different offsets instead of glVertexPointer() and 
glDrawArray() with offset 0 

The vertex attributes for different objects drawn with glDrawArray() can be put into separate buffer or one 
single buffer. By using different buffer offsets, these different objects can be drawn without the need to switch 
buffer. If no OpenGL state change happens between this glDrawArray() calls, rendering is faster using a 
single buffer. 

4.1.12 Disable depth test if not needed 

In some situations the depth test can be disabled which results in better graphics performance. Common 
situations where the depth test can be disabled are: 

 A mesh is always on top of the other meshes. Typically true if you have blending enabled for a 
mesh. 

4.1.13 Enable triple buffering 

By using triple buffering, the dependencies between application, graphics driver and GPU can be further 
relaxed. Also frame rates are no longer limited to integer divisors of the display refresh rate. Uniformly 
moving objects can start to jitter if triple buffering is used. Use eglSwapInterval() to get a constant redraw 
rate. 

4.2 Optimizing Shader Programs 

The goal of shader optimizations is to increase its throughput (vertices/sec, fragments/sec) without impacting 
visual appearance. 

4.2.1 Use dedicated shader programs instead of universal shaders 

One shader program can contain different functionalities that can be enabled/disabled through uniforms. An 
example would be fog: You can have a uniform that enables/disables the fog calculation in the shader or you 
can use two different shader programs, one with fog calculation and one without. In almost all cases, 
dedicated shader program yield the better performance. 
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4.2.2 Avoid if-else constructs in the shader 

4.2.3 Only perform calculations in the shader program that need to be done at 
run time 

Calculations in a shader program should only be done if they can‟t be done outside the shader. Examples 
are: 

 Calculations that do only require uniforms: Perform these calculations upfront in your application. 

 Dedicated instructions to mirror, i.e. reflect, a model. Incorporate the reflection into the MVP matrix. 

4.2.4 Carefully design your lighting 

 Use per vertex lighting instead of per fragment lighting. 

 Use as less lighting sources as possible (usually one lighting source is ok). 

 Use simplified lighting calculations instead of just re-implementing the fixed function pipeline lighting. 

 Pre-calculate your lighting effects by putting them into textures if possible. 

4.2.5 Minimize the number of (temporary) variables 

4.2.6 Don‘t use too many assigns 

float x = 0; 

x = in; 

var = 3 * x; 

Better: 
var = 3 + in; 

4.2.7 Don’t allocate variables across a large code range, i.e. minimize their 
lifetime 

float x = in + 1; 

//do many other calulations 

out = 3 * x; 

4.2.8 Make sure attribute precision in vertex shader and precision of vertex data 
in memory is identical 

The precision of the attributes in the vertex shader must be identical to the precision of the vertex data in 
memory. Otherwise the graphics driver has to convert the vertex data every time the mesh is drawn. A 
common mistake is to have float data in memory and use mediump precision for attributes in the vertex 
shader. It is recommended to use float data in memory and a highp precision for attributes in the vertex 
shader. 

4.2.9 Use mediump precision instead of highp (especially fragment shader) 

The shader performs most of the arithmetic calculations much faster in mediump than in highp precision. 
When using mediump precision for vertex attributes, make sure the data in memory is stored in half-float 
format as well. Otherwise the driver has to convert the precision everytime the object is drawn. Mediump 
precision should be the default precision in the fragment shader and for varyings. 
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4.2.10 Perform vector based operations if possible 

vec2 x1 = (in1 + in1) / 2; 

vec2 x2 = (in2 + in2) / 2; 

Better: 
vec4 x.xy = in1; 

x.zw = in2; 

x = (x + x) * 0.5; 

4.2.11 Use automatic shader load balancing (Shader Compiler –M5 option) 

By using the Shader Compiler option „-M5‟ you can enable the automatic load balancing between vertex and 

fragment shader programs in the shader core. This is possible as MB86R1X „Emerald-X‟ features a Unified 

Shader Core that processes both, vertex and fragment shader programs. By enabling the automatic load 

balancing, shader processing performance is automatically distributed to the vertex shader and fragment 

shader program as needed. Following are examples to illustrate this: 

 Large triangles need a lot of fragment shader processing but little vertex shader processing 

 Backfacing triangles do only need vertex shader processing and no fragment shader processing (if 

backface culling is enabled).  

Please note that the „-M5‟ command line option is not the default option as some devices supported by the 

Shader Compiler don‟t support this feature. The current version of the Shader Compiler also doesn‟t list this 

option in the help text (but it is documented in the Shader Compiler User Manual), but all versions of the 

Shader Compiler do support the „-M5‟ option. 

4.2.12 Use multiplication instead of division 

4.3 Optimizing Textures 

The goal of texture optimizations is to minimize the memory bandwidth required to fetch the texture data and 
to increase the texture cache hit rate. MB86R1X „Emerald-X‟ has a 32kB texture cache. It can hold 8192 
texels in 32 bit color format or 16384 texels in 16 bit color format. 

4.3.1 Make your texture images as small as possible 

Texture images never need to be bigger than the maximum pixel area they cover in the framebuffer. For 
example if a textured mesh covers a rectangle area of 64x64 pixel in the framebuffer, the texture image 
should not exceed this size. Otherwise texture cache hit rate, memory consumption and texture image 
appearance (unless you use mip-mapping) is worse. 
If possible, i.e. quality of visual appearance is ok, make the texture image even smaller than the pixel area 
covered in the framebuffer. This is usually possible for intensity, luminance and alpha Textures. 

4.3.2 Use a color format that requires less bpp (Bits Per Pixel) 

By using a 16 bit color format instead of a 32 bit color format, the memory bandwidth required to fetch the 
texture data is halved and twice as many texels fit into the texture cache. For alpha and luminance use the 8 
bpp format. 
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4.3.3 Use Mipmaps 

If an object changes its distance to the camera during rendering, mipmaps should be generated for the 
texture(s) applied to this object. In most cases mipmaps help to increase graphics performance as the right 
texture size is automatically chosen by the texture unit. Performance can only degrade if the texture unit has 
to “jump” through the different mipmap levels. In this situation the texture cache hit rate is reduced and 
performance slows done. Use a non-mipmaped texture in such situations. 
Keep in mind that mipmaps can only be generated if the width and height of a texture is a power of two. 

4.3.4 Draw objects sorted by texture 

This way the texture cache isn‟t flushed between objects. 

4.3.5 Check if texturing is really needed 

In some situations texturing of a mesh can be replaced by setting the color through a uniform in the fragment 
shader (e.g. paint of a car). Do also think about only getting the alpha or intensity value from the texture. 

4.3.6 Tessellate large textured triangles 

If large textures (>= 512x512 pixels) are mapped on large triangles (>= 128x128 pixels), e.g. for billboarding, 

the rendering performance can increase by tessellating the large triangles. Due to the additional vertices, 

performance can also decrease! Therefore it is very important to measure the rendering performance of both 

variants (with and without tessellation). 
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Abbreviations / Terminology 

V 

VRAM Video Random Access Memory. Physical continuous memory area set aside in 

DDRAM to be used/managed by the graphics driver. Used to hold graphics data for 

Video Capture, Display, 2D Engine and 3D Engine. 

 


