技術解説

TECHNICAL ANALYSIS

搭載序列介面 配備 FRAM 的 RFID 專用晶片

內置 FRAM 的射頻識別 (RFID) 具有大容量、能高速寫入等優越特性,可用作資料載體; 再配置序列介面,則可以與感測器相連接,實現各種創新性 RFID 應用。

前言

富士通開發的 RFID 專用晶片,在原有 13.56 MHz 的 HF 頻帶的基礎上,又增加了 $860 \sim 960 \text{MHz}$ 的 UHF 頻帶產品。其最大的特點就是配備了鐵電隨機記憶體 FRAM (Ferroelectric Random Access Memory),FRAM 具有高速寫入、可無限次存儲次數等特性,作為大容量資料載體型被動式 RFID 專用晶片,在全球已經獲得廣泛的採用。

大容量資料載體的優點在於可記錄 或補記製造、生產、物流、維護點檢等 履歷資訊,也可記錄各種資產或產品資 訊、零部件資訊等。我們還要進一步發 揮其優勢,與感測器等零部件結合起來 衍生出更多的科技產品。

此次,富士通從此種市場需求入手, 開發出了在 UHF 頻帶 RFID 專用晶片中 搭載序列介面 SPI 的技術。

作為 RFID 專用晶片 的 FRAM 的附加價值

FRAM可謂是兼具RAM與ROM優點的記憶體,是使用鐵電體極化的非揮發性記憶體。雖然當今廣泛使用E²PROM作為用於RFID的非揮發性記憶體,但是,從根據電荷的有無來維持資料的原理來看,由於使用E²PROM寫入時需要內部升壓,微秒級別的寫入速度緩慢,擦寫次數也限制為105次。故此,使用E²PROM的產品著重在讀出,小記憶容量等機能。

相較之下,FRAM在讀出或寫入時速 度同等寫入速度為100ns級別,讀出/擦 寫次數為10¹⁰次。FRAM的優越效能,實 現了RFID晶片配備容量大容量化,可作 為資料載體來使用。

資料載體型RFID的優勢在於,改 變了過往標籤內存資訊集中於伺服器 管理的模式。讓資料可分散記錄於標 籤,減輕頻繁的上傳處理程序。這在要求頻繁寫入製程資訊的FA(Factory <u>A</u>utomation)應用中展現出極大效益。

另外,在設備與零部件的巡檢維護應用上,使用者可以在現場(0n-site) 獲取檢測紀錄,更新與追加管理履歷, 可大幅提升現場的作業效率。

此外,還有一個最大的特點即,FRAM 在抗放射線方面的表現淩駕于E²PROM之 上。我們可以看到醫藥、食品的流通履歷 管理或醫療器械、亞麻布產品等透過伽瑪 射線進行滅菌處理的事例。E²PROM記憶體 乃利用電荷來記憶資料,電荷受到會伽瑪 射線照射後會被破壞。而FRAM則沒有這個 問題,經過實際驗證,在45kGy(格雷) 的放射線量照射後,FRAM存儲之資料仍可 保存。

圖1所示為FRAM RFID所能實現的應用。

図1 FRAM RFID 應用領域

大記憶容量 連接微處理器/感測器 將組裝過程中所使用的零件或手 記錄物流過程的環境 (溫濕度, 冊、處理履歷寫入標簽 振動等),有助于產品的質量 可進行離綫處理, 以提升生產效 記錄動力設備的狀態(流量 工廠自動化 FA, 壓力),以提高檢修效率。 RFID 感測器 監測建築物的老化 (腐蝕) 渦 程,有助于有效的維護管理。 將維護相關的零件資料或操作履 歷記錄在標簽中 ucode 認證 極大地提高現場的工作效率。 ucode 作為ucode標簽,為日本政 實現設備與資材的有效管理, 更 資產設備 府多項證實實驗計劃所采用 容易進行再利用、更換和廢弃處 巡檢管理 (道路與環境定位) 抗伽瑪射綫 高速寫入 伽瑪射綫殺菌處理, 不會破壞 物流過程中,可一次將出入貨盤 醫療器械 FRAM中的資料。 點資訊寫入復數枚標簽。大幅提 亞麻布產品醫療器械、手術器具在附帶標 升物流安全。 簽狀態下可進行殺菌消毒 食品、醫藥 對食品、亞麻紗綫等進行殺菌 流通履歷管理 時,資料不會消失。

RFID 專用晶片中配 置序列介面

此次,透過在 RFID 專用晶片中配置序列介面,使資料載體 RFID 增加了新的功能。其最大特點在於,可利用 RF透過序列介面訪問共用的 FRAM 區域。

晶片透過序列介面與微控制器(以下 MCU)相連接,使得 FRAM 除了可以被 RF 訪問外,還可用作 MCU 的外置記憶體。因此,MCU 利用 RF 既可以讀出寫入記憶體的資料,也可進行變更運行條件等資料修改。

例如將感測器與MCU連接時,MCU可定期將從感測器處獲取的資訊寫入到記憶體中,追加或累積的資訊可隨後利用RF讀出並確認;也可以利用RF將MCU參照的參數寫入記憶體的特定區域來改變某些操作條件,諸如設定感測器資訊寫入記憶體的條件,或顯示預定內容等。

目前 RFID 結合感測器的應用上, 主要為利用主動式 RFID 標籤,將感測 資訊單方發信至終端。資料無法累積於 標籤,也無法透過讀取器進行事後讀出。

而配備了 FRAM 的資料載體型 RFID, 能紀錄大量數據履歷。另外透過序列介 面機能,則在沒有 R F 的環境下也能夠 記錄資料,之後再利用 R F 讀出。

此外,RFID透過序列介面與MCU連接,不僅限於感測器,與各種電子元件連接可拓展更多應用可能。比如,我們可以考慮把RFID應用到設備的狀態管理方面,對運行狀況進行監測,或安裝到遊戲機、健康器材等中,用以記錄歷史資訊,隨後透過RF讀出等。諸如此類的應用,有已經透過非接觸智慧卡實現了的,但在記憶體容量或傳送速率等方面還未完全滿足要求的。不過,希望本技術的出現,能夠激發各領域用戶更多創新應用想法,並實際用於驗證各種解決方案。

序列介面 連接方面的課題

另一方面,透過此前客戶的回饋, 我們已經清楚了序列介面使用時的課題。一個是電池的問題,另一個是對通 信距離的影響。

RFID 通信基本上採用透過讀寫器獲取電力的方式。因此,進行串列通信時需要電池。這與需要電池的主動式標籤其實是共同的課題。本篇難以詳述它們之間相互的差異,不過,不管如何,電池的壽命是必須思考的課題。

從這個意義上來說,使用序列介面 通信時,應選擇用於穩定供電的環境, 例如封裝到設備的基板上使用。但一旦 將其作為標籤使用,安裝到移動物體或 設施上,在無法更換電池之下,將難以 避免電池斷電後,資料記錄遺漏等問題。

從這一點上看,掌握不同使用條件下的標籤使用壽命非常重要。我們或許應該考慮蓄電池充電的解決方案。最理想的方法應是利用 RF 進行資料通信的同時完成充電過程,但考量到這種操作會導致通信距離下降,因而沒有現實意義。

關於通信距離:在UHF頻帶上,標籤的通信性能取決於阻抗的匹配性。因此,在設計時,必須考慮標籤透過序列介面連接各種電子元器件時所受到的影響,特別是封裝基板的影響等。天線的設計與常規 RFID 標籤比較也複雜得多。

展望今後

所謂 RFID, 究其根本, 顧名思義, 就是可以利用 RF 讀取 ID。記憶體使用 大容量的 FRAM, 則 RFID 可作為資料載 體頻繁進行寫入;本篇所介紹的晶片配 置了序列介面,為RFID應用畫上嶄新 的一頁。即 RFID 能夠透過 MCU 與感測 器等進行連接,從而在無讀寫器的環境 下,也能實現資料的管理,並利用RF 讀出其歷史記錄。雖然, 距實際導入階 段尚有諸多技術課題待解決。但希望透 過提供此晶片樣品予各領域之用戶, 作 為驗證RFID新應用的一個契機。今 後,希望透過客戶的使用和我們自己的 評估,逐步完善晶片的性能。此外,與 RFID 相連的 MCU 也已形成產品線,請在 使用過程中一併給以評估。