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Crash dumping 

 Save system memory in local or remote disk at 
system crash to record the situation. 
 Engineers can see what happens. 
 Essential for mission critical enterprise use 
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Kdump 

 Linux standard crash dumping feature 
 Since v2.6.13 

 Structure of kdump 
 Crashed system kernel boots up capture kernel that 

saves image of the system kernel via /proc/vmcore 
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Current Kdump scalability issues 

 Issue 
 Kdump has been too slow to capture terabyte-scale 

memory system 
 Fujitsu PRIMQUEST 2800E can have 12TB memory 

• Full dump needs 35 hours 
• Even partial dump (only kernel memory) could need 2 hours 

• amount of kernel memory depends on runtime situation 
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Need optimization in order to complete 
huge crash dump processing within 1 hour 
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Terabyte-scale memory system 

 Vendor catalog  
 
 
 
 

 
 

 Use cases 
 In-memory database 
 VM consolidation 
 HPC 
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Vendor Model Memory Size 

Fujitsu PRIMEQUEST 2800E 12TiB 
HP HP ProLiant DL980 G7 4TiB 
IBM System x3950 X6 12.8TiB 
NEC NX7700x 4TiB 
SGI SGI UV 2000 64TiB 
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Kdump components for crash dumping 

 3 components related to crash dumping 
 Capture kernel 
 /proc/vmcore 
 makedumpfile 
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Capture kernel 

 Running on the memory reserved at system kernel 
crashkernel=<memory size> 

•128MiB ~ 
 Booted from system kernel at crash 
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/proc/vmcore 

 File interface to access system kernel 
Exported as ELF 
To copy vmcore, for example: 
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 User-land tool to copy vmcore 
Compression per 4 KB blocks 
Dump filtering 

• excludes specified type of memory from vmcore 
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zlib is slow 

 Kdump supports zlib. 
 zlib is a format used by gzip command 
 makedumpfile uses zlib by -c option 

 
 
 compression per 4KiB blocks 

 The problem is that zlib is too slow for crash dump 
20 ~ 30 MB/sec 
14.6 hours/TB 
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$ makedumpfile -c /proc/vmcore /mnt/vmcore 
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Fast compression support 

 LZO 
 Fast compression 

• Almost 800 MB/sec 
• 21.8 min/TB 
• Trade-off 
compression ratio is slightly worse than zlib 

 Supported by makedumpfile since v1.4.4 
 specify -l option 
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$ makedumpfile -l /proc/vmcore vmcore 
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Compression speed w/ dirtiness of data. 
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Reading /proc/vmcore is slow 

 Total size of copy between kernel-land and 
user-land exceeds 1 TiB 

 But…copying itself is too slow. 
 To access physical pages, ioremap() is performed 

separately in each page 
• even if multiple contiguous pages are requested 

 Many vmalloc data structure updates 
 Many TLB flush 
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We added a new method  “mmap” 
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mmap() on /proc/vmcore 

 No buffer copy between kernel-land and user-land 
(zero copy) 

 Use remap_pfn_range() 
 lightweight since it handles simpler data structure 
 requested size of memory mapping  

 Development status 
 Linux kernel since v3.10 
 makedumpfile since v1.5.3 
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Benchmark 

 Seconds to read /proc/vmcore of 60GB 
 
 
 
 
 
 
 
 

mmap() is 4 times faster! 
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x86 1-CPU restriction on capture kernel 

 On capture kernel, only 1-CPU is available even if 
multiple CPUs are available on system kernel 

 nr_cpus=1 or maxcpus=1 is specified in kernel 
parameter of capture kernel 
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This restriction has been a bottleneck of kdump speed. 
SMP should be available for capture kernel. 
 
But ... the problem is in MP Initialization Protocol.  
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MP Initialization Protocol 

 N-CPUs consist of 1-BSP and (N-1)-APs 
 BSP(boot strap processor) 

 IA32_APIC_BASE MSR #BP is set 
 Jump to BIOS’s init code at receiving INIT. 

 AP(application processor) 
 halting until INIT from BSP receives 
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MP init protocol issue in capture kernel 

 If BSP receives INIT IPI, kdump fails. 
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Fixing boot issue of capture kernel 

 There has been 4 ideas. 
 
1. Always boot caputure kernel on BSP 
2. Clear #BP before kexec 
3. Use NMI instead of INIT 
4. Avoid using original BSP in the capture kernel 

 
Finally, #4 has been acknowledged.  

Copyright 2014 FUJITSU LIMITED 26 Publicly Available Information



1: Always boot caputure kernel on BSP 

 kdump stops the non-crashing CPUs by IPI NMI 
 Switch to BSP in the IPI NMI processing 

 
 
 
 
 

 Nacked. This affects kdump reliability. 
 No guarantee that IPI NMI works well at crash 

• e.g. memory corruption on IRQ vectors 
       Some of non-crashing CPUs could be broken 
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2: Clear #BP before kexec 

 Only difference of BSP and AP is whether #BP in 
BSP’s IA32_APIC_BASE MSR is set or not 

 How about clearing #BP of BSP? 
 Then, all CPUs are APs. 

 Nacked. There’s some system assuming the initial 

mapping of BSP and AP throughout system 
running 
 HP machine hangs during shutdown process. 

(http://lists.infradead.org/pipermail/kexec/2013-
August/009420.html) 

 Thanks to contribution by Jingbai Mar 
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3: Use NMI instead of INIT 

 The technique used by CPU0 hot-plugging 
 hot-add / hot-remove CPU0 
 Use NMI to let CPU0 go out from halting state 

 
 

 Nacked. This cannot be applied to kdump case. 
 BSP could be any buggy state at crash. 
 NMI is signaled from capture kernel to BSP halting in 

system kernel. 
• BSP needs to load capture kernel’s IDT in system kernel 

 
Copyright 2014 FUJITSU LIMITED 

BSP 

AP 
NMI 

29 Publicly Available Information



4: Avoid using original BSP in the 
capture kernel 
 
 Lose 1 CPU but always work! => Acked. 
 We learned  
 No method to reset BSP state except for INIT 

• (MultiProcessor Specification Version 1.4 May 1997) 

 Losing 1CPU is no problem in the real world 
 Typically a lot of CPUs on terabyte-scale system 

 New disable_cpu_apicid kernel parameter 
 Introduced at v3.14 
 Specify initial APIC id of CPU#0 
 kexec-tool adds this for capture kernel automatically. 
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Parallel compression benchmark  

 Use --split option for multi-processing 
 
 

 Parallel compression 
 No parallel I/O because only a single disk is used 

 Environment 
 PRIMQUEST 2800E 
 Memory: 64 GB 
 CPU: Intel(R) Xeon(R) CPU E7-8890 v2@2.80GHz 
 Disk: Performance 200 MB/s 
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makedumpfile --split /proc/vmcore vmcore-0 vmcore-1 ... 
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Parallel LZO compression speed 

 Please find the best number of CPUs by benchmark! 
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More performance? 

 If you want to get more performance, 
you have to optimize I/O work: 
 Use faster disks 
 Use multiple disks 
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kexec-tools multiple CPUs support 

 kexec-tools 
 kexec/kdump configuration utility on fedora 

 Users need to specify # of CPUs manually. 
 Default configuration is 1-CPU 

• 1-CPU is most reliable 
• 1-CPU is enough for most systems in performance 

 Increasing CPU needs memory consumption 
• Kernel data structures increase depending on the number of CPUs 
• Capture kernel should be as small as possible for system kernel 

 Need more explanation in kexec docs. 
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SMP Configuration Example 

To use 4-CPUs for capture kernel and makedumpfile: 
1. Append nr_cpus kernel parameter in /etc/sysconfig/kdump 

 
 

2. Specify a command in core_collector directive in 
/etc/kdump.conf 

 
 

 This multi-threading feature is under development.  
3. Restart kdump service 
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KDUMP_COMMANLINE_APPEND=“... nr_cpus=4 ...” 

core_collector makedumpfile --num_threads 4 
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