SPARC64™ X: Fujitsu’s New Generation 16 core Processor for UNIX Server

19th April 2013
Toshio Yoshida
Processor Development Division
Enterprise Server Business Unit
Fujitsu Limited
SPARC64™

- SPARC64™ is Fujitsu’s SPARC Processor series for UNIX servers and Supercomputers.
- SPARC64™ VIIIfx is Running on K computer Now!

- SPARC64™ X is the New Generation Processor for Fujitsu’s UNIX Server

©RIKEN
Agenda

◆ Fujitsu’s Processor Development History

◆ SPARC64™ X
 ■ Design Concept and Processor Chip Overview
 ■ Micro-Architecture
 ■ Performance
 ■ SWoC (Software on Chip)

◆ Summary
Agenda

◆ Fujitsu’s Processor Development History

◆ SPARC64™ X
 ■ Design Concept and Processor Chip Overview
 ■ Micro-Architecture
 ■ Performance
 ■ SWoC (Software on Chip)

◆ Summary
Agenda

- Fujitsu’s Processor Development History
- SPARC64™ X
 - Design Concept and Processor Chip Overview
 - Micro-Architecture
 - Performance
 - SWoC (Software on Chip)
- Summary
Design Concept of SPARC64™ X

◆ Combine UNIX and HPC FJ Processor Features to Realize an Extremely High Throughput UNIX Processor

- SPARC64 VII/VII+ (UNIX Processor) Feature
 - High clock frequency (up-to 3GHz)
 - Multicore/Multithread
 - Scalability : up-to 64 sockets

- SPARC64 VIIIfx (HPC Processor) Feature
 - HPC-ACE: ISA extensions to SPARC-V9
 e.g. SIMD, Register # enhancement
 - High Memory B/W: Peak 64GB/s, Embedded memory controller

◆ Add New Features to UNIX Servers

- Virtual Machine Architecture
- Embedded IOC (PCI-GEN3 Controller)
- Direct CPU-CPU Interconnect
- Software On Chip
SPARC64™ VII/VII+ Pipeline (2008)

✓ SMT
✓ 4 Cores / Shared Level 2 Cache / Hardware Barrier (VISIMPACT)
✓ 64 Sockets per Node

Fetch (4 stages) | Issue (2 stages) | Dispatch (4 stages) | Reg.-Read (4 stages) | Execute (L1$: 3 stages) | Memory (L2$: 64KB 2Way) | Commit (2 stages)

- **L1 I$ 64KB 2Way**
- **Decode & Issue**
- **RSA 10Entry**
- **RSE 8x2Entry**
- **RSF 8x2Entry**
- **RSBR 10Entry**
- **GPR 156Registers x2**
- **GUB 32Registers**
- **FPR 64Registers x2**
- **FUB 48Registers**
- **EAGA**
- **EAGB**
- **EXA**
- **EXB**
- **FLA**
- **FLB**
- **Fetch Port 16Entry**
- **Store Port 16Entry**
- **L1 D$ 64KB 2Way**
- **Commit**
- **CSE 64Entry**
- **PC x2**
- **Control Registers x2**

- **Fetch (4 stages)**
- **Issue (2 stages)**
- **Dispatch (4 stages)**
- **Reg.-Read (4 stages)**
- **Execute (L1$: 3 stages)**
- **Memory (L2$: 64KB 2Way)**
- **Commit (2 stages)**

System Bus Interface
SPARC64™ VIII fx/IX fx Pipeline (2010)

- 8-16 Cores without SMT / HPC-ACE (SIMD, Register # Enhancement etc.)
- High Memory Throughput
- Single Socket per Node / Tofu Interconnect

Fetch (4 stages) -> Issue (3 stages) -> Dispatch (5 stages(FL)) -> Reg.-Read -> Execute (L1$: 3 stages) -> Memory (L1$: 3 stages) -> Commit (2 stages)

- L1 I$ 32KB 2Way
- Branch Target Address 1Entry
- Decode & Issue
- RSA 10Entry
- RSE 10Entry
- RSF 8x2Entry
- RSBR 10Entry
- GPR 168 Registers
- GUB 32 Registers
- FPR 256 Registers
- FUB 16x2 Registers
- FLA
- FLB
- FLC
- FLD
- EAGA
- EAGB
- EXA
- EXB
- RSF 8x2Entry
- RSBR 10Entry
- RSA 10Entry
- L1 D$ 32KB 2Way
- L2$ 6MB 12Way /12MB 24Way
- Write Buffer 5Entry
- Fetch Port 20Entry
- Store Port 10Entry
- CSE 48 Entry
- PC
- Control Registers

8/16-core

SPARC64™ X

CPU-Interconnect I/F

Memory Controller

DIMM

Interconnect Chip Interface

All Rights Reserved, Copyright© FUJITSU LIMITED 2013
SPARC64™ X Pipeline (2012)

- 16 Cores SMT / Integer Performance Enhancement
- Software on Chip
- System on Chip / 64 Sockets per Node

Fetch (4 stages)
- L1 I$ 64KB 4Way
 - Decode & Issue
 - Branch Target Address 4Entry
 - Pattern History Table 16Entry

Issue (4 stages)
- RSA 24Entry
- RSE 24Entry
- RSF 20Entry
- RSBR 16Entry

Dispatch (5 stages)
- GPR 156Registers x2
- EAGA
- EXC
- EAGB
- EXD
- EXB
- FLA
- Decimal Cipher
- FLB
- Cipher
- FLD

Execute
- FPR 128Registers x2
- GUB 64Registers

Memory (L1$: 3 stages)
- Fetch Port 32Entry
- Store Port 24Entry
- Write Buffer 16Entry
- L1 D$ 64KB 4Way

Commit (2 stages)
- CSE 96Entry
- PC x2
- Control Registers x2

L2$ 24MB 24Way

Router
- CPU-CPU I/F

Memory Controller
- DIMM

IO Controller
- PCI-GEN3

16-core

All Rights Reserved, Copyright© FUJITSU LIMITED 2013
SPARC64™ X Chip Overview

- **Architecture Features**
 - 16 cores x 2 threads
 - SWoC (Software on Chip)
 - Shared 24 MB L2$
 - Embedded Memory and IO Controller

- **28nm CMOS**
 - 23.5mm x 25.0mm
 - 2,950M Transistors
 - 1,500 Signal Pins
 - 3GHz

- **Performance (peak)**
 - 382GFlops
 - 102GB/s Memory Throughput
Agenda

◆ Fujitsu’s Processor Development History

◆ SPARC64™ X
 ▪ Design Concept and Processor Chip Overview
 ▪ Micro-Architecture
 ▪ Performance
 ▪ SWoC (Software on Chip)

◆ Summary
SPARC64™ X Core Specification

Photo of SPARC64™X Core

<table>
<thead>
<tr>
<th></th>
<th>L1I$</th>
<th>L1D$</th>
<th>Control</th>
<th>Execution Unit</th>
<th>Register File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1I$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1D$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register File</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruction Set Architecture

- SPARC-V9/JPS
- HPC-ACE
- VM
- SWoC

Branch Prediction

- 4K BRHIS
- 16K PHT

Integer Execution Units

- 156 GPR x 2 + 64 GUB
- ALU/SHIFT x2
- ALU/AGEN x2
- MULT/DIVIDE x1

Floating-Point Execution Units

- 128 FPR x 2 + 64 FUB
- FMA x4 (2-wide SIMD x2)
- FDIV x2
- IMA/Logic x4 (2-wide SIMD x2)
- Decimal x1 / Cipher x2

L1$ Information

- L1I$ 64KB/4-way
- L1D$ 64KB/4-way

Underlined Parts Indicate Enhancement from SPARC64™ VII(+)

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

13
Micro-Architecture Enhancements from SPARC64™ VII+

CPU Core
- Deeper Pipeline to Increase Frequency
- Better Branch Prediction Scheme
- Various Queue-Size and #Floating-Point Register Increase
- Richer Execution Units, Including
 - 2 EX + 2 EAG → 2 EX + 2 EX/EAG
 - 2 FMA → 4 FMA to support 2-wide SIMD
 - SWoC engine (Decimal and Cipher)
- More Aggressive O-O-O-O Execution of Load and Store
- Multi-banked 2 Port L1-Cache

System On Chip
- # of Core and L2$ Size (4 core/12 MB → 16 core/24 MB)
- Memory Controller, IO Controller, and CPU-CPU I/F are Embedded to increase Performance and reduce Cost of Production.
Enhancement on Execution Units

◆ Integer Execution Unit
 ■ 2 EX + 2 EAG → 2 EX + 2 EX/EAG
 ■ 2 → 4 Write GPR
 → 4 Integer Instructions Can be Executed per Cycle (Sustained)

◆ Load Store Unit
 ■ Aggressive Load/Store O-O-O-O Execution:
 ● Execute load without waiting for preceding store address calculation.
 ■ Multi-banked 2 Ports L1-cache to Execute 2 Load or 1 Load+1 Store in Parallel
 ■ Doubled L1$ Bandwidth
 ■ Doubled L1$ Associativity (2→4-way)
 → Increase L1-cache Throughput and Hit-rate
SPARC64™ X interconnects

SPARC64™ VII/VII+ Interconnects
- 4 CPU Require 8 additional LSIs to be Connected with DIMM
- DIMM i/f: 4.35GB/s (STREAM triad)

SPARC64™ X interconnects
- No additional LSIs to be Connected with DIMM
- DIMM i/f: 65.6GB/s (STREAM triad)
- CPU i/f: 14.5GB/s x 5 ports (peak)
 - 3 Ports: Glueless 4-way CPU interconnect
 - 2 Ports: > 4-way CPU
Reliability, Availability, Serviceability

<table>
<thead>
<tr>
<th>Units</th>
<th>Error Detection and Correction Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (Tag)</td>
<td>ECC Duplicate & Parity</td>
</tr>
<tr>
<td>Cache (Data)</td>
<td>ECC Parity</td>
</tr>
<tr>
<td>Register</td>
<td>ECC (INT/FP) Parity(Others)</td>
</tr>
<tr>
<td>ALU</td>
<td>Parity/Residue</td>
</tr>
<tr>
<td>Cache Dynamic Degradation</td>
<td>Yes</td>
</tr>
<tr>
<td>HW Instruction Retry</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>Yes</td>
</tr>
</tbody>
</table>

New RAS Features from SPARC64™ VII/VII+

- Floating-Point registers are ECC protected
- #Checkers increased to ~53,000 to identify a failure point more precisely

→ Guarantees Data Integrity
Hardware Instruction Retry

- When an Error is Detected, Hardware Re-execute the Instruction Automatically to Remove the Transient Error by Itself.

1. Error
2. Stop update of SW visible resources
3. Single step execution
4. Update of SW Visible Resources
5. Back to Normal Execution
Agenda

◆ Fujitsu’s Processor Development History

◆ SPARC64™ X
 ■ Design Concept and Processor Chip Overview
 ■ Micro-Architecture
 ■ Performance
 ■ SWoC (Software on Chip)

◆ Summary
SPARC64™ X Realizes over 7x INT/FP Throughput and 17.6x Memory Throughput of SPARC64™ VII+

SPEC®, SPECint® and SPECfp® are trademarks of SPEC.
Configuration used for measurement: SPARC M10-4S server with 64 SPARC64 X (3.0GHz) processors, Oracle Solaris 11.1, Oracle Solaris Studio 12.3, 1/13 Platform Specific Enhancement. The performance value of SPARC M10 has been submitted to SPEC and the latest information on this benchmark can be found at http://www.spec.org.
4 Integer execution units and Write port increase of GPR (Integer Register) improves overall Performance.

Memory latency reduction, Large L2$, Branch prediction, and L1$ improvement also contribute to the High Performance dramatically.
Agenda

◆ Fujitsu’s Processor Development History

◆ SPARC64™ X
 ■ Design Concept and Processor Chip Overview
 ■ Micro-Architecture
 ■ Performance
 ■ SWoC (Software on Chip)

◆ Summary
Hardware for Software
Accelerates Specific Software Function by Hardware

The targets of SPARC64™ X for UNIX servers

- Decimal Operation (IEEE754 Decimal and NUMBER)
- Cipher Operation (AES/DES/SHA)
- Database Acceleration

- For HPC Apps, supports Trigonometric function, Exponent function.
Software on Chip 2/3

◆ HW implementation
✓ The HW Engines for SWoC are Implemented in FPU
 • To fully utilize 128 FP registers & software pipelining
 • Area and # Gate is about 2% of Core

✓ Implemented as Instructions rather than dedicated Co-Processor to Maximize Flexibility of SW.
 • 18 insts. for Decimal, and 10 insts. for Cipher operation

Photo of SPARC64™X Core

- L1I$ control
- L1D$
- Instruction Control
- Execution Unit
- Register File

Decimal Engine
Cipher Engine
Decimal Instructions

- **Supported data type**
 - IEEE754 DPD (Densely Packed Decimal)
 - 8 Byte Fixed Length
 - NUMBER
 - Variable Length (Max 21 Byte)

- **Instructions**
 - Both DPD/NUMBER Instructions are Defined as 8B Operation (Add/Sub/Mul/Div/Cmp) on FP Registers
 - To maximize performance with reasonable hardware cost
 - When the data length is > 8byte, Multiple such instructions will be used.
 - An Instruction for Special Byte-Shift on FP Registers is Newly Added to Support Unaligned NUMBER
Advantage of Software on Chip

- Perf. and Power Comparison among SWoC ISA and Non-SWoC ISA on SPARC64™ X
 - Non-SWoC ISA: Use SPARC-V9 ISA Instead of new SWoC ISA

- SWoC Realizes a Significant Improvement on Performance with almost the Same Power Consumption.
 - SWoC reduces # insts. and pipeline usage for the same task.
 - SWoC is a Power Efficient Technology.

Decimal (Number Vector Sum) vs. Cipher (AES128-CBC Decrypt)

<table>
<thead>
<tr>
<th>Ratio of SWoC to Non-SWoC</th>
<th>Decimal Perf.</th>
<th>Power</th>
<th>Perf./Power</th>
<th>Cipher Perf.</th>
<th>Power</th>
<th>Perf./Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x104</td>
<td>x0.86</td>
<td>x120</td>
<td>x29</td>
<td>x1.04</td>
<td>x27</td>
</tr>
</tbody>
</table>
Agenda

◆ Fujiitsu’s Processor Development History

◆ SPARC64™ X
 ■ Design Concept and Processor Chip Overview
 ■ Micro-Architecture
 ■ Performance
 ■ SWoC (Software on Chip)

◆ Summary
Summary

◆ SPARC64™ X is Fujitsu’s 10th SPARC Processor for Fujitsu’s New Generation UNIX Server.

◆ SPARC64™ X Integrates 16 Cores + 24MB L2 Cache with over 100GB/s (peak) Memory B/W.

◆ It Keeps Strong RAS Features.

◆ SPARC64™ X has Shown over 7x Throughput of SPARC64™ VII+.

◆ SWoC Accelerates Specific Software Functions with almost the Same Power Consumption.

◆ Fujitsu will Continue to Develop SPARC64™ series.
Abbreviations

- **SPARC64™ X**
 - IB: Instruction Buffer
 - RSA: Reservation Station for Address generation
 - RSE: Reservation Station for Execution
 - RSF: Reservation Station for Floating-point
 - RSBR: Reservation Station for Branch
 - GUB: General Update Buffer
 - FUB: Floating point Update Buffer
 - GPR: General Purpose Register
 - FPR: Floating Point Register
 - CSE: Commit Stack Entry