A Quest for Human Robot Cohabitation

Mohan M. Trivedi
LISA: Laboratory for Intelligent and Safe Automobiles
University of California at San Diego
http://cvrr.ucsd.edu/LISA

Connecting AI Technologies to Real-World Needs Panel

Fujitsu World Tour 2017
Fujitsu North America Technology Forum 2017
Safe, Stress-free, Efficient, Enjoyable Driving

Understanding human behavior is essential for humans. It may very well be essential for robotic vehicles as well. Make humans and vehicles form a distributed cognitive system to accomplish mutually beneficial goals.

How to make two intelligent systems, one robotic and another human understand each other and collaborate?

Learning by Li Lo: Looking-in and Looking-out

Key Points: Humanizing Automated Vehicles

- “Driving” = Environment + Vehicle + Driver
- Autonomous Driving in the “Real World” ⇒ Humanized Robotic Systems
- Should be Proactive: highly reliable, safety-time critical operation

- Situational Awareness and Intent Predication – needs Holistic Perception
- Holistic Perception:
 - Looking-Out: Lanes, Vehicles, Pedestrians and “Surround”
 - Looking-In: Occupant and “Driver”
 - Looking In and Out: Attention, Intentions, Activities, “Awareness”

- Key Challenges:
 - Multilevel Signal-> Semantics Representation and Analysis
 - Multisensory and Distributed Systems and Software
 - Communication – speed, reliability, fail safe
 - Human-Centric (Distributed) System Architectures
 - Robustness
 - Performance and Evaluation Metrics, Protocols, Standards
"Humanizing" Intelligent Vehicles: LISA Research Agenda

- Distracted driver?
- Ready to take over?
- Hands on wheel?
- Safe to deploy airbag?
- Noticed pedestrian?
- Pedestrian intent?
- Pedestrian trajectory?
- My neighbor's intent?
- Distracted neighbor?
- Acknowledge right of way?

Vision for Intelligent Vehicles: LISA-A Test bed 2013

Gps unit
- Vehicle Dynamics Sensors
- Lane Solver
- Range Sensors
- MVI camera
- Lane Camera
- Vehicle Dynamics Sensors

Prof Trivedi, UCSD Fujitsu World Tour 2017
Looking In and Out: Lane Change Intent Prediction
[Discovery Channel, 2013]
Doshi, Morris, Trivedi, IEEE Pervasive Computing 2011

Aim: The early detection of an intended maneuver using driver, vehicle, and surround information.

Predictive Driver Assistance

• When should the driver merge?
• Should he accelerate or decelerate? How much?
• Is it ok to change lanes? If yes Left/right? If so, how?
• Can an “Intelligent” system assist with this?
Intelligent Merge- Break Assist, Attention Monitoring
CES Week, San Francisco Media Event, Jan 2014

Robust, Reliable, Generalizable, Practical,
Market ready in 2017!

Vehicle Trajectory Learning Flowchart

Prof Trivedi, UCSD Fujitsu World Tour 2017
Panoramic Trajectory Analysis

Looking at Humans in Surrounding Vehicles

Surround Vehicle Behavior Analysis

Intent prediction
Proposed Approach – Integration of Regions
Looking at Humans Around the Vehicle:
Pedestrian body pose and fine-grained classification
Pedestrian path prediction

Walking
?
Stopping

Looking at Humans Around the Vehicle: Detections

Proposed Approach – Integration of Regions
Looking at Humans inside the Vehicle

Privacy and Safety: Balancing the Scale

LISA SafeShield @ CES 2016

Holistic Distributed Cognitive Systems Perspective: Learning from Naturalistic Driving Studies, Predictive, Attentive Systems

Four Point Summary

Big Picture:
Safe, Stress-free, Efficient, Enjoyable Driving

Long-Term Goals:
Human cohabitation with intelligent robots

Open Issues:
Fail-safe, Control transitions, Performance Metrics, standards, evaluations, multi-agents, cooperation, etc. etc.

Thanks!
more information: mtrivedi@ucsd.edu cvrr.ucsd.edu/lisa

Prof Trivedi, UCSD Fujitsu World Tour 2017