
Copyright 2019 FUJITSU LIMITED

Critical steps to remove
the experimental of Filesystem-DAX

0

China Linux Kernel Developer
Conference 2019

Oct 19, 2019 14:30~15:10

QI Fuli / Ruan Shiyang

Who are we

Copyright 2019 FUJITSU LIMITED1

◼QI Fuli

◼ Software Engineer at Fujitsu Ltd

◼ PhD Student at University of Tokyo

◼ Working on Persistent Memory

◼ Email: qi.fuli@fujitsu.com

◼ Ruan Shiyang

◼ Software Engineer at Fujitsu Ltd

◼ Working on Persistent Memory

◼ Email: ruansy.fnst@cn.fujitsu.com

Contents

◼Introduction of NVDIMM

◼Critical steps

◼Summary

Copyright 2019 FUJITSU LIMITED2

Introduction of NVDIMM

Copyright 2019 FUJITSU LIMITED3

NVDIMM Overview

◼Non-Volatile Dual In-line Memory Module

◼ a type of random-access memory

◼ NVDIMM retains its data even
if electrical power is removed

◼Use case

◼ In-Memory Database, etc.

Copyright 2019 FUJITSU LIMITED

CPU caches

DDR RAM

NVDIMM

NAND SDD

Hard Disk Drivers

CPU
Registers

Capacity
4

Concepts [1]

◼Interleave set
◼ Two or more NVDIMMs create an N-Way interleave set

to provide stripes read/write operations for increased throughput

◼Namespace
◼ Defines a contiguously-addressed range of Non-Volatile Memory

◼Region
◼ A group of one or more NVDIMMs, or an interleaved set,

that can be divided up into one or more Namespaces

Copyright 2019 FUJITSU LIMITED

[1] https://docs.pmem.io/ndctl-users-guide/concepts
5

Concepts [1]

◼Type
◼ Defines the way in which the persistent memory associated with

a Namespace or Region can be accessed

◼ PMEM: Direct access to the media via load/store operations. (DAX supported)

◼ BLK: Direct access to the media via Apertures. (DAX is not supported)

◼Mode
◼ Defines which NVDIMM software feature are enabled for a given Namespace.

◼ Namespace Modes include fsdax, devdax, sector, and raw.

Copyright 2019 FUJITSU LIMITED

[1] https://docs.pmem.io/ndctl-users-guide/concepts
6

DAX

◼Filesystem-DAX

◼ creates a block device(/dev/pmemX[.Y])

◼ removes the page cache from the I/O path

◼ allows mmap() to establish direct mappings to persistent memory media

◼Device-DAX

◼ intended for applications that mmap() the entire capacity

◼ creates a character device (/dev/daxX.Y) instead of a block device

Copyright 2019 FUJITSU LIMITED7

Configuration options

Copyright 2019 FUJITSU LIMITED

NVDIMM 0 NVDIMM 0 NVDIMM 1NVDIMM 1

Region 0 Region 1 Region 2

Namespace 0.0 Namespace 1.0 Namespace 2.0

/dev/pmem0 /dev/pmem0 /dev/pmem1

DAX Filesystem DAX Filesystem DAX Filesystem

Persistent Memory Pool(s)
Persistent

Memory Pool(s)

Interleaved DIMMs Non-Interleaved DIMMs

Hardware

Kernel Driver

User Space
(Applications)

Persistent
Memory Pool(s)

8

NVM Programming Model

Copyright 2019 FUJITSU LIMITED

Management File MemoryStorage

NVDIMMs

Management UI Application Application Application

Management Library

NVDIMM Driver

File System pmem-Aware
File System

PMDK

DAX
User

space

Kernel
space

9

Non-Volatile Device Control (NDCTL)

◼A utility for managing the Linux LIBNVDIMM Kernel subsystem

◼Working with various NVDIMMs from different vendors

◼Operations supported by ndctl

◼ Provisioning capacity

◼ Enumerating Devices

◼ Enabling and Disabling NVDIMMs, Regions, and Namespaces

◼ Managing NVDIMM Labels

Copyright 2019 FUJITSU LIMITED10

Sample of using filesystem-dax

ndctl create-namespace -e "namespace0.0" -m fsdax –f

{"dev":"namespace0.0",

"mode":"fsdax",

"map":"dev",

"size":"7.87 GiB (8.45 GB)",

"uuid":"0b10e1bb-b6ae-4600-bec3-4bc40f7b8f07",

"sector_size":512,

"align":2097152,

"blockdev":"pmem0"}

ls /dev | grep pmem

pmem0

Copyright 2019 FUJITSU LIMITED

-m fsdax,
define the namespace mode fsdax

11

Sample of using filesystem-dax

parted /dev/pmem0

GNU Parted 3.2

Using /dev/pmem0

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) mklabel gpt

(parted) mkpart

Partition name? []? nvdimm

File system type? [ext2]? xfs

Start? 1M

End? 8G

ls /dev | grep pmem

pmem0

pmem0p1

Copyright 2019 FUJITSU LIMITED12

Sample of using filesystem-dax

sudo mkfs.xfs /dev/pmem0p1

meta-data=/dev/pmem0p1 isize=512 agcount=4, agsize=515840 blks

= sectsz=4096 attr=2, projid32bit=1

= crc=1 finobt=1, sparse=1, rmapbt=0

= reflink=0

data = bsize=4096 blocks=2063360, imaxpct=25

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1

log =internal log bsize=4096 blocks=2560, version=2

= sectsz=4096 sunit=1 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

mkdir /mnt/fsdax

mount -o dax /dev/pmem0p1 /mnt/fsdax

Copyright 2019 FUJITSU LIMITED

-o dax, /mnt/fsdax/ can be directly accssed
13

Critical steps

Copyright 2019 FUJITSU LIMITED14

Critical steps

◼ Index

◼ Support reflink for fsdax

◼ Memory map for fsdax

◼ The "dax" semantics

◼Start from XFS

◼ A widely used filesystem, used as default filesystem in RHEL and CentOS.

◼ Ext4 doesn’t support reflink.

◼ Btrfs is in progress.

Copyright 2019 FUJITSU LIMITED15

Critical steps

◼ Support reflink for fsdax

◼ Memory unmap for fsdax

◼ The "dax" semantics

Copyright 2019 FUJITSU LIMITED16

Reflink supported

◼What is reflink?

◼ Files share extents for same data

◼ Advantages

Fast copy

Save storage

Copyright 2019 FUJITSU LIMITED17

File A File B

Extent I

File A

Extent I Extent II
normal copy

File A File B

Extent I

File A

Extent I
reflink copy

Reflink supported

◼What is reflink?

◼ Copy on Write mechanism (COW)

Copy the shared extents before writing data.

Copyright 2019 FUJITSU LIMITED18

File BFile A

Extent I

write1

File A

Extent I

copy

Extent II

File B

2

File A

Extent I

File B

write

Extent II

3

File BFile A

Extent I

4

Extent II

Reflink supported

◼What is reflink?

◼ Dedupe

Share extents for files who have same data.

Copyright 2019 FUJITSU LIMITED19

File BFile A

Extent I

1

File A

compared same

File B

2

File A File B

3

File A

Extent I

4

Extent II Extent I Extent II Extent I Extent II

File B

Extent II

Reflink supported

◼How to enable reflink?

◼ Add ‘-m reflink=1’ when making a filesystem

◼ Use reflink feature when copying

Copyright 2019 FUJITSU LIMITED20

$ mkfs.xfs –m reflink=1 /path/to/device

$ cp --reflink=always fileA fileB

Reflink supported

◼Time cost

◼Disk usage

Copyright 2019 FUJITSU LIMITED21

$ time cp file1G.bin file1G.1.bin
real 0m4.498s
user 0m0.014s
sys 0m3.942s

$ time cp --reflink=always file1G.bin file1G.2.bin
real 0m0.008s
user 0m0.001s
sys 0m0.006s Very fast

$ ll -h
total 2.0G
-rw-rw-r--. 1 ryan ryan 1.0G Oct 18 19:26 file1G.1.bin
-rw-rw-r--. 1 ryan ryan 1.0G Oct 18 19:26 file1G.2.bin
-rw-rw-r--. 1 ryan ryan 1.0G Oct 18 19:20 file1G.bin
$ df –h /mnt
Filesystem Size Used Avail Use% Mounted on
/dev/pmem0 4.0G 2.1G 1.9G 53% /mnt

Not occupied

Fsdax supported.

◼What is fsdax?

◼ A mode of a NVDIMM namespace

Create a filesystem on pmem and access data through VFS.

No need to change apps’ code.

◼ Bypass page cache

Copy data directly between pmem device and apps.

No block io.

No page cache.

Copyright 2019 FUJITSU LIMITED22

read()

write()

mmap()

vfs

SSD/HDDpage
cache

NVDIMM

bio

direct access

Fsdax supported.

◼How to enable fsdax?

◼ add ‘-o dax’ when mounting a pmem device

◼ Enables DAX flag for all files. *

* Will talk in section: The “dax” semantics.

Copyright 2019 FUJITSU LIMITED23

$ mount –o dax /path/to/pmem /path/to/mountpoint

Didn’t support both reflink & fsdax

◼Try to enable them together

◼ make a reflink featured XFS and mount it with dax option

◼ then error occurs

◼ dmesg shows

Copyright 2019 FUJITSU LIMITED24

$ mkfs.xfs –m reflink=1 [...] && mount –o dax [...]

mount: /mnt: wrong fs type, bad option, bad superblock on /dev/pmem0,
missing codepage or helper program, or other error.

XFS (pmem0): DAX enabled. Warning: EXPERIMENTAL, use at your own risk
XFS (pmem0): DAX and reflink cannot be used together!

Didn’t support both reflink & fsdax

◼Reason

◼ There are some restriction code in XFS to avoid enabling these two feature
together since they are unfinished for now.

Unexpected error will happen, and it may damage your data. It’s dangerous.

Copyright 2019 FUJITSU LIMITED25

Force enable them

◼What will happen?

◼ The ‘copy --reflink=always’ command works.

fileA and fileB do share same extents.

Copyright 2019 FUJITSU LIMITED26

$ cp --reflink=always fileA fileB

$ xfs_io -c "fiemap" /mnt/*
fileA:

0: [0..55]: 160..215
fileB:

0: [0..55]: 160..215

logic bno

physical bno

Force enable them

◼What will happen?

◼ When writing data to one of these files, no one changed.

New extent did be allocated.

Metadata did not be updated.

COW not work correctly.

Copyright 2019 FUJITSU LIMITED27

$ xfs_io –c “pwrite –S 0xAB 4k 1k” fileA

$ xfs_io -c "fiemap" /mnt/*
fileA:

0: [0..55]: 160..215
fileB:

0: [0..55]: 160..215

logic bno

physical bno

Force enable them

◼Why that happened?

Copyright 2019 FUJITSU LIMITED28

write()

SSD/HDD

page
cache

NVDIMM

direct
access

vfs

bio

start write

if DAX?
N

get destination extent

load data
from disk to page cache

write data

submit bio

flush to disk

write data

to disk

Y

Did not COW
Did not remap new extents

Iomap model

◼ XFS uses iomap model to handle write operation.

Copyright 2019 FUJITSU LIMITED29

Handler functions

xfs_file_iomap_begin() add ALLOCATE new extents for COW

dax_iomap_actor()
add COPY source data to new allocated extents, and then, WRITE
new data

xfs_file_iomap_end() add UPDATE the extent list of this file

-> iomap_apply() /* start write operation */
-> iomap_begin() /* get the disk offset where write at */
-> actor() /* perform the write operation */
-> iomap_end() /* commit and/or unreserve space previous allocated */

Add a “srcmap”

◼The source address for COW

◼ COW operation executed in ->actor() needs to know where to copy from.

◼ Get source address in ->iomap_begin().

Copyright 2019 FUJITSU LIMITED30

File A

Extent I

copysource
address

File B

Add a “srcmap”

◼How?

◼ At first, we added a field ‘src_addr’ in struct iomap to remember the source
address. And It worked.

◼ After discussion, community decided to add another iomap called ‘srcmap’ to
do this job.

◼ And add a new type called ‘IOMAP_COW’ for ->actor() to distinguish COW
operation with others.

Copyright 2019 FUJITSU LIMITED31

+ #define IOMAP_COW 0x06 /* copy data from srcmap before writing */

int (*iomap_begin)(struct inode *inode, loff_t pos, loff_t length,
- unsigned flags, struct iomap *iomap);
+ unsigned flags, struct iomap *iomap,
+ struct iomap *srcmap);

Fill “srcmap”

◼Fill “srcmap”

◼ iomap: the destination extent to write at

◼ srcmap: the source extent to copy from

◼ Filled in ->iomap_begin()

◼How?

◼ Add handle for file who has dax flag

and shared extents.

Copyright 2019 FUJITSU LIMITED32

find extent

if shared?

if hole?

COW

Y

Y

if DAX?
Y

!COW

N

fill srcmap

fill iomap

allocate extent

Add COW for write()

◼Perform COW in write() path

◼ The dax driver provides ->direct_access() to get physical memory address in
pmem

◼ Data is being written in ->actor()

◼How?

◼ Copy source data safely from source address

to destination address before copying user

data to destination address.

Copyright 2019 FUJITSU LIMITED33

Y

get src_addr

if COW?

copy data

->direct_access()

copy data

N

from source
from user

from srcmap

Add COW for mmap()

◼Perform COW in mmap() path

◼ Access to the virtual memory address that mmap() gave calls page fault,
which is handled by dax_iomap_pte_fault(), or by dax_iomap_pmd_fault()
in case of huge pages.

◼ This also uses iomap model, but data is not being written here. Just allocate
the virtual memory address.

◼How?

◼ Familiar with write() path, copy data before virtual address is associated.

Copyright 2019 FUJITSU LIMITED34

Normal page Huge page

dax_iomap_pte_fault() dax_iomap_pmd_fault()

After COW

◼Update extent list

Since new extent allocated, the file need to remap it.

◼How?

Execute xfs_reflink_end_cow() in ->iomap_end() if it is a COW operation.

Copyright 2019 FUJITSU LIMITED35

Y if COW?

remap extents

N

if io error?Y

clean up COW extents

Add a “dax” dedupe

◼Handle dedupe

◼ Dedupe uses generic_remap_file_range_prep() to compare two extents byte-
by-byte to tell if they are same.

◼ However, that function is for general usage. It compares extents cached in
memory(page cache). Not suitable to fsdax.

Copyright 2019 FUJITSU LIMITED36

File A

compared same

File B

Extent I Extent II

compare
function

Add a “dax” dedupe

◼How?

◼ Add a fsdax specific compare function and call it if files both have DAX flag.

◼ Don’t share extents between a DAX file with a non-DAX file.

Copyright 2019 FUJITSU LIMITED37

Y
if both DAX?

dax_remap_file_range_prep()

Y

N

if both not DAX?

generic_remap_file_range_prep() return error

N

Support reflink for fsdax

◼ Features of XFS
◼ Reflink supported

◼ Fsdax supported

◼ But didn’t support both reflink & fsdax yet

◼ What to do to support them together?
◼ Iomap model

◼ Add a “srcmap”

◼ Fill “srcmap”

◼ Add COW for write()

◼ Add COW for mmap()

◼ After COW

◼ Add a “dax” dedupe

Copyright 2019 FUJITSU LIMITED38

Critical steps

◼ Support reflink for fsdax

◼ Memory unmap for fsdax

◼ The "dax" semantics

Copyright 2019 FUJITSU LIMITED39

Memory unmap for fsdax

◼Munmap

◼ Appears in pair with mmap().

In general case, page remembers which file belongs to by ->mapping, and which
offset locates in by ->index.

◼ Also called when Memory Failure.

When a page broken, files whose extent mapped to this page need to be unmapped.

Copyright 2019 FUJITSU LIMITED40

0xXXXX

0xXXXX

0xXXXX

0xABCD

0xXXXX

0xXXXX

file Apage
on NVDIMM

broken unmap it

->mapping = mappingA
->index = offsetA

Memory unmap for fsdax

◼Reflink case

◼ One page on NVDIMM may belongs to multi files.

◼ But the ->mapping and ->index can only save for one file.

Copyright 2019 FUJITSU LIMITED41

0xXXXX

0xXXXX

0xXXXX

0xABCD

0xXXXX

0xXXXX

file A

->mapping = mappingA
->index = offsetA

page
on NVDIMM

broken

unmap it

file B

file C

->mapping = mappingB
->index = offsetB

->mapping = mappingC
->index = offsetC

? ? ?

Critical steps

◼ Support reflink for fsdax

◼ Memory unmap for fsdax

◼ The "dax" semantics

Copyright 2019 FUJITSU LIMITED42

The "dax" semantics

◼After mount with option ‘-o dax’

◼ ALL files have dax flag set.

◼ Users only want to set dax flag on some specific files.

Write operation on NVDIMM is a bit slower than on RAM.

In another word, fsdax write may slower than buffered write in some case.

Copyright 2019 FUJITSU LIMITED43

file A

file B

file C

file A

file B

file C

DAX

DAX

DAX

!DAX

DAX

!DAX

The "dax" semantics

◼ Still under discussion…

◼ Remove “-o dax”?

◼ Auto enable DAX flag on dax capable device. Drop “-o dax”.

◼ How to enable the functionality at a finer granularity than a mount
option?

◼ Change file’s attribute to determine if enable dax or not.

◼ How to set DAX flag?

◼ Initial set when a new file created.

◼ Change the flag of files already created.

Copyright 2019 FUJITSU LIMITED44

Summary

◼What is NVDIMM

◼How to use it

◼How to support reflink for fsdax

◼The Memory unmap problem

◼The “dax” semantic problem

Copyright 2019 FUJITSU LIMITED45

