65nm CMOS Process Technology

Paul Kim
Senior Manager, Foundry Services
Fujitsu Microelectronics America, Inc.
New 300mm Fabs – Mie, Japan

300mm Fab No.2

- **Process**
 - 65nm/90nm CMOS Logic
- **Structural Features**
 - Seismic-vibration control construction
 - Clean room area: 24,000 sq. meters
- **Production Capacity**
 - 10,000 wafers per month (FY07 projection)
 - Maximum capacity of 25,000 wafers per month
- **Planned Start of Operation**
 - April 2007

300mm Fab No.1

- **Process**
 - 90nm/65nm CMOS Logic
- **Structural Features**
 - Seismic-control construction
 - Clean room area: 12,000 sq. meters
- **Production Capacity**
 - 15,000 wafers per month (FY06)
- **Start of Operation**
 - April 2005
CMOS Technology Roadmap

CS100/CS100A (90nm)
- L actual=40-80nm
- SiOC (k:2.9) low-k
- Dual Damascene Cu

CS200/CS200A (65nm)
- L actual=30-50nm
- NCS (Nano-Clustering Silica)
Proven Track Record of 90nm Complex Designs and Products

- Processors for PRIMEPOWER
 Achieves world-leading performance and reliability

- Chipset for PRIMEQUEST
 Achieves mainframe-class reliability and scalability
 Helped reduce development time

- Baseband chip for FOMA 3G mobile phones
 LSI power consumption reduced 50%
 (compared to existing tech)
High-performance Products
- PC CPU (Transmeta)
- Large-scale FPGA (Lattice)
- Others

Low-power Products
- Multimedia processor
- Digital AV products
- Others

Proven Track Record of 90nm
Complex Designs and Products – continued
Features

- **Ultra-high-speed performance (CS200)**
 - $L_G = 30\text{nm}$, on-current enhance

- **Compared to 90nm technology, CS200 offers:**
 - 1.3 times faster speed
 - 0.6 times lower power
 - 2 times higher density

- **3 variations of V_{th} on a chip (CS200A)**
 - (1.8V & 2.5V) or (1.8V & 3.3V) I/O combination available

- **11-layer copper interconnects with robust, very low K ILD**
CS200 / 200A Transistor Variations

CS200: Ultra High Speed
CS200A: Wide Speed Range + Low Power Consumption

- **CS200**: Ultra High Speed
- **CS200A**: Wide Speed Range + Low Power Consumption

- **Server/Network**
- **Digital Computing**
- **Mobile Computing**
- **Cellular Phone**

Leakage current

- **Large**:
 - **Server/Network**
 - **Digital Computing**
 - **Mobile Computing**
 - **Cellular Phone**

- **Small**:
 - **Server/Network**
 - **Digital Computing**
 - **Mobile Computing**
 - **Cellular Phone**

Speed

- **Fast**:
 - **Server/Network**
 - **Digital Computing**
 - **Mobile Computing**
 - **Cellular Phone**

- **Slow**:
 - **Server/Network**
 - **Digital Computing**
 - **Mobile Computing**
 - **Cellular Phone**

HS-Tr: High speed
STD-Tr: Standard
LL-Tr: Low leakage
Leading-edge Transistors

- **Propagation Delay**
- **Leakage**

- 45nm node
- 65nm node
- 90nm node

Graph showing performance with t_{pd} \times P.
1nm-thick Gate Oxide

Poly-Si
Nitrided-SiO₂
Si substrate

Surface Cleaning

Electric Field [MV/cm]

After optimize

Before

40% increase

Normalized $g_m \propto\text{mobility}$
Speed Performance Improvements

<table>
<thead>
<tr>
<th></th>
<th>65nm CS200 (ps/gate)</th>
<th>90nm CS100 (ps/gate)</th>
<th>Delay Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>5.7</td>
<td>7.0</td>
<td>19%</td>
</tr>
<tr>
<td>2-input NAND</td>
<td>8.7</td>
<td>11.4</td>
<td>24%</td>
</tr>
<tr>
<td>2-input NAND + 200 grid interconnect load</td>
<td>23.1</td>
<td>30.8</td>
<td>25%</td>
</tr>
</tbody>
</table>
Ion vs Ioff Characteristics of nMOSFETs

Ref. 1, 2) 2004 Symposium on VLSI Technology
Advanced Cu and Low-k

Four Generations of Experience

ILD: Inter-layer Dielectric

180nm node 130nm node 90nm node 65nm node

Dielectric constant
High

CS80/80A
6-Cu layers
ILD FSG

CS90A
7-Cu layers
ILD hybrid low-k

CS100/100A/150
10-Cu layers
ILD full low-k

CS200/200A/250
11-Cu layers
ILD hybrid
Ultra-low K

Dielectric constant
Low

High
Low
Fujitsu’s Low-k Leads ITRS

- CS90: SiLK™/SiO₂, K=2.7/4.1
- CS100: Full-SiOC, K=2.9/2.9
- CS200: NCS/SiOC, K=2.25/2.9
- CS300: Full-NCS, K=2.25/2.25

Products Year

- 65nm: 2007
- 45nm: 2010
- 32nm: 2015

Wire Pitch: Intermediate

Width [nm] vs. K
Ultra low-k impacts on speed and power dissipation

CS100A (90nm)
with SiOC/SiOC
Rsh: 90mΩ/sq., C: 56fF/1000 grid

CS200A (65nm)
with SiOC/SiOC
Rsh: 150mΩ/sq., C: 52fF/1000 grid

CS200A (65nm)
with NCS/SiOC
Rsh: 150mΩ/sq., C: 40fF/1000 grid
11-Layer Copper Interconnects

Cu 11-layer Stack-via Chain

- Metal 10 - 11 (Global layers)
 ILD3

- Metal 7 - 9 (Semi-Global layers)
 ILD2

- Metal 2 - 6 (Intermediate layers)
 ILD: ULK / VLK hybrid

- Metal 1 (Local wire)
 ILD: ULK
The Fujitsu Ecosystem

- Application & Software Support
- Process Technology
- Design Methodology
- EDA Vendors
- Design Services
- 3rd Party Design Houses
- Packaging, Assembly & Test
- 3rd Party Test Houses
- Library Development
- IP Development & Support
- 3rd Party Library Vendors
- 3rd Party IP Vendors
Flexible collaboration models provide easy access to Fujitsu’s leading-edge process for the development of highly complex silicon products.
Reference design flow - Fujitsu’s leading-edge design methodology focuses on timing, signal and power integrity closure

Support for both Cadence SOCEncounter™ and Synopsys Galaxy™ platforms

In-house CAD software development augments leading third-party EDA solutions

Ensures silicon correlation and a fast path to silicon success by combining Fujitsu’s strengths in process, CAD tool and methodology development with design experience and expertise

Production proven flows used on 100+ multi-million-gate designs at 180, 130 and 90nm

Constantly updated and improved to address all issues at each process node
Fujitsu Design Services

- Library and tool support
- Methodology development and support
- High-speed I/O design and expertise
- Vertical expertise and IP cores
- RTL design
- Synthesis and physical synthesis
- Design partitioning and floorplanning
- Static timing analysis
- Test insertion and ATPG generation
- Place and route
- Timing and SI closure
- Formal verification
- Physical verification
- Test and product engineering
Global Presence

- Local design centers around the world provide design services for all phases of the development process.

- Skilled engineering teams experienced in development of large complex designs at 130nm and below.
- 100+ multi-million gate designs taped out.
Summary

- **Fujitsu Objective**
 - Helping customers accelerate their innovation, differentiate their products and enhance their competitive advantage, therefore helping them succeed

- **Leading-edge technologies**
 - Strength in process technologies
 - 90nm, 65nm and beyond
 - Partnerships and customer collaborations
 - Flexible customer engagements and close collaborations
 - Early customer engagements
 - Tailored support and services to meet customer needs
 - System-level LSI solutions
 - ASIC and ASSP/SoC, including 10GbE switch chip and WiMAX SoC
 - Full design and development environments and support