
HATAYAMA, Daisuke
FUJITSU LIMITED.

May 20, 2014
LinuxCon Japan 2014

Improvements on
Kdump Scalability Issues for
Terabyte-Scale Memory System

Copyright 2014 FUJITSU LIMITED Publicly Available Information

Agenda

 Background
 Review kdump structure
 3 improvements on the scalability issues
 Use fast compression format
 Copyless processing with mmap()
 Break a 1-CPU restriction of kdump capture kernel

 Ongoing work
 kexec-tools multiple CPUs support

Copyright 2014 FUJITSU LIMITED 1 Publicly Available Information

Agenda

 Background
 Review kdump structure
 3 improvements on the scalability issues
 Use fast compression format
 Copyless processing with mmap()
 Break a 1-CPU restriction of kdump capture kernel

 Ongoing work
 kexec-tools multiple CPUs support

Copyright 2014 FUJITSU LIMITED 2 Publicly Available Information

Crash dumping

 Save system memory in local or remote disk at
system crash to record the situation.
 Engineers can see what happens.
 Essential for mission critical enterprise use

Copyright 2014 FUJITSU LIMITED 3 Publicly Available Information

Kdump

 Linux standard crash dumping feature
 Since v2.6.13

 Structure of kdump
 Crashed system kernel boots up capture kernel that

saves image of the system kernel via /proc/vmcore

Copyright 2014 FUJITSU LIMITED

System kernel
(1st kernel)

capture kernel
(2nd kernel)

)

kexec

memory

/proc/vmcore
read

cp or
makedumpfile

 crash dump

write

disk
Crash

4 Publicly Available Information

Current Kdump scalability issues

 Issue
 Kdump has been too slow to capture terabyte-scale

memory system
 Fujitsu PRIMQUEST 2800E can have 12TB memory

• Full dump needs 35 hours
• Even partial dump (only kernel memory) could need 2 hours

• amount of kernel memory depends on runtime situation

Copyright 2014 FUJITSU LIMITED

Need optimization in order to complete
huge crash dump processing within 1 hour

5 Publicly Available Information

Terabyte-scale memory system

 Vendor catalog

 Use cases
 In-memory database
 VM consolidation
 HPC

Copyright 2014 FUJITSU LIMITED

Vendor Model Memory Size

Fujitsu PRIMEQUEST 2800E 12TiB
HP HP ProLiant DL980 G7 4TiB
IBM System x3950 X6 12.8TiB
NEC NX7700x 4TiB
SGI SGI UV 2000 64TiB

6 Publicly Available Information

Agenda

 Background
 Review kdump structure
 3 improvements on the scalability issues
 Use fast compression format
 Copyless processing with mmap()
 Break a 1-CPU restriction of kdump capture kernel

 Ongoing work
 kexec-tools multiple CPUs support

Copyright 2014 FUJITSU LIMITED 7 Publicly Available Information

Kdump components for crash dumping

 3 components related to crash dumping
 Capture kernel
 /proc/vmcore
 makedumpfile

Copyright 2014 FUJITSU LIMITED

System kernel
(1st kernel)

capture kernel
(2nd kernel)

)

kexec

memory

/proc/vmcore
read

cp or
makedumpfile

 crash dump

write

disk

8 Publicly Available Information

Capture kernel

 Running on the memory reserved at system kernel
crashkernel=<memory size>

•128MiB ~
 Booted from system kernel at crash

Copyright 2014 FUJITSU LIMITED

System kernel
(1st kernel)

capture kernel
(2nd kernel)

)

kexec

memory

/proc/vmcore
read

cp or
makedumpfile

 crash dump

write

disk

9 Publicly Available Information

/proc/vmcore

 File interface to access system kernel
Exported as ELF
To copy vmcore, for example:

Copyright 2014 FUJITSU LIMITED

System kernel
(1st kernel)

capture kernel
(2nd kernel

)

kexec

memory

/proc/vmcore
read

cp or
makedumpfile

 crash dump

write

disk

$ cp /proc/vmcore /var/crash/vmcore

10 Publicly Available Information

System kernel
(1st kernel)

capture kernel
(2nd kernel

)

kexec

memory

/proc/vmcore
read

cp or
makedumpfile crash dump

write

disk

makedumpfile

 User-land tool to copy vmcore
Compression per 4 KB blocks
Dump filtering

• excludes specified type of memory from vmcore

Copyright 2014 FUJITSU LIMITED 11 Publicly Available Information

Agenda

 Background
 Review kdump structure
 3 improvements on the scalability issues
 Use fast compression format
 Copyless processing with mmap()
 Break a 1-CPU restriction of kdump capture kernel

 Ongoing work
 kexec-tools multiple CPUs support

Copyright 2014 FUJITSU LIMITED 12 Publicly Available Information

Copyright 2014 FUJITSU LIMITED

Compression

System kernel
(1st kernel)

capture kernel
(2nd kernel

)

kexec

memory

/proc/vmcore
read

makedumpfile
 crash dump

write

disk

13 Publicly Available Information

zlib is slow

 Kdump supports zlib.
 zlib is a format used by gzip command
 makedumpfile uses zlib by -c option

 compression per 4KiB blocks

 The problem is that zlib is too slow for crash dump
20 ~ 30 MB/sec
14.6 hours/TB

Copyright 2014 FUJITSU LIMITED

$ makedumpfile -c /proc/vmcore /mnt/vmcore

14 Publicly Available Information

Fast compression support

 LZO
 Fast compression

• Almost 800 MB/sec
• 21.8 min/TB
• Trade-off
compression ratio is slightly worse than zlib

 Supported by makedumpfile since v1.4.4
 specify -l option

Copyright 2014 FUJITSU LIMITED

$ makedumpfile -l /proc/vmcore vmcore

15 Publicly Available Information

Compression speed w/ dirtiness of data.

16 Copyright 2014 FUJITSU LIMITED

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.2 0.4 0.6 0.8 1

P
e

rf
o

rm
a

n
c

e
 [

M
iB

/s
e

c
]

Ratio of populated bits per block

zlib
LZO

ｂｅｔｔｅｒ

LZO is better !
Publicly Available Information

17 Copyright 2014 FUJITSU LIMITED

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 0.2 0.4 0.6 0.8 1

S
iz

e
 o

f
c
o

m
p

re
s
s
e
d

 d
a
ta

 [
B

y
te

]

Ratio of populated bits per block

zlib
LZO

ｂｅｔｔｅｒ

Compression ratio w/ dirtiness of data.

There will be trade-off !
Publicly Available Information

Copyright 2014 FUJITSU LIMITED

/proc/vmcore
copyless processing

System kernel
(1st kernel)

capture kernel
(2nd kernel

)

kexec

memory

/proc/vmcore
read

makedumpfile
 crash dump

write

disk

18 Publicly Available Information

Reading /proc/vmcore is slow

 Total size of copy between kernel-land and
user-land exceeds 1 TiB

 But…copying itself is too slow.
 To access physical pages, ioremap() is performed

separately in each page
• even if multiple contiguous pages are requested

 Many vmalloc data structure updates
 Many TLB flush

Copyright 2014 FUJITSU LIMITED

We added a new method “mmap”

19 Publicly Available Information

mmap() on /proc/vmcore

 No buffer copy between kernel-land and user-land
(zero copy)

 Use remap_pfn_range()
 lightweight since it handles simpler data structure
 requested size of memory mapping

 Development status
 Linux kernel since v3.10
 makedumpfile since v1.5.3

Copyright 2014 FUJITSU LIMITED 20 Publicly Available Information

Benchmark

 Seconds to read /proc/vmcore of 60GB

mmap() is 4 times faster!

Copyright 2014 FUJITSU LIMITED

37.7

144.9

mmap read

21 Publicly Available Information

Copyright 2014 FUJITSU LIMITED

SMP capture kernel.

System kernel
(1st kernel)

capture kernel
(2nd kernel

)

kexec

memory

/proc/vmcore
read

makedumpfile
 crash dump

write

disk

22 Publicly Available Information

x86 1-CPU restriction on capture kernel

 On capture kernel, only 1-CPU is available even if
multiple CPUs are available on system kernel

 nr_cpus=1 or maxcpus=1 is specified in kernel
parameter of capture kernel

Copyright 2014 FUJITSU LIMITED

This restriction has been a bottleneck of kdump speed.
SMP should be available for capture kernel.

But ... the problem is in MP Initialization Protocol.

23 Publicly Available Information

MP Initialization Protocol

 N-CPUs consist of 1-BSP and (N-1)-APs
 BSP(boot strap processor)

 IA32_APIC_BASE MSR #BP is set
 Jump to BIOS’s init code at receiving INIT.

 AP(application processor)
 halting until INIT from BSP receives

Copyright 2014 FUJITSU LIMITED

AP

BSP AP

AP

INIT
kernel

AP
entry

System Kernel
CPU#0 (boot cpu) == BSP

Capture Kernel

CPU#0 (boot cpu) != BSP

#BP=1
#BP=0

24 Publicly Available Information

MP init protocol issue in capture kernel

 If BSP receives INIT IPI, kdump fails.

Copyright 2014 FUJITSU LIMITED

INIT

B
IO

S
 I
N

IT
 C

O
D

E

AP

System Kernel

BSP BSP

Capture Kernel

AP

System Kernel

BSP BSP

Capture Kernel

1. Crash happens on a AP. AP boots
into capture kernel by kexec. BSP halts.

2. System has stopped here. The AP is
CPU#0 in capture kernel.

3. The CPU#0 in capture kernel tries to
initiate other halting CPUs by INIT, but
…the CPU may be BSP(#BP is set).

4. Sending INIT to CPU with #BP makes
system hangs, get reset or powered off.

AP

System Kernel

BSP
BSP

Capture Kernel

kexec

AP

BSP BSP

AP

System Kernel Capture Kernel

RESET!

Bootstrap

25 Publicly Available Information

Fixing boot issue of capture kernel

 There has been 4 ideas.

1. Always boot caputure kernel on BSP
2. Clear #BP before kexec
3. Use NMI instead of INIT
4. Avoid using original BSP in the capture kernel

Finally, #4 has been acknowledged.

Copyright 2014 FUJITSU LIMITED 26 Publicly Available Information

1: Always boot caputure kernel on BSP

 kdump stops the non-crashing CPUs by IPI NMI
 Switch to BSP in the IPI NMI processing

 Nacked. This affects kdump reliability.
 No guarantee that IPI NMI works well at crash

• e.g. memory corruption on IRQ vectors
 Some of non-crashing CPUs could be broken

Copyright 2014 FUJITSU LIMITED

AP
kexec

System Kernel

BSP
BSP

System Kernel

BSP BSP

AP

Capture Kernel

1. Crashing AP switches to BSP by NMI 2. The crashing AP halts. Switched
BSP boots capture kerenl by kexec

NMI

27 Publicly Available Information

2: Clear #BP before kexec

 Only difference of BSP and AP is whether #BP in
BSP’s IA32_APIC_BASE MSR is set or not

 How about clearing #BP of BSP?
 Then, all CPUs are APs.

 Nacked. There’s some system assuming the initial

mapping of BSP and AP throughout system
running
 HP machine hangs during shutdown process.

(http://lists.infradead.org/pipermail/kexec/2013-
August/009420.html)

 Thanks to contribution by Jingbai Mar

 Copyright 2014 FUJITSU LIMITED 28 Publicly Available Information

3: Use NMI instead of INIT

 The technique used by CPU0 hot-plugging
 hot-add / hot-remove CPU0
 Use NMI to let CPU0 go out from halting state

 Nacked. This cannot be applied to kdump case.
 BSP could be any buggy state at crash.
 NMI is signaled from capture kernel to BSP halting in

system kernel.
• BSP needs to load capture kernel’s IDT in system kernel

Copyright 2014 FUJITSU LIMITED

BSP

AP
NMI

29 Publicly Available Information

4: Avoid using original BSP in the
capture kernel

 Lose 1 CPU but always work! => Acked.
 We learned
 No method to reset BSP state except for INIT

• (MultiProcessor Specification Version 1.4 May 1997)

 Losing 1CPU is no problem in the real world
 Typically a lot of CPUs on terabyte-scale system

 New disable_cpu_apicid kernel parameter
 Introduced at v3.14
 Specify initial APIC id of CPU#0
 kexec-tool adds this for capture kernel automatically.

 Copyright 2014 FUJITSU LIMITED 30 Publicly Available Information

Parallel compression benchmark

 Use --split option for multi-processing

 Parallel compression
 No parallel I/O because only a single disk is used

 Environment
 PRIMQUEST 2800E
 Memory: 64 GB
 CPU: Intel(R) Xeon(R) CPU E7-8890 v2@2.80GHz
 Disk: Performance 200 MB/s

Copyright 2014 FUJITSU LIMITED

makedumpfile --split /proc/vmcore vmcore-0 vmcore-1 ...

31 Publicly Available Information

Parallel LZO compression speed

 Please find the best number of CPUs by benchmark!

Copyright 2014 FUJITSU LIMITED

ｂｅｔｔｅｒ 0

25

50

75

100

125

150

175

200

1 2 4 8

T
im

e
 t

o
 g

e
t

c
ra

s
h

 d
u

m
p

 [
s
e
c
]

The number of CPUs

dirty memory
clean memory

reduced to 55.6% by doing
compression on 2-CPUs

saturated by disk I/O
LZO: 200 ~ 800 MB/sec
Disk: 200 MB/sec

32 Publicly Available Information

More performance?

 If you want to get more performance,
you have to optimize I/O work:
 Use faster disks
 Use multiple disks

Copyright 2014 FUJITSU LIMITED 33 Publicly Available Information

Agenda

 Background
 Review kdump structure
 3 improvements on the scalability issues
 Use fast compression format
 Copyless processing with mmap()
 Break a 1-CPU restriction of kdump capture kernel

 Ongoing work
 kexec-tools multiple CPUs support

Copyright 2014 FUJITSU LIMITED 34 Publicly Available Information

kexec-tools multiple CPUs support

 kexec-tools
 kexec/kdump configuration utility on fedora

 Users need to specify # of CPUs manually.
 Default configuration is 1-CPU

• 1-CPU is most reliable
• 1-CPU is enough for most systems in performance

 Increasing CPU needs memory consumption
• Kernel data structures increase depending on the number of CPUs
• Capture kernel should be as small as possible for system kernel

 Need more explanation in kexec docs.

Copyright 2014 FUJITSU LIMITED 35 Publicly Available Information

SMP Configuration Example

To use 4-CPUs for capture kernel and makedumpfile:
1. Append nr_cpus kernel parameter in /etc/sysconfig/kdump

2. Specify a command in core_collector directive in
/etc/kdump.conf

 This multi-threading feature is under development.
3. Restart kdump service

Copyright 2014 FUJITSU LIMITED

KDUMP_COMMANLINE_APPEND=“... nr_cpus=4 ...”

core_collector makedumpfile --num_threads 4

36 Publicly Available Information

Copyright 2010 FUJITSU LIMITED 37

