Fujitsu World Tour

shaping tomorrow with you

Fujitsu Innovation Gathering

Human Centric Innovation Driving a Trusted Future

Unclassified © 2019 FUJITSU

Quantum Computing in Action

Dr. David Snelling, Program Director AI (EMEIA) Fujitsu EMEIA

Is Business Ready to Take the Quantum Plunge? What companies are saying today (Survey results 2019)

81% of the respondents have appetite for innovation

are held back from taking full advantage of optimization by inadequate power of today's computing technology

want optimization services today – not experimental quantum technology

350

Participants: 300 senior business leaders at large and mid-sized businesses

8

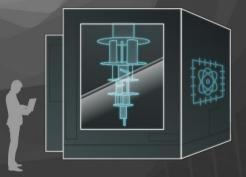
Countries: Canada, Finland, Germany, Ireland, Spain, Sweden, UK and USA

Quantum Computing comes with Challenges Fujirsu

Stability

Requirement for isolation from magnetic field resulting in error correction application and longer calculation time

Complex Infrastructure & Cost

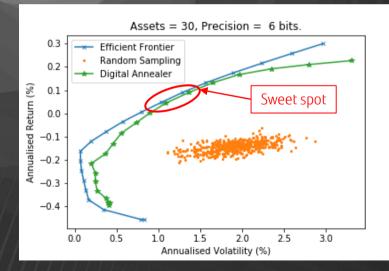

Isolating the system from any external interference requires running at milli-Kelvin degrees

Accuracy

Higher possibility of errors in calculation, as qubits tend to quickly lose the state of superposition

Readiness

In many cases, the solution is not ready to solve real world problems yet, only useful for research

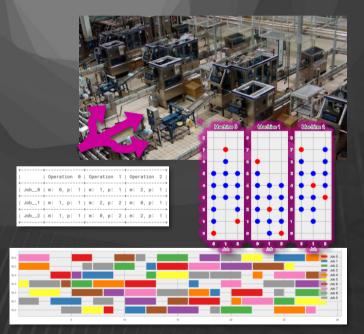

FUĴITSU

Requirement: Maintain a sizable (£120bn) portfolio of High Quality Liquid Assets (HQLAs).

- Required by governments following the 2008 financial crisis.
- Objective: Minimize the risk associated with a portfolio of HQLAs.
 - Risk is defined in terms of the relative volatility of HQLAs with respect to each other.

Constraints:

- Assets can only be purchased in sizable lots.
- There is a limited budget available for purchasing the portfolio.
- A minimum target return is required.
- The "Efficient Frontier" represents the theoretically best return for a given level of risk.
- In PoC with NatWest*, the DA was 300 times faster than current approaches.
- DA version 2 will handle portfolios of around a 1000 assets.



Job Shop Scheduling

Minimize overall production time and enable fast re-planning in a dynamic production line

- Production jobs are sequential operations on machines
- Some jobs require multiple operations on a single machine and each job may require different sequencing of operations
- Requires some sense of scale and difficulty here – number of combinations?
- Digital Annealer computes runtime in less than a second

Engagement Model | Co-create

E.g.: vehicle navigation or cash in-transit

Map the problem

What is the problem that you are trying to solve?
Assess the optimization problem
Creating new disruptive markets

Transform the identified problem to mathematical model – Ising or QUBO

$$E(X) = -\sum_{\{i,j\}} W_{ij} x_i x_j - \sum_i b_i x_i$$

Run it on Digital Annealer

Identify optimal solution in seconds Solve intractable business problems

2

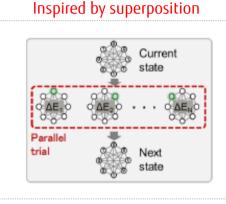
Roadmap

CY 2018	CY 2019	
May 2018: DA Cloud Service introduced in Japan	April 2019: DA Cloud Service introduced in RoW	
1 st Generation	2 nd Generation	Next Generation
	DAU: Digital Annealing Unit	
 1,024 bits 	 Up to 8,192 bits 	Large-scale parallel-processing
Full interconnection	Full interconnection	1 million bit scale
 16-bit precision 	 Up to 64-bit precision 	
 65,536 gradations 	 18.45 quintillion gradations 	
		LAND R

Up next...

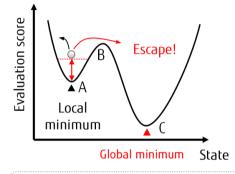
A visit to the Demo Center 16.30 Drinks reception, prizes and surprise entertainment

Unclassified © 2019 FUJITSU


FUJITSU

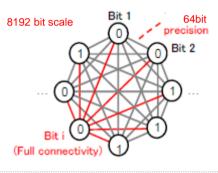
shaping tomorrow with you

How was Fujitsu able to achieve this?


Built on digital circuit based architecture, inspired by quantum computing

Parallel Speed up

- Scale of 8192bits
- **Parallel processing** making it much faster than standard computing
- Stochastic parallelism providing significant speed up


Inspired by quantum tunneling

Annealing Process

- Cost effective and energy efficient process in comparison to Quantum Annealing used today
- DA **increases escape probability** from the local minimum energy state with parallel state evaluation
- **Faster** than traditional simulated annealing

Inspired by entanglement

Easy Problem Mapping

- Full connectivity through the 8192 bit scale with 64-bit precision
- Provides the ability to represent a large scale problem effectively
- Faster than standard computing and more **cost effective** than QA systems in the market today.
- The system works at room temp

Unique architecture