SPARC64[™] X: Fujitsu's New Generation 16 core Processor for UNIX Server

19th April 2013

Toshio Yoshida

Processor Development Division Enterprise Server Business Unit Fujitsu Limited

SPARC64TM

SPARC64TM is Fujitsu's SPARC Processor series for UNIX servers and Supercomputers.

➢ SPARC64[™] VIIIfx is Running on K computer Now!

 ✓ SPARC64[™] X is the New Generation Processor for Fujitsu's UNIX Server

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip)

♦ Summary

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip) ♦ Summary

Vounnar

Fujitsu's Processor Development

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip)

♦ Summary

Design Concept of SPARC64[™] X

 Combine UNIX and HPC FJ Processor Features to Realize an Extremely High Throughput UNIX Processor

SPARC64 VII/VII+ (UNIX Processor) Feature

- High clock frequency (up-to 3GHz)
- Multicore/Multithread
- Scalability : up-to 64 sockets
- SPARC64 VIIIfx (HPC Processor) Feature
 - HPC-ACE: ISA extensions to SPARC-V9 e.g. SIMD, Register # enhancement
 - High Memory B/W: Peak 64GB/s, Embedded memory controller

Add New Features to UNIX Servers

- Virtual Machine Architecture
- Embedded IOC (PCI-GEN3 Controller)
- Direct CPU-CPU Interconnect
- Software On Chip

SPARC64™ X

SPARC64TM VII/VII+ Pipeline (2008)

✓ SMT

✓ 4 Cores / Shared Level 2 Cache / Hardware Barrier (VISIMPACT)

✓ 64 Sockets per Node

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

SPARC64[™] VIIIfx/IXfx Pipeline(2010)

✓ 8-16 Cores without SMT / HPC-ACE (SIMD, Register # Enhancement etc.)

- ✓ High Memory Throughput
- ✓ Single Socket per Node / Tofu Interconnect

SPARC64[™] X Pipeline (2012)

✓ 16 Cores SMT / Integer Performance Enhancement
✓ Software on Chip

✓ System on Chip / 64 Sockets per Node

SPARC64™ X Chip Overview

Photo of SPARC64[™]X chip

SPARC64[™] X

Architecture Features

- 16 cores x 2 threads
- SWoC (Software on Chip)
- Shared 24 MB L2\$
- Embedded Memory and IO Controller

28nm CMOS

- 23.5mm x 25.0mm
- 2,950M Transistors
- 1,500 Signal Pins
- 3GHz

11

Performance (peak)

- 382GFlops
- 102GB/s Memory Throughput

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip)

SPARC64™ X Core Specification

Branch

Integer

Units

Point

Units

L1\$

Prediction

Execution

Floating-

Execution

Set

Instruction

Architecture

Photo of SPARC64[™]X Core

SPARC64 [™] X

4	•

SPARC-V9/JPS

156 GPR x 2 + <u>64 GUB</u>

<u>128 FPR x 2 + 64 FUB</u>

Decimal x1 / Cipher x2

L1I\$ 64KB/4-way

L1D\$ 64KB/4-way

FMA x4 (2-wide SIMD x2)

IMA/Logic x4 (2-wide SIMDx2)

HPC-ACE

4K BRHIS

ALU/SHIFT x2

ALU/AGEN x2

MULT/DIVIDE x1

<u>16K PHT</u>

FDIV x2

Underlined Parts Indicate Enhancement from SPARC64[™] VII(+)

VM

SWoC

Micro-Architecture Enhancements from SPARC64[™] VII+

CPU Core

- Deeper Pipeline to Increase Frequency
- Better Branch Prediction Scheme
- Various Queue-Size and #Floating-Point Register Increase
- Richer Execution Units, Including
 - $2 \text{ EX} + 2 \text{ EAG} \rightarrow 2 \text{ EX} + 2 \text{ EX/EAG}$
 - 2 FMA \rightarrow 4 FMA to support 2-wide SIMD
 - SWoC engine (Decimal and Cipher)
- More Aggressive O-O-O Execution of Load and Store
- Multi-banked 2 Port L1-Cache

System On Chip

- # of Core and L2\$ Size (4 core/12 MB→16 core/24 MB)
- Memory Controller, IO Controller, and CPU-CPU I/F are Embedded to increase Performance and reduce Cost of Production.

SPARC64™ X

Enhancement on Execution Units

Integer Execution Unit

- $\blacksquare 2 EX + 2 EAG \rightarrow 2 EX + 2 EX/EAG$
- $\blacksquare 2 \rightarrow 4 \text{ Write GPR}$
- → 4 Integer Instructions Can be Executed per Cycle (Sustained)

Load Store Unit

- Aggressive Load/Store O-O-O Execution:
 - Execute load without waiting for preceding store address calculation.
- Multi-banked 2 Ports L1-cache to Execute 2 Load or 1 Load+1 Store in Parallel
- Doubled L1\$ Bandwidth
- Doubled L1\$ Associativity $(2 \rightarrow 4 way)$
- → Increase L1-cache Throughput and Hit-rate

SPARC64[™] X interconnects

SPARC64[™] VII/VII+ interconnects (SPARC Enterprise M8000)

SPARC64[™] VII/VII+ Interconnects

- 4 CPU Require 8 additional LSIs to be Connected with DIMM
- DIMM i/f: 4.35GB/s (STREAM triad)

SPARC64[™] X interconnects

SPARC64[™] X interconnects

- No additional LSIs to be Connected with DIMM
- DIMM i/f: 65.6GB/s (STREAM triad)
- OPU i/f: 14.5GB/s x 5 ports (peak)
 - 3 Ports: Glueless 4-way CPU interconnect
 - 2 Ports: > 4-way CPU

Reliability, Availability, Serviceability

Units	Error Detection and Correction Scheme
Cache (Tag)	ECC Duplicate & Parity
Cache (Data)	ECC Parity
Register	ECC (INT/FP) Parity(Others)
ALU	Parity/Residue
Cache Dynamic Degradation	Yes
HW Instruction Retry	Yes
History	Yes

SPARC64[™] X RAS Capability Diagram

Green: 1bit Error Correctable Yellow: 1bit Error Detectable Gray: 1bit Error Harmless

New RAS Features from SPARC64™ VII/VII+

- Floating-Point registers are ECC protected
- #Checkers increased to ~53,000 to identify a failure point more precisely
- → Guarantees Data Integrity

Hardware Instruction Retry

When an Error is Detected, Hardware Re-execute the Instruction Automatically to Remove the Transient Error by Itself.

5. Back to Normal Execution

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip)

SPARC64[™] X Performance @3GHz

→ SPARC64TM X Realizes over 7x INT/FP Throughput and 17.6x Memory Throughput of SPARC64TM VII+

SPEC®, SPECint® and SPECfp® are trademarks of SPEC.

Configuration used for measurement: SPARC M10-4S server with 64 SPARC64 X (3.0GHz) processors, Oracle Solaris 11.1, Oracle Solaris Studio 12.3, 1/13 Platform Specific Enhancement. The performance value of SPARC M10 has been submitted to SPEC and the latest information on this benchmark can be found at <u>http://www.spec.org</u>.

CPI (Cycle Per Instruction) Analysis of SPARC64TM X

SPARC64[™] VII+ v.s. SPARC64[™] X **INT (single thread)**

Hardware measured results

→ 4 Integer execution units and Write port increase of GPR (Integer Register) improves overall Performance.

Memory latency reduction, Large L2\$, Branch prediction, and L1\$ improvement also contribute to the High Performance dramatically. SPARC64[™] X All Rights Reserved, Copyright© FUJITSU LIMITED 2013

SPARC64TM X
Design Concept and Processor Chip Overview
Micro-Architecture

Performance

SWoC (Software on Chip)

Software on Chip 1/3

Hardware for Software
Accelerates Specific Software Function by Hardware

◆The targets of SPARC64TM X for UNIX servers
✓ Decimal Operation (IEEE754 Decimal and NUMBER)
✓ Cipher Operation (AES/DES/SHA)
✓ Database Acceleration

• For HPC Apps, supports Trigonometric function, Exponent function.

Software on Chip 2/3

HW implementation

✓ The HW Engines for SWoC are Implemented in FPU

- To fully utilize 128 FP registers & software pipelining
- Area and # Gate is about 2% of Core
- Implemented as Instructions rather than dedicated Co-Processor to Maximize Flexibility of SW.
 - 18 insts. for Decimal, and 10 insts. for Cipher operation

SPARC64[™] X

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

Software on Chip 3/3

Decimal Instructions

Supported data type

- IEEE754 DPD (Densely Packed Decimal) 8 Byte Fixed Length
 - 8 Byte Fixed Length

NUMBER

Variable Length (Max 21 Byte)

Instructions

- Both DPD/NUMBER Instructions are Defined as 8B Operation (Add/Sub/Mul/Div/Cmp) on FP Registers
 - To maximize performance with reasonable hardware cost
 - When the data length is > 8byte, Multiple such instructions will be used.
- An Instruction for Special Byte-Shift on FP Registers is Newly Added to Support Unaligned NUMBER

SPARC64™ X

Advantage of Software on Chip

Perf. and Power Comparison among SWoC ISA and Non-SWoC ISA on SPARC64TM X

✓ Non-SWoC ISA : Use SPARC-V9 ISA Instead of new SWoC ISA

SWoC Realizes a Significant Improvement on Performance with almost the Same Power Consumption.

SWoC reduces # insts. and pipeline usage for the same task.

SWoC is a Power Efficient Technology.

SPARC64[™] X

 \diamond SPARC64TM X Design Concept and Processor Chip Overview Micro-Architecture Performance SWoC (Software on Chip)

Summary

Summary

◆SPARC64[™] X is Fujitsu's10th SPARC Processor for Fujitsu's New Generation UNIX Server.

 ◆ SPARC64[™] X Integrates 16 Cores + 24MB L2 Cache with over 100GB/s(peak) Memory B/W.
◆ It Keeps Strong RAS Features.

 ◆ SPARC64[™] X has Shown over 7x Throughput of SPARC64[™] VII+.

 SWoC Accelerates Specific Software Functions with almost the Same Power Consumption.

◆Fujitsu will Continue to Develop SPARC64[™] series.

Abbreviations

- IB: Instruction Buffer
- RSA: Reservation Station for Address generation
- RSE: Reservation Station for Execution
- RSF: Reservation Station for Floating-point
- RSBR: Reservation Station for Branch
- GUB: General Update Buffer
- FUB: Floating point Update Buffer
- GPR: General Purpose Register
- FPR: Floating Point Register
- CSE: Commit Stack Entry