

SPARC64™ XII
Specification

Distribution: Public

Privilege Levels: Nonprivileged

Ver 20
2017/10/06

Fujitsu Limited

Fujitsu Limited
4-1-1 Kamikodanaka
Nakahara-ku, Kawasaki, 211-8588
Japan

2 Ver 20, Oct., 2017

Copyright© 2007 – 2017 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki,
211-8588, Japan. All rights reserved.

This product and related documentation are protected by copyright and distributed under
licenses restricting their use, copying, distribution, and decompilation. No part of this
product or related documentation may be reproduced in any form by any means without prior
written authorization of Fujitsu Limited and its licensors, if any.

The product(s) described in this book may be protected by one or more U.S. patents, foreign
patents, or pending applications.

TRADEMARKS

SPARC® is a registered trademark of SPARC International, Inc. Products bearing SPARC
trademarks are based on an architecture developed by Oracle and / or its affiliates.

SPARC64™ is a registered trademark of SPARC International, Inc., licensed exclusively to
Fujitsu Limited.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

This publication is provided “as is” without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability, fitness for a
particular purpose, or noninfringement.
This publication could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein; these changes will be incorporated in new
editions of the publication. Fujitsu Limited may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

4 Ver 20, Oct., 2017

Contents

1. Document Overview ... 9
 Fonts and Notations ... 9 1.1.

 Font .. 9 1.1.1.
 Notation .. 9 1.1.2.
 Meaning of reserved and  ... 10 1.1.3.
 Access attribute .. 10 1.1.4.
 Informational Notes.. 10 1.1.5.

2. Definitions ... 11

3. Architecture Overview ..13

4. Data Formats ..14

5. Register ...15
 Ancillary State Registers .. 15 5.5.

 Tick (TICK) Register (ASR 4) ... 15 5.5.4.
 System Tick (STICK) Register (ASR 24) .. 15 5.5.12.
 Extended Arithmetic Register (XAR) (ASR 29) .. 16 5.5.15.
 Extended Arithmetic Register Status Register (XASR) (ASR 30) ... 21 5.5.16.

6. Instruction Set Overview ..25

7. Instructions ...26
 Floating-Point Merge ... 35 7.41.
 Load Floating-Point Register ... 37 7.55.
 Load Floating-Point from Alternate Space ... 42 7.56.
 Prefetch .. 43 7.75.

 Prefetch Variants .. 43 7.75.1.
 Weak versus Strong Prefetches... 44 7.75.2.

 Sleep .. 46 7.89.
 Block Initializing Store .. 47 7.94.
 Store Floating-Point ... 48 7.96.
 Store Floating-Point into Alternate Space .. 51 7.97.
 Cache Line Fill with Undetermined Values .. 53 7.114.
 Store Floating-Point Register on Register Condition ... 56 7.137.
 SIMD Compare (type A) .. 63 7.139.
 Partitioned Shift ... 69 7.143.
 Partitioned Multiply ... 71 7.144.
 Integer Sign/Zero Extension .. 72 7.145.
 Fixed-Point Partitioned Add (8-bit) .. 73 7.146.
 Fixed-Point Partitioned Subtract (8-bit) ... 74 7.147.
 Full Element Permutation .. 75 7.148.
 Partition Concatenate Shift Left ... 82 7.149.
 SIMD Compare (type B) .. 84 7.150.
 SIMD Compare and Accumulate Results ... 89 7.151.
 Partitioned Move for Selected Floating-Point Register on Floating-Point Register’s Condition (extended for 7.152.

SPARC64™ XII) ... 95
 Move Floating-Point Register to Integer Register .. 98 7.153.
 Move Integer Register to Floating-Point Register .. 100 7.154.
 Montgomery Multiplication ... 102 7.155.

8. IEEE Std. 754-1985 Requirements for SPARC-V9 109

 Contents 5

 Behavior when FSR.ns = 1 ... 109 8.1.2.

9. Memory Models ... 110

10. Address Space Identifiers .. 111
 ASI Assignment ... 111 10.3.

 Supported ASIs... 111 10.3.1.
 ASI-Accessible Registers ... 113 10.5.

 ASI_RANDOM_NUMBER ... 113 10.5.5.

11. Performance Instrumentation ... 115
11.1 Overview .. 115

11.1.1 Pseudo-code Examples ... 117
11.2 Description of PA Events ... 118

11.2.1 Instruction and Trap Statistics .. 122
11.2.2 MMU and L1 cache Events .. 133
11.2.3 L2 cache Events ... 135
11.2.4 LL cache Events ... 136
11.2.5 Bus Transaction Events .. 139

11.3 Cycle Accounting ... 140

12. Traps .. 143
 Trap list and priorities .. 143 12.5.

13. Memory Management Unit ... 147
 Address types ... 147 13.1.
 TSB Translation Table (TTE) ... 147 13.4.
 Page sizes ... 148 13.8.

14. Opcode Maps ... 149

15. Assembly Language Syntax .. 160

6 Ver 20, Oct., 2017

 Document Overview 7

Preface

This documentation defines the logical specification of SPARC64™ XII which is based on
Oracle SPARC Architecture 2011 (UA2011). The differences from the UA2011 specification
and the SPARC64™ X/X+ specification are noted in this document or as references to other
specifications.

This specification refers to the following documents.
• Oracle SPARC Architecture 2011. Draft D1.0.0, Jan 2016.

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentati
on/140521-ua2011-d096-p-ext-2306580.pdf
This document is referred to as UA2011.

• SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010
http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf
This document is referred to as SPARC64™ VIIIfx Extensions.

• SPARC64™ X/X+ specification ver.29, 27 Jan. 2015
http://www.fujitsu.com/global/Images/SPARC64X_Xplus_Specification_v29.pdf
This document is referred to as the SPARC64™ X/X+ specification.

• SPARC® Joint Programming Specification (JPS1): Commonality Release 1.0.4, 31
May 2002
http://www.fujitsu.com/downloads/PRMPWR/JPS1-R1.0.4-Common-pub.pdf
This document is referred to as JPS1.

http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf

8 Ver 20, Oct., 2017

 Document Overview 9

1. Document Overview

 Fonts and Notations 1.1.

 Font 1.1.1.
• Arial font is used for registers and register fields (REG and REG.field, respectively).

This font is also used when referring to the field of an ASI register.
• Courier font is used for ASI names (ASI_NAME), which are prefixed by ASI_. We

avoid the use of the construction ASI_NAME.field.
• Italic Arial font is used for exceptions (exception_name).
• Uppercase Courier font is used for instructions (INSTRUCTION).
• Courier font is used for CPU states (CPU_state).
• Italic Times Roman font or “” is used for reserved, which indicates that a register

field is reserved for future expansion.

 Notation 1.1.2.
The notation used in this document generally follows the notation used in JPS1.

Specifically,
• Numbers are decimal unless otherwise indicated by a numeric subscript (for example,

10002).
• Spaces may be inserted in long binary or hex numbers (for example, 1000 000016) to

improve readability.
• Verilog notation may be used for some numbers. For example, the prefixes

“{bit_width}’b” and “{bit_width}’h” indicate binary and hexadecimal numbers,
respectively. When Verilog notation is used, there is no numeric subscript indicating
the base.

• Numbered integer and floating-point registers are written as R[number] and
F[number], respectively.

• Instruction names and various objects may contain the symbols {} | * and n.
• A character string enclosed by {} is optional. For example,

ASI_PRIMARY{_LITTLE} expands to ASI_PRIMARY and
ASI_PRIMARY_LITTLE.

• If there are | symbols inside the curly braces {}, one of the character strings
separated with the pipe must be selected. For example, FMUL{s|d} expands to
FMULs and FMULd. An empty charater string makes the alternatives inside the
braces optional. For example, F{|N}sMULd is equivalent to F{N}sMULd.

• The * and n symbols indicate a character string and numeric substitution,
respectively, for all possible values. For example, DAE_* expands to
DAE_invalid_asi, DAE_nc_page, DAE_nfo_page, DAE_privilege_violation, and
DAE_side_effect_page. And spill_n_normal expands to spill_0_normal,
spill_1_normal, spill_2_normal, spill_3_normal, spill_4_normal, spill_5_normal,
spill_6_normal, and spill_7_normal.

10 Ver 20, Oct., 2017

• Bit string formats <a> and <a:b>.
• The double colon (::) operator concatenates two bit strings.
• ASCII characters are used.

 Meaning of reserved and  1.1.3.
reserved or  indicates that a bit field is reserved for future expansion and has an undefined
value. reserved is used when a future expansion is expected and a brief description of the
field is provided.  is used when the usage is undecided. No description is provided for
fields marked with .

 Access attribute 1.1.4.
Registers and register fields may have the access attributes shown in the table below.

Table 1-1 Access attribute

Access
attribute

Object Operation
Read Write

 Field Undefined value Ignored.
R Register and Field The value is read. Ignored.
RO Register and Field The value is read. Not permitted.
R0 Field Zero is read. Ignored.
W Register and Field Undefined value The value is written.
WO Register and Field Not permitted. The value is written.
RW Register and Field The value is read. The value is written.
RW1C Field The value is read. Writing 1 clears the

field. (The bit range that
is reset to 0 depends on
the field.)

 Informational Notes 1.1.5.
This document contains several different types of informational notes.

Compatibility Note Compatibility notes explain compatibility differences
versus SPARC V8/V9, JPS1, SPARC64 VIIIfx, SPARC64 X/X+, and
UA2011.

Note Notes provide general information.

Programming Note Programming notes provide information for writing
software.

 Definitions 11

2. Definitions

- CPUID :

A CPUID is the unique logical ID of a strand in a system. The CPUID contains the
logical system board ID (LSBID), physical processor ID (chip ID) within a system board,
last level cache and core unit ID (LCU ID), Core ID, and SMT ID.

- LCU :

L3 cache is divided into four blocks. One of the L3 blocks (and three cores
corresponding to that L3 block) is called as LCU in this specification.

- Virtual Processor (VCPU) :

A virtual processor (refer to Chapter 2 of UA2011). SPARC64™ XII has eight VCPUs
per physical CPU core.

 Architecture Overview 13

3. Architecture Overview

Feature
• HPC-ACE and 8-SMT are supported.
• VA is 64bits wide and has no hole bit.
• RA is normally 64 bits wide.
• Instructions only on the local ROM can be executed for noncacheable space.

Present parameter
• 12 cores (chip) and 8-SMT (core)
• L1 instruction cache : 64KB/4way (core) ; L1 data cache : 64KB/8way (core) ; line size

of L1 cache memories: 128 bytes.
• Unified L2 cache : 512KB/16way (core); line size of L2 cache memories: 128 bytes.
• Unified L3 cache : 8MB/16way (LCU); line size of L3 cache memories: 128bytes.
• For main TLB, set-associative TLB only. Instruction : 2,048 entries/16way (core);

data : 2,048 entries/16way (core); page size : 6 sizes (8KB, 64KB, 4MB, 256MB, 2GB,
and 16GB).

14 Ver 20, Oct., 2017

4. Data Formats

Refer to the SPARC64 X/X+ specification.

 5. Register 15

5. Register

 Ancillary State Registers 5.5.

 Tick (TICK) Register (ASR 4) 5.5.4.

 counter
63 62 0

Bit Field Access Description
62:0 counter R TICK counter

The counter field of the TICK register is a 63-bit counter (SPARC V9 Impl. Dep. #105b) that
counts the processor clock cycles. Reading TICK<63> returns 0.

Nonprivileged software can read the TICK register using the RDTICK instruction but only if
nonprivileged access to the TICK register is enabled. If nonprivileged access is disabled, an
attempt by nonprivileged software to read the TICK register causes a privileged_action
exception.

Table 5-1 shows the exceptions generated by reading or writing the TICK register.

Table 5-1 exceptions by reading or writing the TICK register

RDTICK (WRTICK does not
exist)

RDPR WRPR

OK (if nonprivileged access is enabled)
privileged_action (if nonprivileged
access is disabled)

 privileged_opcode privileged_opcode

 System Tick (STICK) Register (ASR 24) 5.5.12.

 counter
63 62 0

Bit Field Access Description
62:0 counter R Elapsed time value

The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor. Reading STICK<63> returns 0.

16 Ver 20, Oct., 2017

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but
only if nonprivileged access to STICK register is enabled. If nonprivileged access is disabled,
an attempt by nonprivileged software to read the STICK register causes a privileged_action
exception.

Table 5-2 shows the exceptions generated by reading or writing the STICK register.

 Table 5-2 exceptions by reading or writing the STICK register

RDSTICK WRSTICK

OK (if nonprivileged access is enabled)
privileged_action (if nonprivileged access is
disabled)

illegal_instruction
(different from TICK
register)

Compatibility Note In JPS1, writing the STICK register in nonprivileged
mode generates a privileged_opcode exception.

A read of the STICK<62:0> register returns 63-bit data.

 Extended Arithmetic Register (XAR) (ASR 29) 5.5.15.

0 f_v 0 f_simd f_urd f_urs1 f_urs2 f_urs3 s_v 0 s_simd s_urd s_urs1 s_urs2 s_urs3

63 32 31 30 29 28 27 25 24 22 21 19 18 16 15 14 13 12 11 9 8 6 5 3 2 0

Bit Field Access Description

31 f_v RW Indicates whether the contents of the fields
beginning with f_ are valid. If f_v = 1, the contents
of the f_ fields are applied to the instruction that
executes first. After the 1st instruction completes,
all f_ fields are cleared.

28 f_simd RW If f_simd = 1, the 1st instruction is executed as a
SIMD instruction. If f_simd = 0, execution is
non-SIMD.

27:25 f_urd RW Extends the rd field of the 1st instruction.
24:22 f_urs1 RW Extends the rs1 field of the 1st instruction.
21:19 f_urs2 RW Extends the rs2 field of the 1st instruction.
18:16 f_urs3 RW Extends the rs3 field of the 1st instruction.
15 s_v RW Indicates whether the contents of the fields

beginning with s_ are valid. If s_v = 1, the contents
of the s_ fields are applied to the instruction that
executes second. After the 2nd instruction
completes, all s_ fields are cleared.

12 s_simd RW If s_simd = 1, the 2nd instruction is executed as a
SIMD instruction. If s_simd = 0, execution is
non-SIMD.

11:9 s_urd RW Extends the rd field of the 2nd instruction.
8:6 s_urs1 RW Extends the rs1 field of the 2nd instruction.
5:3 s_urs2 RW Extends the rs2 field of the 2nd instruction.
2:0 s_urs3 RW Extends the rs3 field of the 2nd instruction.

The XAR register extends the instruction fields. It holds the upper 3 bits of an instruction’s
register number fields (rs1, rs2, rs3, rd) and indicates whether the instruction is a SIMD
instruction.

 5. Register 17

The register contains fields for two separate instructions. There are V (valid) bits for the
first and second instructions; all other fields for a given instruction are valid only when v =
1. These register fields are mainly used to specify floating-point registers, except the
*_urs3<1> fields, which are also used to disable hardware prefetch for integer and
floating-point load/store instructions.

Aliases of the XAR field in this specification
The fields described in Table 5-3 have the following aliases.

Table 5-3 Aliases for memory access

Aliases Field Usage
XAR.f_dis_hw_pf XAR.f_urs3<1> Disable hardware prefetch
XAR.s_dis_hw_pf XAR.s_urs3<1> Disable hardware prefetch
XAR.f_negate_mul XAR.f_urd<2> For SIMD FMA
XAR.s_negate_mul XAR.s_urd<2> For SIMD FMA
XAR.f_rs1_copy XAR.f_urs3<2> For SIMD FMA
XAR.s_rs1_copy XAR.s_urs3<2> For SIMD FMA
XAR.f_xar_i XAR.f_urs3<2> For Fsimm8
XAR.s_xar_i XAR.s_urs3<2> For Fsimm8

XAR operation
Only some instructions can reference the XAR register. In this document, instructions that
can reference XAR are called “XAR-eligible instructions”.

• XAR-eligible instructions have the following behavior.

• If XAR.v =1, the XAR.urs1, XAR.urs2, XAR.urs3 and XAR.urd fields are
concatenated with the instruction fields rs1, rs2, rs3 and rd respectively, to
specify floating-point registers.
Floating-point registers are referenced by 9-bit register numbers with the XAR
fields specifying the upper 3 bits. A double-precision encoded 5-bit instruction
field is decoded to generate the lower 6 bits of the register number. Refer to
“5.3.1 Floating-Point Register Number Encoding” (in the SPARC64™ X / X+
specification) for details.

• XAR.urs2<2:1> and XAR.urs3<1:0> fields may be specified to use the newly
implemented instructions in SPARC64™ XII (refer to page 18).

• The XAR.urs3<1> field may be specified to disable hardware prefetch for integer
and floating-point load/store instructions.

• The XAR.urs3<2> field may be specified to use an 8-bit signed immediate value
(Fsimm8) for some IMPDEP1 instructions (refer to page 18).

• The XAR.urs3<2> and XAR.urd<2> fields can be specified for SIMD FMA
instructions.

• If XAR.f_v = 1, the XAR.f_urs1, XAR.f_urs2, XAR.f_urs3 and XAR.f_urd fields are
used.

• If XAR.f_v = 0 and XAR.s_v = 1, XAR.s_urs1, XAR.s_urs2, XAR.s_urs3 and
XAR.s_urd fields are used.

• The value of the f_ or s_ fields are only valid once. After the instruction referencing
the XAR register completes, the referenced fields are set to 0.

• XAR-eligible instructions cause illegal_action exceptions for the following cases.

18 Ver 20, Oct., 2017

• An attempt to execute an instruction that is not XAR-eligible while XAR.v = 1.
• XAR.simd = 1 for an instruction (including integer arithmetic) that does not

support SIMD execution.
• XAR.urs1 ≠ 0 is specified for an instruction that does not use rs1. The same

applies for rd.
• XAR.urs2 ≠ 0 is specified for an instruction that does not use rs2 and for an

instcution whose rs2 field holds an immediate value (such as simm13 or fcn).
• XAR urs3 ≠ 0 is specified for an instruction that does not use rs3 except for the

following.
• XAR urs3<1:0> is specified to use the newly implemented instructions for

SPARC64™ XII.
• XAR urs3<1> is specified to disable hardware prefetch for integer and

floating-point load/store instructions.
• XAR urs3<2> is specified to use Fsimm8 for some IMPDEP1 instructions.

• XAR urs1<1> ≠ 0 is specified when XAR.urs1 is used as the upper 3 bits of the
concatenated floating-point register. The same applies for XAR.urs2, XAR.urs3
and XAR.urd.

• A register number greater than or equal to F[256] is specified for the rd field of
the FDIV{S|D} or FSQRT{S|D} instruction.

• XAR.simd = 1, and a register number greater than or equal to F[256] is specified.
Some instructions (such as F{N}MADD{s|d}, F{N}MSUB{s|d}, and FAES*X)
are exceptions to this rule and register numbers greater than or equal to F[256]
can be speficied. Refer to the specification for each instruction.

• An attempt to execute STFRUW, STDFRDS, STDFRDW, FMONTMUL, and FMONTSQR
while XAR.v = 0.

If XAR specifies register numbers for only one instruction, either the f_ or s_ fields can be
used.

Programming Note If WRXAR is used, either XAR.f_v or XAR.s_v can be set
to 1. SXAR1 sets XAR.f_v to 1.

If XAR.f_v = 0, the f_simd, f_urs1, f_urs2, f_urs3, and f_urd fields are ignored even when the
fields contain non-zero values. The value of each field after the execution is undefined. If
XAR.s_v = 0, the s_simd, s_urs1, s_urs2, s_urs3, and s_urd fields are ignored even when the
fields contain non-zero values. The value of each field after the execution is undefined.

XAR.urs2 (extended for SPARC64™ XII)
In SPARC64™ XII, XAR.urs2<2:1> can be specified to use the newly implemented
instructions for SPARC64™ XII, such as LDFUW, LDFSW, LDDFDS, STFUW, and STDFDS. Refer
to page 37 and page 48.

XAR.urs3 (extended for SPARC64™ XII)
In SPARC64™ XII, XAR.urs3 can be specified for the purpose stated below.

1) To use Fsimm8 by XAR.urs3<2>

2) To use the new instructions implemented in SPARC64™ XII by XAR.urs3<1:0>

 5. Register 19

In this specification, XAR.urs3<2> is also described as XAR.xar_i. If XAR.xar_i = 1, Fsimm8 is
used instead of F[rs2] for some IMPDEP1 instructions. Fsimm8 is an 8-bit signed immediate
value and used as a 64-bit immediate data (refer to page 27).

All IMPDEP1 instructions that can use XAR.urs3 for the purpose stated above are shown in
Table 5-4.

There are some new IMPDEP1 instructions in SPARC64™ XII which have the same
opecodes in SPARC64™ X/SPARC64™ X+. XAR.urs3<1:0> is specified to use those new
instructions in SPARC64™ XII. Refer to page 84, page 89, page 95, page 98, and page 100.

Table 5-4 Instructions that can use XAR.urs3.

Instruction XAR.urs3<2>
(Fsimm8)

XAR.urs3<1:0>
(specifying the
new instruction in
SPARC64™ XII)

Format of
Fsimm8

Page

F{SLL|SRL|SRA}32 ✓ Fsimm8_32x2 page 69

FP{ADD|SUB}64 ✓ Fsimm8_64x1

FPMERGE ✓ Fsimm8_8x8 page 35

FPMUL64 ✓ Fsimm8_64x1 page 71

FPMUL32 ✓ Fsimm8_32x2 page 71

FPADD16{|S} ✓ Fsimm8_16x4

FPADD32{|S} ✓ Fsimm8_32x2

FPSUB16{|S} ✓ Fsimm8_16x4

FPSUB32{|S} ✓ Fsimm8_32x2

FNORS ✓ Fsimm8_32x2

FNOR ✓ Fsimm8_64x1

FANDNOT{1|2}S ✓ Fsimm8_32x2

FANDNOT{1|2} ✓ Fsimm8_64x1

FNOT2S ✓ Fsimm8_32x2

FNOT2 ✓ Fsimm8_64x1

FXORS ✓ Fsimm8_32x2

FXOR ✓ Fsimm8_64x1

FNANDS ✓ Fsimm8_32x2

FNAND ✓ Fsimm8_64x1

FANDS ✓ Fsimm8_32x2

FAND ✓ Fsimm8_64x1

FXNORS ✓ Fsimm8_32x2

FXNOR ✓ Fsimm8_64x1

FORNOT{1|2}S ✓ Fsimm8_32x2

FORNOT{1|2} ✓ Fsimm8_64x1

FSRC2S ✓ Fsimm8_32x2

FSRC2 ✓ Fsimm8_64x1

20 Ver 20, Oct., 2017

FORS ✓ Fsimm8_32x2

FOR ✓ Fsimm8_64x1

FPSELMOV8FX ✓ ✓ Fsimm8_8x8 page 95

FPSELMOV16FX ✓ ✓ Fsimm8_16x4 page 95

FPSELMOV32FX ✓ ✓ Fsimm8_32x2 page 95

FPSELMOV8X ✓ Fsimm8_8x8

FPSELMOV16X ✓ Fsimm8_16x4

FPSELMOV32X ✓ Fsimm8_32x2

FPCSL8X ✓ Fsimm8_64x1 page 82

FPADD128XHI ✓ Fsimm8_64x1

FPCMP{LE|GT}4X ✓ Fsimm8_8x8 page 63

FPCMP{LE|GT}8X ✓ Fsimm8_8x8 page 63

FPCMP{LE|GT}16X ✓ Fsimm8_16x4 page 63

FPCMP{LE|GT}32X ✓ Fsimm8_32x2 page 63

FPCMP{LE|GT}64X ✓ Fsimm8_64x1 page 63

FPCMPU{EQ|NE|LE|GT}4X ✓ Fsimm8_8x8 page 63

FPCMPU{EQ|NE|LE|GT}8X ✓ Fsimm8_8x8 page 63

FPCMPU{EQ|NE|LE|GT}16X ✓ Fsimm8_16x4 page 63

FPCMPU{EQ|NE|LE|GT}32X ✓ Fsimm8_32x2 page 63

FPCMPU{EQ|NE|LE|GT}64X ✓ Fsimm8_64x1 page 63

FPCMP{LE|GT}4FX ✓ ✓ Fsimm8_8x8 page 84

FPCMP{LE|GT}8FX ✓ ✓ Fsimm8_8x8 page 84

FPCMP{LE|GT}16FX ✓ ✓ Fsimm8_16x4 page 84

FPCMP{LE|GT}32FX ✓ ✓ Fsimm8_32x2 page 84

FPCMP{LE|GT}64FX ✓ ✓ Fsimm8_64x1 page 84

FPCMPU{EQ|NE|LE|GT}4FX ✓ ✓ Fsimm8_8x8 page 84

FPCMPU{EQ|NE|LE|GT}8FX ✓ ✓ Fsimm8_8x8 page 84

FPCMPU{EQ|NE|LE|GT}16FX ✓ ✓ Fsimm8_16x4 page 84

FPCMPU{EQ|NE|LE|GT}32FX ✓ ✓ Fsimm8_32x2 page 84

FPCMPU{EQ|NE|LE|GT}64FX ✓ ✓ Fsimm8_64x1 page 84

FPCMP{LE|GT}4XACC ✓ ✓ Fsimm8_8x8 page 89

FPCMP{LE|GT}8XACC ✓ ✓ Fsimm8_8x8 page 89

FPCMP{LE|GT}16XACC ✓ ✓ Fsimm8_16x4 page 89

FPCMP{LE|GT}32XACC ✓ ✓ Fsimm8_32x2 page 89

FPCMP{LE|GT}64XACC ✓ ✓ Fsimm8_64x1 page 89

FPCMPU{EQ|NE|LE|GT}4XACC ✓ ✓ Fsimm8_8x8 page 89

FPCMPU{EQ|NE|LE|GT}8XACC ✓ ✓ Fsimm8_8x8 page 89

FPCMPU{EQ|NE|LE|GT}16XACC ✓ ✓ Fsimm8_16x4 page 89

 5. Register 21

FPCMPU{EQ|NE|LE|GT}32XACC ✓ ✓ Fsimm8_32x2 page 89

FPCMPU{EQ|NE|LE|GT}64XACC ✓ ✓ Fsimm8_64x1 page 89

FP{MAX|MIN}{|U}32X ✓ Fsimm8_32x2

FP{MAX|MIN}{|U}64X ✓ Fsimm8_64x1

F{S|Z}EXTW ✓ Fsimm8_64x1 page 72

FPCMP{|U}64X ✓ Fsimm8_64x1

FP{SLL|SRL|SRA}64X ✓ Fsimm8_64x1

FP{ADD|SUB}8 ✓ Fsimm8_8x8 page 73,
page 74

FEPERM32X ✓ Fsimm8_32x2 page 75

FEPERM64X ✓ Fsimm8_64x1 page 75

MOVdTOx ✓ ― page 98

MOVsTO{uw|sw} ✓ ― page 98

MOVfwTO{uw|sw} ✓ ― page 98

MOVwTO{fuw|fsw} ✓ ― page 100

 Extended Arithmetic Register Status Register (XASR) 5.5.16.
(ASR 30)

reserved rng_stat reserved fed reserved xfd<5:4> reserved xfd<1:0>

63 41 40 39 37 36 35 6

5 4 3 2 1 0

Bit Field Access Description
63:41 reserved RO Reserved (undefined).
40 rng_stat RW If rng_stat = 1, the value which is read from

ASI_RANDOM_NUMBER is valid, otherwise the
value is invalid.

39:37 reserved RO Reserved (undefined)
36 fed RW Floating-Point Exception Disable Mode

No floating-point exception traps are generated.
35:6 reserved RO reserved (undefined).
5:4 xfd<5:4> RW Updating the floating-point registers (F[382] –

F[256]) sets the appropriate bit to 1. Refer to xfd
(page 22) for details.

3:2 reserved RO reserved (undefined)
1:0 xfd<1:0> RW Updating the floating-point registers (F[126] –

F[0]) sets the appropriate bit to 1. Refer to xfd
(page 22) for details.

Note A read of the reserved field returns an undefined value. Zeros must
be written to the reserved field to preserve compatibility for future
implementation.

22 Ver 20, Oct., 2017

fed
Setting the fed field masks all floating-point exceptions. When XASR.fed = 0, the behavior
of the floating-point exceptions are the same as SPARC64™ X. This field is updated by the
WRXASR instruction.

All floating-point exceptions are masked when XASR.fed = 1. That is, corresponding traps
are not generated. In addition, FSR.aexc is not updated and, FSR.cexc and FSR.ftt are
cleared with a 0, regardless of the values of FSR.tem and FSR.ns. In addition, the
FSHIFTORX intsruction does not generate an illegal_instruction trap.

Exception XASR.fed = 0 XASR.fed = 1
fp_exception_ieee Behavior specified by

FSR.tem
Trap is not generated.
If an instruction that updates FSR is
executed
• FSR.cexc and FSR.ftt are cleared
• FSR.aexc is not updated

fp_exception_other
(unfinished_FPop)

Behavior specified by FSR.ns Trap is not generated.

illegal_instruction
(FSHIFTORX)

The illegal_instruction trap is
generated depending on the
value of Fd[rs3].

Trap is not generated.
The value of Fd[rd] is undefined.

Operation results for fed = 1 are the same as fed = 0, FSR.tem = 0_00002 and FSR.ns = 1
except for the behavior of the FSHIFTORX instruction.

The use of this flag is determined solely by the compiler. In other words, nonprivileged
software routines generated by the compiler, and compiler startup routines or libraries can
use this field.

The compiler can freely choose to alter this flag or leave it untouched. Nonprivileged
software not generated by the compiler (for example, assembly language) should not alter
this flag.

When modifying this field, it is the caller’s responsibility to clear the flag before jumping to
routines that are not generated by the compiler, such as OS library routines.

Note Minimizing the period where XASR.fed = 1 is recommended.

xfd
The xfd fields are used to determine whether any of the floating-point registers need to be
saved during a context switch. Updating a register sets the appropriate bit to 1.

• There is no flag indicating an update to integer registers.
• Updating a floating-point register sets the appropriate XASR.xfd<i> = 1. The

floating-point registers and corresponding xfd bits are shown below.

 5. Register 23

xfd bits Corresponding floating-point registers
0 F[0] – F[62]

1 F[64] – F[126]

2 Reserved
3 Reserved
4 F[256] – F[318]

5 F[320] – F[382]

6 Reserved

7 Reserved

Programming Note Updating a V9 floating-point register sets the xfd[0] bit
of the XASR and also updates the V9 FPRS. For example, updating F[15]
sets both FPRS.dl = 1 and XASR.xfd<0> = 1.

Programming Note The fields XASR.xfd<7:6> and XASR.xfd<3:2> are
undefined.

24 Ver 20, Oct., 2017

 6. Instruction Set Overview 25

6. Instruction Set Overview

Refer to the SPARC64 X/X+ specification.

26 Ver 20, Oct., 2017

7. Instructions

This chapter describes instructions defined in SPARC64™ XII. Refer to Chapter 7 of the
UA2011 or the SPARC64™ X/X+ specification for instructions not described in this chapter.

Table 7-1 Meaning of the mnemonic superscripts

Character Meaning
D Instruction should not be used (Deprecated)
N Incompatible instruction
PASI Privileged operation when bit 7 of ASI is 0
PASR Privileged operation depending on the ASR number
PNPT Privileged operation when nonprivileged access is enabled in

nonprivileged mode
PPIC Privileged operation when PCR.priv = 1
PPCR Privileged accesses when PCR.priv = 1
XII Instructions supported in SPARC64™ XII only

Table 7-2 Register notation for rs1 (same for rs2, rs3, and rd)

Mark Meaning

XAR.v = 0 XAR.v = 1

R[rs1] Integer register encoded by the
rs1 field of the instruction word

Integer register encoded by the rs1
field of the instruction word

Fs[rs1] Single-precision floating-point
register encoded by the rs1 field
of the instruction word

Single-precision floating-point
register encoded by XAR.urs1 and
the rs1 field of the instruction word

Fd[rs1] Double-precision floating-point
register encoded by the rs1 field
of the instruction word

Double-precision floating-point
register encoded by XAR.urs1 and
the rs1 field of the instruction word

Fq[rs1] Quadruple-precision
floating-point register encoded
by the rs1 field of the instruction
word

Quadruple-precision floating-point
register encoded by XAR.urs1 and
the rs1 field of the instruction
word.

F[rs1] Floating-point register encoded
by the rs1 field of the instruction
word
(There is no distinction among
single precision, double
precision, and quadruple
precision.)

Floating-point register encoded by
XAR.urs1 and the rs1 field of the
instruction word
(There is no distinction among
single precision, double precision,
and quadruple precision.)

In the Table 7-3, the columns for HPC-ACE extension show which HPC-ACE features can
be used with an instruction on SPARC64™ XII.

• Regs. XAR-eligible instruction. The extended floating-point registers can be
used. For memory access instructions, hardware prefetch can be disabled.

 7. Instructions 27

An instruction which has a ☆ in this column can specify Fd[0] – Fd[126] for the rd
register but not Fd[256] – Fd[382] .
For an instruction which has ※ in this column, XAR.v must be 1 to execute as a
non-SIMD instruction.

• SIMD Instruction can be specified as a SIMD instruction.

Instructions without checks in either of these two columns are not XAR-eligible.
Instructions that are XAR-eligible are described in “XAR operation” (page 17).

Fsimm8
If XAR.xar_i = 1, Fsimm8 is used instead of F[rs2] for specific XAR-eligible IMPDEP1
instructions that use F[rs2] (refer to the Table 5-4). When XAR.xar_i = 1 is specified for the
instrcutions that are not eligible to use XAR.xar_i, an illegal_action exception will occur.

Fsimm8 consists of XAR.urs2 and rs2, and is shown in Figure 7-1 (Fsimm8<7:5> is specified
by XAR.urs2<2:0> and Fsimm8<4:0> is specified by rs2<4:0>).

Figure 7-1 Fsimm8 (by XAR.urs2 and rs2 (in the instruction field))

Fsimm8 is used as a signed 64-bit immediate value in the format described in Figure 7-2
(Fsimm8_8x8, Fsimm8_16x4, Fsimm8_32x2, and Fsimm8_64x1).

Figure 7-2 Fsimm8 Formats

Fsimm8 is treated as stated below.
• The format of Fsimm8 (Fsimm8_8x8, Fsimm8_16x4, Fsimm8_32x2, and Fsimm8_64x1)

depends on the instruction.
• The lower 32-bit of Fsimm8 is ignored when a double floating-point register is used as

a single floating-point register.

28 Ver 20, Oct., 2017

• Even if 1 is set to the field of Fsimm8 which is not used for executions (for example,
the upper field of shift_amount), exceptions (for example, illegal_action,
illegal_instruction, and so on) will not occur.

• If Fsimm8 is used for a SIMD instruction, the same value is used for both basic and
extended sides.

• Assembly syntax is described as “[instruction] fregrs1, freg_or_fsimm, fregrd”. For
“freg_or_fsimm”, F[rs2] or Fsimm8 can be specified (“freg_or_fsimm8” is a newly defined
syntax).

• For Fsimm8, 0x00 ~ 0xff (-128 ~ 127) can be specified.

 7. Instructions 29

Table 7-3 Instruction set of SPARC64™ XII

Instruction HPC-ACE extension Page
Regs. SIMD

ADD (ADDcc)
ADDC (ADDCcc)
ALIGNADDRESS{_LITTLE}
AND (ANDcc)
ANDN (ANDNcc)
ARRAY{8|16|32}
BMASK
BPcc
BPr
BSHUFFLE
BiccD
CALL

CASAPASI, CASXAPASI ✓
CWB{NE|E|G|LE|GE|L|GU|LEU|CC|CS|POS|NEG|VC|VS}
CXB{NE|E|G|LE|GE|L|GU|LEU|CC|CS|POS|NEG|VC|VS}
EDGE{8|16|32}{L}N
EDGE{8|16|32}{L}cc
FABSq ✓
FABS{s|d} ✓ ✓
FADDod ☆
FADDq ✓
FADD{s|d} ✓ ✓
FADDtd ☆
FAESDECLX ✓ ✓
FAESDECX ✓ ✓
FAESENCLX ✓ ✓
FAESENCX ✓ ✓
FAESKEYX ✓ ✓
FALIGNDATA
FANDNOT{1|2}{s} ✓ ✓
FAND{s} ✓ ✓
FBPfcc
FBfccD
FCMP{E}{s|d|q} ✓
FCMP{E}td ✓
FCMP{LE|LT|GE|GT|EQ|NE}{E}{s|d} ✓ ✓
FCMP{LE|NE|GT|EQ}{16|32}
FCMP{LE|GT}{8X|16X|32X|X} ☆
FPCMP{LE|GT}{8X|16X|32X|64X} ✓ ✓ 63

FPCMP{LE|GT}{4X}XII ✓ ✓ 63
FCMPod ✓

FPCMP{LE|GT}{4|8|16|32|64}FXXII ※ ✓ 84

FPCMP{LE|GT}{4|8|16|32|64}XACCXII ※ ✓ 89
FLCMP{s|d} ✓

30 Ver 20, Oct., 2017

FDESENCX ✓ ✓
FDESIIPX ✓ ✓
FDESIPX ✓ ✓
FDESKEYX ✓ ✓
FDESPC1X ✓ ✓
FDIVod ☆
FDIV{s|d|q} ☆
FDIVtd ☆

FEPERM32XXII ✓ ✓ 75

FEPERM64XXII ✓ ✓ 75
FEXPAd ✓ ✓
FEXPAND
FLUSH
FLUSHW
FMADD{s|d} ✓ ✓
FMAX{s|d} ✓ ✓
FMIN{s|d} ✓ ✓

FMONTMULXII 102

FMONTSQRXII 102
FMOVq ✓
FMOVcc
FMOVR
FMOV{s|d} ✓ ✓
FMSUB{s|d} ✓ ✓
FMUL8x16
FMUL8x16{AU|AL}
FMUL8{SU|UL}x16
FMULD8{SU|UL}x16
FMULod ☆
FMULq ✓
FMUL{s|d} ✓ ✓
FMULtd ☆
FNAND{s} ✓ ✓
FNEGq ✓
FNEG{s|d} ✓ ✓
FNMADD{s|d} ✓ ✓
FNMSUB{s|d} ✓ ✓
FNADD{s|d} ✓ ✓
FNMUL{s|d} ✓ ✓
FNsMULd ✓ ✓
FNOR{s} ✓ ✓
FNOT{1|2}{s} ✓ ✓
FONE{s} ✓ ✓
FORNOT{1|2}{s} ✓ ✓
FOR{s} ✓ ✓
FPACK{16|32|FIX}
FPADD8XII ✓ ✓ 73

 7. Instructions 31

FPADD{16|32}{S} ✓ ✓
FPADD64 ✓ ✓
FPADD128XHI ✓ ✓

FPCSL8XXII ✓ ✓ 82
FPMADDX{HI} ✓ ✓
FPMAX{u}{32|64} ✓ ✓
FPMIN{u}{32|64} ✓ ✓
FPMERGE ✓ ✓ 35

FPMUL32XII ✓ ✓ 71

FPMUL64XII ✓ ✓ 71

FPSUB8XII ✓ ✓ 74
FPSUB{16|32}{S} ✓ ✓
FPSUB64 ✓ ✓
F{R}QUAod ☆
FQUAtd ☆
FRCPA{s|d} ✓ ✓
FRSQRTA{s|d} ✓ ✓
FPSELMOV{8|16|32}X ✓ ✓

FPSELMOV{8|16|32}FXXII ※ ✓ 95
FSELMOV{s|d} ✓ ✓

FSEXTWXII ✓ ✓ 72

FZEXTWXII ✓ ✓ 72
FSHIFTORX ✓ ✓
FSQRT{s|d|q} ☆
FSRC{1|2}{s} ✓ ✓
FSUBod ☆
FSUBq ✓
FSUB{s|d} ✓ ✓
FSUBtd ☆
FTRIMADDd ✓ ✓
FTRISMULd ✓ ✓
FTRISSELd ✓ ✓
FUCMP{LE|NE|GT|EQ}{8X|16X|32X|X} ☆

FPCMPU{LE|NE|GT|EQ}{8X|16X|32X|64X} ✓ ✓ 63

FPCMPU{LE|NE|GT|EQ}{4X}XII ✓ ✓ 63
FPCMPU{LE|NE|GT|EQ}8

FPCMPU{LE|NE|GT|EQ}{4|8|16|32|64}FXXII ※ ✓ 84

FPCMPU{LE|NE|GT|EQ}{4|8|16|32|64}XACCXII ※ ✓ 89

FPCMP{64|U64}X ✓
FXADDod{LO|HI} ☆
FXMULodLO ☆
FXNOR{s} ✓ ✓
FXOR{s} ✓ ✓
FZERO{s} ✓ ✓
FdMULq ✓

32 Ver 20, Oct., 2017

F{bsx|bux|od}TOtd ☆
FqTO{i|x} ✓
FsMULd ✓ ✓
F{i|x}TOq ✓
F{i|x}TO{s|d} ✓ ✓
F{s|d}TOq ✓
F{s|d}TO{i|x} ✓ ✓
FsTOd, FdTOs ✓ ✓
FtdTO{bsx|bux|od} ☆
FqTO{s|d} ✓
ILLTRAP
JMPL
LDBLOCKF ✓
LDF, LDDF ✓ ✓ 37
LDQF ✓ 37

LDFUWXII ※ ✓ 37

LDFSWXII ※ ✓ 37

LDDFDSXII ※ ✓ 37

LDFAPASI, LDDFAPASI ✓ ✓ 42

LDQFAPASI ✓ 42

LDFSRD ✓
LDSHORTF
LDSTUB ✓

LDSTUBAPASI ✓

LDTWD ✓

LDTWAD,PASI ✓

LDTXAN ✓
LDXEFSR ✓
LDXFSR ✓
LD{S|U}{B|H|W}, LDX ✓

LD{S|U}{B|H|W}APASI, LDXAPASI ✓
LZD
MEMBAR
MOVcc
MOVr
MOVwTOs ✓
MOVxTOd ✓

MOVdTOxXII ✓ 98

MOVsTOuwXII ✓ 98

MOVsTOswXII ✓ 98

MOVfwTOuwXII ※ 98

MOVfwTOswXII ※ 98

MOVwTOfuwXII ※ 100

MOVwTOfswXII ※ 100

MULSccD

 7. Instructions 33

MULX
NOP
OR (Orcc)
ORN (ORNcc)
PADD32
PAUSE
PDIST
POPC
PREFETCH, PREFETCHAPASI ✓ 43
RDASI
RDCCR
RDFPRS
RDGSR
RDPC
RDPCRPPCR

RDPICPPIC

RDSTICKPNPT

RDTICKPNPT
RDXASR
RDYD

RDASRPASR
RESTORE
RETURN
ROLX
SAVE
SDIAM

SDIVD (SDIVccD)
SDIVX
SETHI
SIAM
SLEEP 46
SLL, SLLX
FPSLL64X ✓ ✓

FSLL32XII ✓ ✓ 69

SMULD (SMULccD)

SRA, SRAX
FPSRA64X ✓ ✓

FSRA32XII ✓ ✓ 69

SRL, SRLX
FPSRL64X ✓ ✓

FSRL32XII ✓ ✓ 69

STBARD

STBIN ✓
STBLOCKF ✓
STF, STDF ✓ ✓ 48
STQF ✓ 48

34 Ver 20, Oct., 2017

STFUWXII ※ ✓ 48

STDFDSXII ※ ✓ 48

STFAPASI, STDFAPASI ✓ ✓ 51

STQFAPASI ✓ 51

STFSRD, STXFSR ✓
STPARTIALF
STSHORTF
ST{B|H|W|X} ✓

ST{B|H|W|X}APASI ✓
ST{D}FR ✓ ✓ 56

STFRUWXII ※ ✓ 56

STDFRDSXII ※ ✓ 56

STDFRDWXII ※ ✓ 56

STTWD ✓

STTWAD,PASI ✓

SUB (SUBcc)
SUBC (SUBCcc)

SWAPD, SWAPAD,PASI ✓
SXAR{1|2}
TADDcc (TADDccTVD)

TSUBcc (TSUBccTVD)
Tcc
UDIVD (UDIVccD)
UDIVX

UMULD (UMULccD)
WRASI
WRASRPASR
WRCCR
WRFPRS
WRGSR
WRPAUSE
WRPCRPPCR

WRPICPPIC
WRXAR
WRXASR

WRYD

XFILLN ✓ 53

XNOR (XNORcc)
XOR (XORcc)

 7. Instructions 35

 Floating-Point Merge 7.41.

Opcode opf Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPMERGE 0 0100 10112 Two 32-bit merges   fpmerge fregrs1, freg_or_fsimm,

fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description FPMERGE interleaves eight 8-bit data in “Fs[rs1]<31:0> and Fs[rs2]<31:0>” or
“Fd[rs1]<63:32> and Fd[rs2]<63:32>” to produce a 64-bit data in Fd[rd].

If XAR.v = 0 and xar_i = 0, Fs[rs1]<31:0> and Fs[rs2]<31:0> are divided into four 8-bit data
and merged as shown in Figure 7-3.

Figure 7-3 The behavior of FPMERGE (XAR.v = 0 and xar_i = 0)

If XAR.v = 1 and xar_i = 0, Fd[rs1]<63:32> and Fd[rs2]<63:32> are divided into four 8-bit
data and merged as shown in Figure 7-4.

If XAR.v = 1 and xar_i = 1, Fd[rs1]<63:32> and Fsimm8_8x8<63:32> are divided into four
8-bit data and merged as shown in Figure 7-5.

Figure 7-4 Behavior of FPMERGE (XAR.v = 1 and xar_i = 0)

36 Ver 20, Oct., 2017

Figure 7-5 Behavior of FPMERGE (XAR.v = 1 and xar_i = 1)

FPMERGE will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 37

 Load Floating-Point Register 7.55.

Instruction op3 rdi urs2
<2:1>

Operation HPC-ACE Assembly Language
Syntax Regs SIMD

LDF 10
00002

0 – 31  Load Word Data to Single
Floating-Point Register (XAR.v = 0)

 ld [address], fregrd

LDF 10
00002

0 – 126,
256 – 382

002 Load Word Data to Double
Floating-Point Register (XAR.v = 1)

  ld [address], fregrd

LDDF 10
00112

0 – 126,
256 – 382

002 Load Double Word Data to Double
Floating-Point Register

  ldd [address], fregrd

LDQF 10
00102

0 – 126,
256 – 382

002 Load Quad Word Data to Quad
Floating-Point Register

 ldq [address], fregrd

LDFUWXII 10
00002

0 – 126,
256 – 382

012 Load Word Data to Double
Floating-Point Register as Unsigned
Integer

※  lduw [address], fregrd

LDFSWXII 10
00002

0 – 126,
256 – 382

112 Load Word Data to Double
Floating-Point Register as Signed
Integer

※  ldsw [address], fregrd

LDDFDSXII 10
00112

0 – 126,
256 – 382

012 Load Double Word Data to Double
Floating-Point Register as Two Word
Data

※  lddds [address], fregrd

112 rd op3 rs1 i = 0  rs2

112 rd op3 rs1 i = 1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Non-SIMD operation

Refer to Section 7.75 in UA2011.

LDF copies a word from memory at the effective address into the 4-byte floating-point
destination register F[rd]. If XAR.v = 0, LDF copies a word from memory into the 4-byte
floating-point destination register, Fs[rd]. If XAR.v = 1, LDF copies a word from memory into
the upper 4 bytes of the 8-byte floating-point destination register, Fd[rd]. The lower 4 bytes
of Fd[rd] is filled with 0.

LDDF copies a word-aligned doubleword from memory at the effective address into the
8-byte floating-point destination register, Fd[rd].

LDQF copies a word-aligned quadword from memory at the effective address into the
16-byte floating-point destination register, Fq[rd].

LDFUW copies a word from memory at the effective address into the lower 4 bytes of the
8-byte floating-point destination register, Fd[rd]. The upper 4 bytes of Fd[rd] is filled with 0.

LDFSW copies a word from memory at the effective address into the lower 4 bytes of the
8-byte floating-point destination register, Fd[rd]. The upper 4 bytes of Fd[rd] is filled with
MSB of the copied data (sign extension).

i Encoding is defined in 5.3.1 “Floating-Point Register Number Encoding” in the SPARC64™ X/X+ specification.

38 Ver 20, Oct., 2017

LDDFDS copies a word-aligned doubleword from memory at the effective address into the
8-byte floating-point destination register, Fd[rd] as two word data.

An attempt to execute LDF, LDDF, LDQF, LDFUW, LDFSW and LDDFDS causes a
mem_address_not_aligned exception when the effective address is not word-aligned.

For LDDFDS, the endianness of each memory access for two words is handled separately,
even if the two words are located on different pages with different endianness.

LDDFDS can only be used to access cacheable address spaces. An attempt to access
noncacheable address space using LDDFDS causes a DAE_nc_page exception.

Programming Note LDFUW, LDFSW, and LDDFDS can be used only if
XAR.v = 1. If XAR.v = 0, other XAR fields (XAR.urs1, XAR.urs2, XAR.urs3,
XAR.urd, and XAR.simd) are treated as 0.

SIMD operation

In SPARC64™ XII, LDF, LDDF, LDFUW, LDFSW, and LDDFDS can be executed as a SIMD
instructions. SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS
simultaneously execute basic and extended loads from the effective address. Refer to
Section 5.5.15 (page 16) for details on how to specify the registers.

A SIMD LDF instruction copies a word from memory at the effective address into the upper
4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word from
memory at the “effective address + 4” into the upper 4 bytes of the 8-byte floating-point
destination register Fd[rd + 256].

A SIMD LDDF instruction copies a doubleword-aligned doubleword from memory at the
effective address into the 8-byte floating-point register, Fd[rd]. It then copies a
doubleword-aligned doubleword from memory at the “effective address + 8” into the 8-byte
floating-point register, Fd[rd + 256].

A SIMD LDFUW instruction copies a word from memory at the effective address into the
lower 4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word
from memory at the “effective address + 4” into the lower 4 bytes of the 8-byte floating-point
destination register, Fd[rd + 256]. The upper 4 bytes of Fd[rd] and Fd[rd + 256] are filled with
0.

A SIMD LDFSW instruction copies a word from memory at the effective address into the
lower 4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word
from memory at the “effective address + 4” into the lower 4 bytes of the 8-byte floating-point
destination register, Fd[rd + 256]. The upper 4 bytes of Fd[rd] and Fd[rd+256] are filled with
MSB of the copied data (sign extension).

A SIMD LDDFDS instruction copies a word-aligned doubleword from memory at the effective
address into the 8-byte floating-point destination register, Fd[rd] as two word data. It then
copies a word-aligned doubleword from memory at the “effective address + 8” into the 8-byte
floating-point destination register, Fd[rd + 256] as two word data.

For SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS, a misaligned
accesses causes a mem_address_not_aligned exception.

Note A SIMD LDDF that accesses data aligned on a 4-byte boundary but
not an 8-byte boundary does not cause an
LDDF_mem_address_not_aligned exception.

SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS can only be used to
access cacheable address spaces. An attempt to access noncacheable address spaces using
these SIMD instructions causes a DAE_nc_page exception.

 7. Instructions 39

Like non-SIMD load instructions, memory access semantics for SIMD load instructions
adhere to the TSO. A SIMD load simultaneously executes basic and extended loads.
However, the ordering between the basic and extended loads conforms to the TSO.

For SIMD load, a watchpoint can be detected in both the basic and extended loads.

For SIMD LDF, SIMD LDDF, SIMD LDFUW, and SIMD LDFSW, the endianness of each
memory access for basic data and extended data is handled separately, even if the two data
are located on different pages with different endianness.

For SIMD LDDFDS, the endianness of each memory access for four word data is handled
separately, even if the data are located on different pages with different endianness.

40 Ver 20, Oct., 2017

Exception Target instruction Detection condition
illegal_instruction LDF, LDDF, LDFUW, LDFSW,

LDDFDS
A reserved is not 0.

LDQF Always detected.
For this instruction, exceptions with
a priority lower than
illegal_instruction are intended for
emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action LDF If XAR.v = 1 and one of the following

is true:
• XAR.urs1 ≠ 0
• XAR.urs2<0> ≠ 0
• XAR.urs2<2:1> = 102
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2>

≠ 0

LDFUW, LDFSW If XAR.v = 1 and one of the following
is true:
• XAR.urs1 ≠ 0
• XAR.urs2<0> ≠ 0
• XAR.urs2<2:1> = 102
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2>

≠ 0
LDDF If XAR.v = 1 and one of the following

is true:
• XAR.urs1 ≠ 0
• XAR.urs2<0> ≠ 0
• XAR.urs2<2> ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2>

≠ 0
LDDFDS If XAR.v = 1 and one of the following

is true:
• XAR.urs1 ≠ 0
• XAR.urs2<0> ≠ 0
• XAR.urs2<2> ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2>

≠ 0
LDQF If XAR.v = 1 and one of the following

is true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0

fp_exception_other
(FSR.ftt =
invalid_fp_register)

LDQF rd<1> ≠ 0

LDDF_mem_address_
not_aligned

LDDF XAR.v = 0 or XAR.simd = 0,
and the address is 4-byte aligned
but not 8-byte aligned.

mem_address_not_ali
gned

LDF, LDQF, LDFUW, LDFSW,
LDDFDS

The address is not 4-byte aligned.

 7. Instructions 41

Exception Target instruction Detection condition
LDDF One of the following is true:

• XAR.v = 0 or XAR.simd = 0, and
the address is not 4-byte aligned.

• XAR.v = 1 and XAR.simd = 1,
and the address is not 8-byte
aligned.

VA_watchpoint All Refer to the description and
12.5.1.62 in the SPARC64™ X/X+
specification.

DAE_privilege_violatio
n

All Refer to 12.5.1.62 in the SPARC64™
X/X+ specification.

DAE_nc_page LDDFDS Access to noncacheable space is
attempted.

LDF, LDDF, LDFUW, LDFSW Access to noncacheable space is
attempted if XAR.v = 1 and
XAR.simd = 1.

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™
X/X+ specification.

42 Ver 20, Oct., 2017

 Load Floating-Point from Alternate 7.56.
Space

Description Refer to 7.56 in the SPARC64™ X/X+ specification.

Exception Target instruction Detection condition
illegal_instruction LDQFA Always detected.

For this instruction, exceptions with a
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action LDFA, LDDFA If XAR.v = 1 and one of the following is

true:
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

LDQFA If XAR.v = 1 and one of the following is
true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0

fp_exception_other
(FSR.ftt = invalid_fp_register)

LDQFA rd<1> ≠ 0

LDDF_mem_address_not_aligned LDDFA XAR.v = 0 or XAR.simd = 0,
and the address is 4-byte aligned but not
8-byte aligned.

mem_address_not_aligned LDFA, LDQFA Address is not 4-byte aligned.
LDDFA One of the following is true:

• XAR.v = 0 or XAR.simd = 0, and the
address is not 4-byte aligned.

• XAR.v = 1 and XAR.simd = 1, and the
address is not 8-byte aligned.

privileged_action All Refer to 12.5.1.49 in the SPARC64™
X/X+ specification.

VA_watchpoint All Refer to 12.5.1.62 in the SPARC™ X/X+
specification.

DAE_invalid_asi All Refer to UA2011 and 12.5.1.5 in the
SPARC64™ X/X+ specification.

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+
specification.

DAE_nc_page All Access to noncacheable space is
attempted if XAR.v = 1 and XAR.simd =
1.

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+
specification.

DAE_side_effect_page All Refer to 12.5.1.9 in the SPARC64™ X/X+
specification.

 7. Instructions 43

 Prefetch 7.75.

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD

PREFETCH 10
11012

Prefetch Data  prefetch [address], prefetch_fcn

PREFETCHAPASI 11
11012

Prefetch Data from
Alternate Space

 prefetch [regaddr], imm_asi, prefetch_fcn
prefetch [reg_plus_imm] %asi, prefetch_fcn

Description Refer to Section 7.104 in UA2011.

The address specified by the instruction can be arbitorary. As specified by the instruction,
one cache line (128 bytes) or two cache lines (256 bytes) are copied. A
mem_address_not_aligned exception is never generated.

The PREFETCH{A} instruction is treated as a NOP when the specified address is
noncacheable or in an undefined cacheable space.

ASIs that can be specified by the PREFETCHA instruction are shown in Table 7-4. If an ASI
other than those listed below is specified, the PREFETCHA instruction becomes a NOP.

Table 7-4 ASIs valid for PREFETCHA

ASI_PRIMARY ASI_PRIMARY_LITTLE

ASI_SECONDARY ASI_SECONDARY_LITTLE

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE

The prefetch instruction has no side effects other than bringing a data block into cache.

The prefetch instruction might not be executed due to a lack of hardware resources
(prefetch lost). Whether a prefetch instruction has been executed or lost cannot be
confirmed.

 Prefetch Variants 7.75.1.
Table 7-5 shows the available fcns in SPARC64™ XII and describes their operation.

44 Ver 20, Oct., 2017

Table 7-5 fcns for PREFETCH and PREFETCHA

fcn JPS1 and UA2011 Definition Operation in SPARC64™ XII
0 Frequently used data is

prefetched for reading.
128-byte data is copied into the L1 data cache.

1 Infrequently used data is
prefetched for reading.

128-byte data is copied into the LL cache.

2 Frequently used data is
prefetched for writing.

128-byte data is copied into the L1 data cache
with exclusive ownership.

3 Infrequently used data is
prefetched for writing.

128-byte data is copied into the LL cache with
exclusive ownership.

4 Page mapping is performed by
privileged software.

NOP

5 - 15
(0516 -
0F16)

An illegal_instruction exception is
detected.

An illegal_instruction exception is detected.

16 - 19
(1016 -
1316)

Implementation dependent NOP

20 (1416) Frequently used data is
prefetched for reading. Strong
prefetch.

128-byte data is copied into the L1 data cache.
Strong prefetch.

21 (1516) Infrequently used data is
prefetched for reading. Strong
prefetch.

128-byte data is copied into the LL cache. Strong
prefetch.

22 (1616) Frequently used data is
prefetched for writing. Strong
prefetch.

128-byte data is copied into the L1 data cache
with exclusive ownership. Strong prefetch.

23 (1716) Infrequently used data is
prefetched for writing. Strong
prefetch.

128-byte data is copied into the LL cache with
exclusive ownership. Strong prefetch.

24 - 28
(1816 -
1C16)

Implementation dependent NOP

29 (1D16) 256-byte data aligned on 256-byte boundary is
copied into the LL cache. Strong prefetch.

30 (1E16) NOP

31 (1F16) 256-byte data aligned on 256-byte boundary is
copied into the LL cache with exclusive
ownership. Strong prefetch.

Note In SPARC64™ XII, LL cache (= Last Level cache) means L3 cache.

 Weak versus Strong Prefetches 7.75.2.

Programming Note Strong prefetches might block subsequent load
instructions or store instructions. Therefore, strong prefetches should be
used only when prefetched data is guaranteed to be accessed.

 7. Instructions 45

Exception Target instruction Condition
illegal_instruction All One of the following is true:

• A reserved field is not 0.
• fcn = 5 – 15

illegal_action All If XAR.v = 1 and one of the following is
true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2, 0> ≠ 0
• XAR.urd<1> ≠ 0

46 Ver 20, Oct., 2017

 Sleep 7.89.

Instruction Opf Operation HPC-ACE Assembly Language

Syntax Regs SIMD
SLEEP 0 1000 00112 VCPU is stopped during the fixed time. sleep

102  op3 = 11 01102  Opf 

31 30 29 25 24 19 18 14 13 5 4 0

Description The SLEEP instruction stops the VCPU for a fixed period of time, unless there are pending
interrupts.

The stopped VCPU restarts execution when either of the following conditions is true.
• The fixed period of time, which depends on the implementation, has passed.
• An interrupt is pending or has occured.

Programming Note Software should not expect the SLEEP instruction to
always stop the VCPU for a fixed amount of time .

Compatibility Note In SPARC64 VIIIfx, and earlier processors, execution
was restarted when an interrupt occurred. In SPARC64™ XII and
SPARC64™ X/X+, execution is restarted if an interrupt is pending (for
example, when the processor cannot accept interrupts). That is, execution
may restart if an interrupt has not occurred.

Exception Condition
illegal_instruction A Reserved field is not 0.
illegal_action XAR.v = 1

 7. Instructions 47

 Block Initializing Store 7.94.

Description UA2011 defines ASI_STBI_*. In SPARC64™ XII, if ASI_STBI_* is specified for the STBA,
STHA, STWA, STXA, and STTWA instructions, these stores behave as normal store
instructions. For example, if ASI_STBI_P is specified for STBA, STBA behaves as if ASI_P
was specified.

The behavior of the Block Initializing Stores is as follows.

ASI
number

ASI name Integer store (STBA, STHA, STWA, STXA, and
STTWA) operation

E216 ASI_STBI_P ASI_P

E316 ASI_STBI_S ASI_S
EA16 ASI_STBI_PL ASI_PL
EB16 ASI_STBI_SL ASI_SL

F216 ASI_STBIMRU_PRIMARY ASI_P

F316 ASI_STBIMRU_SECONDARY ASI_S

FA16 ASI_STBIMRU_PRIMARY_LITTLE ASI_PL

FB16 ASI_STBIMRU_SECONDARY_LITTLE ASI_SL

Only a DAE_invalid_ASI exception and a mem_address_not_aligned exception are generated.
DAE _* exceptions, except for DAE_invalid_ASI, do not occur.

48 Ver 20, Oct., 2017

 Store Floating-Point 7.96.

Instruction op3 rdii urs2<1> Operation HPC-ACE Assembly Language

Syntax Regs SIMD
STF 10 01002 0 − 31 0 Stores single floating-point

register (XAR.v = 0)
 st fregrd, [address]

STF 10 01002 0 – 126,
256 – 382

0 Stores the upper 4 bytes of
double floating-point register
(XAR.v = 1)

  st fregrd, [address]

STDF 10 01112 0 − 126,
256 – 382

0 Stores double floating-point
register

  std fregrd, [address]

STQF 10 01102 0 − 126,
256 – 382

0 Stores quad floating-point
register

 stq fregrd, [address]

STFUWXII 10 01002 0 − 126,
256 – 382

1 Stores the lower 4 bytes of
double floating-point register

※  stuw fregrd, [address]

STDFDSXII 10 01112 0 − 126,
256 – 382

1 Stores double floating-point
register as Two Word Data

※  stdds fregrd, [address]

112 rd op3 rs1 i = 0 — rs2

112 rd op3 rs1 i = 1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Description

Non-SIMD operation

Refer to Section 7.122 in UA2011.

STF copies 4 bytes of the floating-point register F[rd] into a word-aligned word to memory at
the effective address. If XAR.v = 0, STF copies the contents of the 4-byte floating-point
register Fs[rd] to memory. If XAR.v = 1, STF copies the upper 4 bytes of the 8-byte
floating-point register Fd[rd] to memory.

STDF copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned
doubleword to memory at the effective address.

STQF copies the contents of the 16-byte floating-point register Fq[rd] into a word-aligned
quadword to memory at the effective address.

STFUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address.

STDFDS copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned
doubleword as two word data to memory at the effective address.

For STF, STDF, STQF, STDFUW, and STDFDS, a misaligned accesses causes a
mem_address_not_aligned exception.

The STQF instruction is defined by SPARC V9 but is not implemented in SPARC64™ XII. If
STQF is executed, an illegal_instruction exception occurs.

ii Encoding is defined in 5.3.1 “Floating-Point Register Number Encoding” in the SPARC64™ X/X+ specification.

 7. Instructions 49

STDFDS can only write to cacheable address spaces. An attempt to access noncacheable
space causes a DAE_nc_page exception.

Programming Note STFUW and STDFDS can be used only when XAR.v = 1.
When XAR.v = 0, other XAR fields (XAR.urs1, XAR.urs2, XAR.urs3,
XAR.urd, and XAR.simd) are treated as all 0.

For STDFDS, the endianness of each memory access for two words is handled separately,
even if the two words are located on different pages with different endianness.

SIMD operation

In SPARC64™ XII, STF, STDF, STFUW, and STDFDS can be executed as a SIMD instruction.
SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS simultaneously execute basic and
extended stores. Refer to Section 5.5.15 for details on how to specify the registers.

SIMD STF copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address and copies the upper 4 bytes of the
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the
“effective address + 4”.

SIMD STDF copies the contents of the 8-byte floating-point register Fd[rd] into a
doubleword-aligned doubleword to memory at the effective address and copies the contents
of the 8-byte floating-point register Fd[rd + 256] into a doubleword-aligned doubleword to
memory at the “effective address + 8”.

SIMD STFUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address and copies the lower 4 bytes of the
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the
“effective address + 4”.

SIMD STDFDS copies the contents of the 8-byte floating-point register Fd[rd] into a
word-aligned doubleword to memory at the effective address as two word data and copies
the contents of the 8-byte floating-point register Fd[rd + 256] into a word-aligned
doubleword to memory at “the effective address + 8“ as two word data.

For SIMD STF, SIMD STDF, SIMD STDFUW, and SIMD STDFDS, a misaligned access causes
a mem_address_not_aligned exception.

Note A SIMD STDF that accesses data aligned on a 4-byte boundary but
not an 8-byte boundary does not cause an
STDF_mem_address_not_aligned exception.

SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS can only write to cacheable
address spaces. An attempt to access noncacheable space causes a DAE_nc_page exception.

Like non-SIMD store instructions, memory access semantics adhere to the TSO. SIMD STF,
SIMD STDF, SIMD STFUW, and SIMD STDFDS simultaneously execute basic and extended
stores. However, the ordering between the basic and extended stores conforms to the TSO.

A VA_watchpoint exception can be detected in either the basic or extended operation of
SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS.

For SIMD STF, SIMD STDF, and SIMD STFUW, the endianness of each memory access for
basic data and extend data is handled separately, even if the two data are located on
different pages with different endianness.

For SIMD STDFDS, the endianness of each memory access for four word data is handled
separately, even if the data are located on different pages with different endianness.

50 Ver 20, Oct., 2017

,

Exception Target instruction Detection condition
illegal_instruction STF, STDF, STFUW,

STDFDS
i = 0 and reserved is not 0.

STQF Always detected.
For this instruction, exceptions with a priority
lower than illegal_instruction are intended for
emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action STF, STDF, STFUW,

STDFDS
If XAR.v = 1 and one of the following is true:
• XAR.urs1 ≠ 0
• XAR.urs2<2,0> ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 STQF If XAR.v = 1 and one of the following is true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0

fp_exception_other
(FSR.ftt = invalid_fp_r
egister)

STQF rd<1> ≠ 0

STDF_mem_address
_not_aligned

STDF Address is aligned on a 4-byte boundary but not an
8-byte boundary when XAR.v = 0 or XAR.simd = 0.

mem_address_not_al
igned

STF, STQF, STFUW,
STDFDS

Address is not aligned on a 4-byte boundary

STDF One of the following is true:
• Address is not aligned on a 4-byte boundary

when XAR.v = 0 or XAR.simd = 0.
• Address is not aligned on an 8-byte boundary

when XAR.v = 1 and XAR.simd = 1.
VA_watchpoint All Refer to the description and to 12.5.1.62 in the

SPARC64™ X/X+ specification.
DAE_privilege_violati
on

All Refer to 12.5.1.8 in the SPARC64™ X/X+
specification.

DAE_nc_page STF, STDF, STFUW An access to noncacheable space is attempted
when XAR.v = 1 and XAR.simd = 1.

STDFDS An access to noncacheable space is attempted.
DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+

specification.

 7. Instructions 51

 Store Floating-Point into Alternate 7.97.
Space

Compatibility Note Only the differences between the specification of
SPARC64™ XII and SPARC64™ X/SPARC64™ X+ is described.

Desciption Refer to Section 7.97 in the SPARC64™ X/X+ specification.

SIMD operation

SIMD STFA copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address and copies the upper 4 bytes of the
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the
“effective address + 4”. A misaligned access causes a mem_address_not_aligned exception.

Programming Note In SPARC64™ X/X+, the address must be
doubleword-aligned.

SIMD STDFA copies the contents of the 8-byte floating-point register Fd[rd] into a
doubleword-aligned doubleword to memory at the effective address and copies the contents
of the 8-byte floating-point register Fd[rd + 256] into a doubleword-aligned doubleword to
memory at the “effective address + 8“. A misaligned access causes a
mem_address_not_aligned exception.

Programming Note In SPARC64™ X/X+, the address must be
quadword-aligned.

52 Ver 20, Oct., 2017

Exception Target instruction Detection condition
illegal_instruction STQFA Always detected.

For this instruction, exceptions with a
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action STFA, STDFA If XAR.v = 1 and one of the following is

true:
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

STQFA If XAR.v = 1 and one of the following is
true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0

fp_exception_other
(FSR.ftt = invalid_fp_register)

STQFA rd<1> ≠ 0

STDF_mem_address_not_aligned STDFA Address is aligned on a 4-byte boundary
but not an 8-byte boundary when
XAR.v = 0 or XAR.simd = 0.

mem_address_not_aligned STFA, STQFA Address is not aligned on a 4-byte
boundary.

STDFA One of the following is true:
• Address is not aligned on a 4-byte

boundary when XAR.v = 0 or
XAR.simd = 0.

• Address is not aligned on an 8-byte
boundary when XAR.v = 1 and
XAR.simd = 1.

privileged_action All Refer to 12.5.1.49 in the SPARC64™
X/X+ specification.

VA_watchpoint All Refer to 7.97 in the the SPARC64™ X/X+
specification.

DAE_invalid_asi All Refer to 7.97 and 12.5.1.5 in the
SPARC64™ X/X+ specification.

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+
specification.

DAE_nc_page All An access to noncacheable space is
attempted when XAR.v = 1 and
XAR.simd = 1.

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+
specification.

 7. Instructions 53

 Cache Line Fill with Undetermined 7.114.
Values

Instruction ASI op3 Operation HPC-ACE Assembly Language Syntax

Regs SIMD
XFILLN ASI_XFILL_P

(ASI = 0xF416)
ASI_XFILL_S
(ASI = 0xF516)

01 11102
01 01002
01 01102
01 01112
01 01012
11 01002
11 01112

Accesses the
cache at the
specified
address and
fills the cache
line with
undetermined
values.

✓

 stxa regrd , [reg_plus_imm] %asi
stxa regrd , [regaddr] imm_asi
stwa regrd , [reg_plus_imm] %asi
stwa regrd , [regaddr] imm_asi
stha regrd , [reg_plus_imm] %asi
stha regrd , [regaddr] imm_asi
sttwa regrd , [reg_plus_imm] %asi
sttwa regrd , [regaddr] imm_asi
stba regrd , [reg_plus_imm] %asi
stba regrd , [regaddr] imm_asi
sta fregrd , [reg_plus_imm] %asi
sta fregrd , [regaddr] imm_asi
stda fregrd , [reg_plus_imm] %asi
stda fregrd , [regaddr] imm_asi

112 rd op3 rs1 i = 0 imm_asi rs2

31 30 29 25 24 19 18 14 13 12 5 4 0

112 rd op3 rs1 i = 1 simm13
31 30 29 25 24 19 18 14 13 12 0

Description If ASI_XFILL_P or ASI_XFILL_S is specified for STXA, STWA, STHA, STTWA, STBA, STFA, or
STDFA instruction, the cache line for the specified address is ensured for writing and is
filled with an undefined value. Data is not transferred to the CPU from memory. Any
address in the cache line can be specified.

Programming Note In SPARC64™ X/X+, XFILL is implemented as NOP.

Programming Note In SPARC64™ X/X+, XFILL is implemented for only
8-byte store instructions (STXA, STTWA, and STDFA). In SPARC64™ XII,
XFILL is implemented for 1-byte store instruction (STBA), 2-byte store
instruction (STHA), 4-byte store instructions (STFA and STWA), and 8-byte
store instructions (STXA, STTWA, and STDFA).

STXA and STTWA cause mem_address_not_aligned exceptions if the effective memory
address is not doubleword-aligned.

STFA, STWA, and STDFA cause mem_address_not_aligned exceptions if the effective memory
address is not word-aligned.

STHA causes mem_address_not_aligned exceptions if the effective memory address is not
halfword-aligned.

STDFA causes STDF_mem_address_not_aligned exceptions if the effective memory address
is word-aligned but not doubleword-aligned.

54 Ver 20, Oct., 2017

The ordering between XFILL and the following memory access conforms to the TSO.

An attempt to access a page for noncacheable address space using XFILL can cause an
exception, but a cache line fill is not performed. In addition, XFILL for noncacheable
address space does not cause a DAE_nc_page exception.

A watchpoint is detected for all 128 bytes in the cache line.

If a subsequent access to the same cache line occurs while the cache line is being filled, the
access is delayed until the cache line fill commits.

Programming Note MEMBAR is not required between XFILL and the
following access. The performance can be negatively affected because the
following access is delayed.

Programming Note When performance is required, it is important for the
compiler or the assembler to issue XFILL well in advance of the actual
store. The time required to commit XFILL depends on the system.
Therefore there may be cases where XFILL is executed reasonably early in
one system, but not in another (such as future versions of the processor).

 7. Instructions 55

Exception Target instruction Detection condition
illegal_instruction STTWA Odd-numbered destination register (rd)
fp_disabled STFA, STDFA PSTATE.pef = 0 or FPRS.fef = 0
illegal_action STXA, STTWA,

STWA, STBA, STHA
If XAR.v = 1 and one of the following is
true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd ≠ 0

STFA, STDFA If XAR.v = 1 and one of the following is
true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0

STDF_mem_address_not_aligneed STDFA Address is aligned on a 4-byte
boundary but not an 8-byte boundary.

mem_address_not_aligned STXA, STTWA Address is not aligned on an 8-byte
boundary.

STFA, STWA, STDFA Address is not aligned on a 4-byte
boundary.

STHA Address is not aligned on a 2-byte
boundary.

VA_watchpoint All When the watchpoint address matches
any address in the cache line.
Refer to 12.5.1.62 in the SPARC64™
X/X+ specification.

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™
X/X+ specification.

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™
X/X+ specification.

56 Ver 20, Oct., 2017

 Store Floating-Point Register on 7.137.
Register Condition

Instruction op3 rs2, rd i type

<1:0>
m Operation HPC-ACE Assembly Language Syntax

Regs SIMD
STFR 10 11002 0 − 31 02

,
12

002 02 Stores single-precision
floating-point register
on register condition
(XAR.v = 0)

 stfr fregrd, fregrs2,
[regrs1]

STFR 10 11002 0 − 126,
256 − 382

02
,
12

002 02 Stores the upper 4
bytes of
double-precision
floating-point register
on register condition
(XAR.v = 1)

  stfr fregrd, fregrs2,
[regrs1]

STDFR 10 11112 0 − 126,
256 − 382

02
,
12

002 02 Stores double-precision
floating-point register
on register condition

  stdfr fregrd, fregrs2,
[regrs1]

STFRUWXII 10 11002 0 − 126,
256 − 382

02 012 02 Stores the lower 4 bytes
of double-precision
floating-point register
on register condition

※  stfruw fregrd, fregrs2,
[regrs1]

STDFRDSXII 10 11112 0 − 126,
256 − 382

02 012 02 Stores double-precision
floating-point register
as two words on
register condition

※  stdfrds fregrd, fregrs2,
[regrs1]

STDFRDWXII 10 11112 0 − 126,
256 − 382

02 012 12 Stores double-precision
floating-point register
as two words on
register condition

※  stdfrdw fregrd, fregrs2,
[regrs1]

112 rd op3 rs1 i = 0  type<1:0> m  rs2

31 30 29 25 24 19 18 14 13 12 11 10 9 8 5 4 0

112 rd op3 rs1 i = 1  rs2
31 30 29 25 24 19 18 14 13 12 5 4 0

 7. Instructions 57

Description

non-SIMD operation

STFR copies the contents of the 4-byte floating-point register Fs[rd] into a word-aligned
word to memory at the effective address if XAR.v = 0 and Fs[rs2]<31> = 1, and copies the
upper 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to
memory at the effective address if XAR.v = 1 and Fd[rs2]<63> = 1.

Compatibility Note The behavior of STFR when i = 0 is the same as that
when i = 1.

STDFR copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned
doubleword to memory at the effective address if Fd[rs2]<63> = 1.

Compatibility Note The behavior of STDFR when i = 0 is the same as that
when i = 1.

STFRUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1.

STDFRDS copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1, and copies the
lower 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to memory
at the “effective address + 4” if Fd[rs2]<31> = 1.

STDFRDW copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1, and copies the
lower 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to memory
at the “effective address + 4” if Fd[rs2]<62> = 1.

These floating-point store instructions use implicit ASIs (Refer to 6.3.1.3 in UA2011) to
access the memory. The effective address is “R[rs1]”.

For STFR, STDFR, STFRUW, STDFRDS, and STDFRDW, a misaligned access causes a
mem_address_not_aligned exception.

When a non-SIMD STDFR is executed, the address needs to be aligned on a word boundary.
However, if the address is aligned on a word boundary but is not aligned on a doubleword
boundary, an STDF_mem_address_not_aligned exception will occur. The trap handler must
emulate the STDFR instruction when this exception occurs.

STDFRDS and STDFRDW are able to write only to cacheable space. A DAE_nc_page exception
will occur when writing to noncacheable space.

STFR does not cause any exceptions other than illegal_instruction, fp_disabled, and
illegal_action if “XAR.v = 1 and Fd[rs2]<63> = 0” or if “XAR.v = 0 and Fs[rs2]<31> = 0”.

STDFR does not cause any exceptions other than illegal_instruction, fp_disabled, and
illegal_action if Fd[rs2]<63> = 0.

STFRUW does not cause any exceptions other than illegal_instruction, fp_disabled, and
illegal_action if Fd[rs2]<63> = 0.

STDFRDS does not cause any exceptions other than illegal_instruction, fp_disabled, and
illegal_action for Fd[rd]<63:32> if Fd[rs2]<63> = 0, and for Fd[rd]<31:0> if Fd[rs2]<31> = 0.

STDFRDW does not cause any exceptions other than illegal_instruction, fp_disabled, and
illegal_action for Fd[rd]<63:32> if Fd[rs2]<63> = 0, and for Fd[rd]<31:0> if Fd[rs2]<62> = 0.

58 Ver 20, Oct., 2017

Exceptions that are always
detected

Exceptions that are detected when the
corresponding condition for each instructiuon
is satisfied (Fs[rs2]<31> = 1, Fd[rs2]<63> = 1,
Fd[rs2]<62> = 1, or Fd[rs2]<31> = 1).

Illegal_instruction
fp_disabled
illegal_action

mem_address_not_aligned
STDF_mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

For STDFRDS and STDFRDW, the endianness of each memory access for two words is handled
separately, even if the two words are located on different pages with different endianness.

SIMD operation

STFR, STDFR, STFRUW, STDFRDS, and STDFRDW support SIMD execution in SPARC64™ XII.
SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW
simultaneously execute basic and extended stores. Refer to Section 5.5.15 for details on how
to specify the registers.

SIMD STFR copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address when Fd[rs2]<63> = 1. It then copies
the upper 4 bytes of the 8-byte floating-point register Fd[rd + 256] into a word-aligned word
to memory at the “effective address + 4” when Fd[rs2+256]<63> = 1. A misaligned access
causes a mem_address_not_aligned exception.

Compatibility Note The behavior of STFR when i = 0 is the same as that
when i = 1.

SIMD STDFR copies the contents of the 8-byte floating-point register Fd[rd] into a
doubleword-aligned doubleword to memory at the effective address when Fd[rs2]<63> = 1. It
then copies the contents of the 8-byte floating-point register Fd[rd + 256] into a
doubleword-aligned doubleword to memory at the “effective address + 8” when Fd[rs2 +
256]<63> = 1. A misaligned access causes a mem_address_not_aligned exception.

Compatibility Note The behavior of STDFR when i = 0 is the same as that
when i = 1.

SIMD STFRUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a
word-aligned word to memory at the effective address when Fd[rs2]<63> = 1. It then copies
the lower 4 bytes of the 8-byte floating-point register Fd[rd + 256] into a word-aligned word
to memory at the “effective address + 4” when Fd[rs2 + 256]<63> = 1. A misaligned access
causes a mem_address_not_aligned exception.

SIMD STDFRDS copies Fd[rd]<63:32>, Fd[rd]<31:0>, Fd[rd+256]<63:32>, and
Fd[rd+256]<31:0> into a word-aligend word to memory at the effective address, “effective
address + 4”, “effective address + 8” , and “effective address + 12” respectively under the
conditions stated below. If the conditions are not satisfied, the corresponding data is not
copied. A misaligned access causes a mem_address_not_aligned exception.

Data Condition

Fd[rd]<63:32> Fd[rs2]<63> = 1

Fd[rd]<31:0> Fd[rs2]<31> = 1

Fd[rd+256]<63:32> Fd[rs2+256]<63> = 1

 7. Instructions 59

Fd[rd+256]<31:0> Fd[rs2+256]<31> = 1

A SIMD STDFRDW copies Fd[rd]<63:32>, Fd[rd]<31:0>, Fd[rd+256]<63:32>, and
Fd[rd+256]<31:0> into a word-aligned word to memory at the effective address, “effective
address + 4”, “effective address + 8” , and “effective address + 12” respectively under the
condition stated below. If the condition is not satisfied, the corresponding data is not copied.
A misaligned access causes a mem_address_not_aligned exception.

data the condition

Fd[rd]<63:32> Fd[rs2]<63> = 1

Fd[rd]<31:0> Fd[rs2]<62> = 1

Fd[rd+256]<63:32> Fd[rs2+256]<63> = 1

Fd[rd+256]<31:0> Fd[rs2+256]<62> = 1

These floating-point store instructions use implicit ASI (Refer to 6.3.1.3 in UA2011) to
access the memory.

For SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW, a
misaligned access causes a mem_address_not_aligned exception.

Note SIMD STDFR does not cause an STDF_mem_address_not_aligned
exception when the address is aligned on a word boundary but is not
aligned on a doubleword boundary.

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW can only be
used to access cacheable address spaces. An attempt to access noncacheable address space
causes a DAE_nc_page exception.

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW always
detect illegal_instruction, fp_disabled, and illegal_action exceptions if the detection condition
is met. Other exceptions can be detected if the detection condition and the condition of
Fd[rs2] or Fd[rs2+256] are met.

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW cause an
exception which is found in corresponding basic or extended elements when detection
conditions for exceptions other than illegal_instruction, fp_disabled, and illegal_action are met
and either the condition of Fd[rs2] corresponding to basic elements or the condition of Fd[rs2
+ 256] corresponding to extended elemtns is satisfied. In addition, they cause exceptions in
both basic and extended elements when both the condition of Fd[rs2] and Fd[rs2 + 256] are
satisfied.

Exceptions that
are always
detected

Exceptions that are detected when the corresponding conditions for
each instruction is satisfied (Fd[rs2]<63> = 1, Fd[rs2]<62> = 1,
Fd[rs2]<31> = 1, Fd[rs2 + 256]<63> = 1, Fd[rs2 + 256]<62> = 1, or
Fd[rs2 +256]<31> = 1).

Illegal_instruction
fp_disabled
illegal_action

mem_address_not_aligned
VA_watchpoint
DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

60 Ver 20, Oct., 2017

Like non-SIMD store instructions, memory access semantics adhere to the TSO. SIMD
STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW simultaneously
execute basic and extended stores. However, the ordering between the basic and extended
stores conforms to the TSO.

For SIMD STFR, SIMD STDFR, and SIMD STFUW, the endianness of each memory access for
basic data and extended data is handled separately, even if the two data are located on
different pages with different endianness.

For SIMD STDFRDS and SIMD STDFRDW, the endianness of each memory access for four
word data is handled separately, even if they are located on different pages with different
endianness.

 7. Instructions 61

Exception Target instruction Detection condition
illegal_instruction STFR, STDFR,

STFRUW
• i = 1 and iw<12:5> ≠ 0.
• If i = 0 and one of the following is

true:
・iw<12, 8:5> ≠ 0
・type<1> = 1
・m = 1

STDFRDS,
STDFRDW

• i = 1 and iw<12:5> ≠ 0.
• If i = 0 and one of the following is

true:
・iw<12, 8:5> ≠ 0
・type<1> = 1

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action STFR, STDFR If XAR.v = 1 and one of the following is

true:
• XAR.urs1 ≠ 0
• XAR.urs2<1> ≠ 0
• XAR.urs3<2,0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

STFRUW,
STDFRDS,
STDFRDW

• XAR.v = 0
• If XAR.v = 1 and one of the following

is true:
・XAR.urs1 ≠ 0
・XAR.urs2<1> ≠ 0
・XAR.urs3<2,0> ≠ 0
・XAR.urd<1> ≠ 0
・XAR.simd = 1 and XAR.urs2<2> ≠ 0
・XAR.simd = 1 and XAR.urd<2> ≠ 0

STDF_mem_address_not_aligned STDFR MSB of Fd[rs2] is 1 and the address is
aligned on a word bounrary but not on a
doubleword boundary when XAR.v = 1
and XAR.simd = 0, or XAR.v = 0.

mem_address_not_aligned STFR One of the following is true:
• Address is not aligned on a word

boundary when XAR.v = 0 and the
MSB of (bit 31) of Fs[rs2] is 1.

• Address is not aligned on a word
boundary when XAR.v = 1,
XAR.simd = 0, and the MSB (bit 63) of
Fd[rs2] is 1.

• Address is not aligned on a word
boundary when the MSB (bit 63) of
Fd[rs2] or Fd[rs2+256] is 1,
XAR.v = 1, and XAR.simd = 1.

STDFR One of the following is true:
• Address is not aligned on a

doubleword boundary when the MSB
(bit 63) of Fd[rs2] is 1 and XAR.v = 0.

• Address is not aligned on a
doubleword boundary when the MSB
(bit 63) of Fd[rs2] is 1, XAR.v = 1, and
XAR.simd = 0.

• Address is not aligned on a
doubleword boundary when the MSB
(bit 63) of Fd[rs2] or Fd[rs2+256] is 1,
XAR.v = 1, and XAR.simd = 1.

62 Ver 20, Oct., 2017

STFRUW One of the following is true:
• Address is not aligned on a word

boundary when the MSB (bit 63) of
Fd[rs2] is 1, XAR.v = 1, and
XAR.simd = 0.

• Address is not aligned on a word
boundary when the MSB (bit 63) of
Fd[rs2] or Fd[rs2 + 256] is 1,
XAR.v = 1, and XAR.simd = 1.

STDFRDS One of the following is true:
• Address is not aligned on a word

boundary when Fd[rs2]<63, 31> ≠ 0,
XAR.v = 1, and XAR.simd = 0.

• Address is not aligned on a word
boundary when Fd[rs2]<63, 31> ≠ 0,
Fd[rs2+256]<63, 31> ≠ 0, XAR.v = 1,
and XAR.simd = 1.

STDFRDW One of the following is true:
• Address is not aligned on a word

boundary when Fd[rs2]<63> or
Fd[rs2]<62> is 1, XAR.v = 1, and
XAR.simd = 0.

• Address is not aligned on a word
boundary when Fd[rs2]<63>,
Fd[rs2]<62>, Fd[rs2+256]<63>, or
Fd[rs2+256]<62> is 1, XAR.v = 1, and
XAR.simd = 1.

VA_watchpoint All Refer to 7.137 and to 12.5.1.62 in the
SPARC64™ X/X+ specification.

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+
specification.

DAE_nc_page STFR, STDFR,
STFRUW

An access to noncacheable space is
attempted when XAR.v = 1,
XAR.simd = 1, and MSB of Fd[rs2] is 1.

STDFRDS,
STDFRDW

An access to noncacheable space is
attemped.

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+
specification.

 7. Instructions 63

 SIMD Compare (type A) 7.139.
Instruction opf urs3

<1:0>
Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPCMPLE16X 0 1100

00002
002 Compares four 16-bit

signed integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmple16x fregrs1,
freg_or_fsimm, fregrd
(fcmple16x)†

FPCMPULE16X 0 1100
00012

002 Compares four 16-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmpule16x fregrs1,
freg_or_fsimm, fregrd
(fucmple16x)†

FPCMPLE4XXII 0 1100
00102

002 Compares sixteen 4-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmple4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE16X 0 1100
00112

002 Compares four 16-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

  fpcmpune16x fregrs1,
freg_or_fsimm, fregrd
(fucmpne16x)†

FPCMPLE32X 0 1100
01002

002 Compares two 32-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmple32x fregrs1,
freg_or_fsimm, fregrd
(fcmple32x)†

FPCMPULE32X 0 1100
01012

002 Compares two 32-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmpule32x fregrs1,
freg_or_fsimm, fregrd
(fucmple32x)†

FPCMPULE4XXII 0 1100
01102

002 Compares sixteen 4-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmpule4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE32X 0 1100
01112

002 Compares two 32-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

  fpcmpune32x fregrs1,
freg_or_fsimm, fregrd
(fucmpne32x)†

FPCMPGT16X 0 1100
10002

002 Compares four 16-bit
signed integers
If src1 > src2, the
corresponding result is 1.

  fpcmpgt16x fregrs1,
freg_or_fsimm, fregrd
(fcmpgt16x)†

FPCMPUGT16X 0 1100
10012

002 Compares four 16-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

  fpcmpugt16x fregrs1,
freg_or_fsimm, fregrd
(fucmpgt16x)†

FPCMPUEQ16X 0 1100
10112

002 Compares four 16-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

  fpcmpueq16x fregrs1,
freg_or_fsimm, fregrd
(fucmpeq16x)†

FPCMPGT32X 0 1100
11002

002 Compares two 32-bit
signed integers
If src1 > src2, the
corresponding result is 1.

  fpcmpgt32x fregrs1,
freg_or_fsimm, fregrd
(fcmpgt32x)†

FPCMPUGT32X 0 1100
11012

002 Compares two 32-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

  fpcmpugt32x fregrs1,
freg_or_fsimm, fregrd
(fucmpgt32x)†

64 Ver 20, Oct., 2017

Instruction opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPCMPUNE4XXII 0 1100
11102

002 Compares sixteen 4-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

  fpcmpune4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ32X 0 1100
11112

002 Compares two 32-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

  fpcmpueq32x fregrs1,
freg_or_fsimm, fregrd
(fucmpeq32x)†

FPCMPLE8X 0 1101
00002

002 Compares eight 8-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmple8x fregrs1,
freg_or_fsimm, fregrd
(fcmple8x)†

FPCMPULE8X 0 1101
00012

002 Compares eight 8-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmpule8x fregrs1,
freg_or_fsimm, fregrd
(fucmple8x)†

FPCMPGT4XXII 0 1101
00102

002 Compares sixteen 4-bit
signed integers
If src1 > src2, the
corresponding result is 1.

  fpcmpgt4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE8X 0 1101
00112

002 Compares eight 8-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

  fpcmpune8x fregrs1,
freg_or_fsimm, fregrd
(fucmpne8x)†

FPCMPLE64X 0 1101
01002

002 Compares 64-bit signed
integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmple64x fregrs1,
freg_or_fsimm, fregrd
(fcmplex)†

FPCMPULE64X 0 1101
01012

002 Compares 64-bit unsigned
integers
If src1 ≤ src2, the
corresponding result is 1.

  fpcmpule64x fregrs1,
freg_or_fsimm, fregrd
(fucmplex)†

FPCMPUGT4XXII 0 1101
01102

002 Compares sixteen 4-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

  fpcmpugt4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE64X 0 1101
01112

002 Compares 64-bit unsigned
integers
If src1 ≠ src2, the
corresponding result is 1.

  fpcmpune64x fregrs1,
freg_or_fsimm, fregrd
(fucmpnex)†

FPCMPGT8X 0 1101
10002

002 Compares eight 8-bit
signed integers
If src1 > src2, the
corresponding result is 1.

  fpcmpgt8x fregrs1,
freg_or_fsimm, fregrd
(fcmpgt8x)†

FPCMPUGT8X 0 1101
10012

002 Compares eight 8-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

  fpcmpugt8x fregrs1,
freg_or_fsimm, fregrd
(fucmpgt8x)†

FPCMPUEQ8X 0 1101
10112

002 Compares eight 8-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

  fpcmpueq8x fregrs1,
freg_or_fsimm, fregrd
(fucmpeq8x)†

FPCMPGT64X 0 1101
11002

002 Compares 64-bit signed
integers
If src1 > src2, the
corresponding result is 1.

  fpcmpgt64x fregrs1,
freg_or_fsimm, fregrd
(fcmpgtx)†

FPCMPUGT64X 0 1101
11012

002 Compares 64-bit unsigned
integers

  fpcmpugt64x fregrs1,
freg_or_fsimm, fregrd

 7. Instructions 65

Instruction opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

If src1 > src2, the
corresponding result is 1.

(fucmpgtx)†

FPCMPUEQ4XXII 0 1101
11102

002 Compares sixteen 4-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

  fpcmpueq4x fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ64X 0 1101
11112

002 Compares 64-bit unsigned
integers
If src1 = src2, the
corresponding result is 1.

  fpcmpueq64x fregrs1,
freg_or_fsimm, fregrd
(fucmpeqx)†

†former mnemonic for this instruction (still recognized by the assembler)

102 rd op3 = 11 01102 rs1 opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions compare several elements (partitions) in the two floating-point registers
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point
register Fd[rd]. The comparison results for these elements are written to Fd[rd] from the
MSB, and 0s are written to the other bits.

A 64-bit input register includes elements corresponding to the data type. The number of
elements and bit range of the elements corresponding to the data type are shown in Table
7-6 and Table 7-7.

Table 7-6 Number of elements and their bit range for each data type (4-bit)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

4-bit signed
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

4-bit unsigned
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

Data type Element9 Element

10
Element
11

Element
12

Element
13

Element
14

Element
15

Element
16

4-bit signed
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

4-bit unsigned
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

66 Ver 20, Oct., 2017

Table 7-7 Number of elements and their bit range for each data type (8-bit, 16-bit, 32-bit,
and 64-bit)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

8-bit signed
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

8-bit unsigned
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

16-bit signed
integer

4 63:48 47:32 31:16 15:0    

16-bit
unsigned
integer

4 63:48 47:32 31:16 15:0    

32-bit signed
integer

2 63:32 31:0      

32-bit
unsigned
integer

2 63:32 31:0      

64-bit signed
integer

1 63:0       

64-bit
unsigned
integer

1 63:0       

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same
position, are compared. The results are then written to the corresponding bits of Fd[rd]. The
bits corresponding to each element of Fd[rd] are shown in Table 7-8 and Table 7-9.

Note The results are written to Fd[rd] from the MSB. In this
specification, these instructions are called “SIMD compare type A”. See
also “SIMD compare type B (page 84)”.

Table 7-8 Element and their corresponding bit positions in Fd[rd] (4-bit data)

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8
Fd[rd] 63 62 61 60 59 58 57 56

 Element 9 Element
10

Element
11

Element
12

Element
13

Element
14

Element
15

Element
16

Fd[rd] 55 54 53 52 51 50 49 48

Table 7-9 Elements and their corresponding bit positions in Fd[rd] (8-bit, 16-bit, 32-bit,
and 64-bit data)

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8
Fd[rd] 63 62 61 60 59 58 57 56

If xar_i = 0, FPCMPLE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0. If
xar_i = 1, FPCMPLE{4|8|16|32|64}X compares the elements of Fd[rs1] and

 7. Instructions 67

Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1,
otherwise they are all set to 0.

If xar_i = 0, FPCMPGT{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0. If
xar_i = 1, FPCMPGT{4|8|16|32|64}X compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1,
otherwise they are all set to 0.

If xar_i = 0, FPCMPULE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. If xar_i = 1, FPCMPULE{4|8|16|32|64}X compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUNE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≠
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. If xar_i = 1, FPCMPUNE{4|8|16|32|64}X compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” ≠ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUGT{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” >
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. If xar_i = 1, FPCMPUGT{4|8|16|32|64}X compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” =
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. If xar_i = 1, FPCMPUEQ{4|8|16|32|64}X compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0.

Note Instructions that compare whether signed integers are equal or
not are not defined. These comparisons are equivalent to the instructions
FPCMPUEQ{4|8|16|32|64}X and FPCMPUNE{4|8|16|32|64}X, which
compare whether unsigned integers are equal or not, respectively.

These instructions will not update any fields in the FSR.

Note To use these instructions, “XAR.v must be 0” or “XAR.v must be 1
and XAR.urs3<1:0> must be 002”. If XAR.v is 1 and XAR.urs3<1:0> is 102,
FPCMP*{4|8|16|32|64}FX will be executed (page 84). If XAR.v is 1 and
XAR.urs3<1:0> is 112, FPCMP*{4|8|16|32|64}XACC will be
executed(page 89). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action
will occur.

68 Ver 20, Oct., 2017

Exception Target
instruction

Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> = 012
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 69

 Partitioned Shift 7.143.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FSLL32XII 0 0010 01012 32-bit partitioned shift left   fsll32 fregrs1,
freg_or_fsimm, fregrd

FSRL32XII 0 0010 01112 32-bit partitioned shift right
logical

  fsrl32 fregrs1,
freg_or_fsimm, fregrd

FSRA32XII 0 0010 11112 32-bit partitioned shift right
arithmetic

  fsra32 fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions shift right or left the upper 32 bits and the lower 32 bits of Fd[rs1], and
store the result into Fd[rd]. The shift count is specified by Fd[rs2] if xar_i = 0 and by Fsimm8
if xar_i = 1.

If xar_i = 0, the shift count of the upper 32 bits and the lower 32 bits of Fd[rs1] is specified by
Fd[rs2]<36:32> and Fd[rs2]<4:0> respectively. If xar_i = 1, the shift count of the upper 32 bits
and the lower 32 bits of Fd[rs1] is specified by Fsimm8_32x2<36:32> and Fsimm8_32x2<4:0>
respectively (in case of these instructions, Fsimm8_32x2<63:37, 31:5> is ignored). The
operation is illustrated in Figure 7-6.

Figure 7-6 The behavior of F{SLL|SRL|SRA}32

FSLL32 shifts the upper and the lower 32 bits of Fd[rs1] left (toward the higher-order),
replacing the right (low-order) vacated positions with 0 and stores the result into Fd[rd].

FSRL32 shifts the upper and the lower 32 bits of Fd[rs1] right (toward the lower-order),
replacing the left (high-order) vacated positions with 0 and stores the result into Fd[rd].

FSRA32 shifts the upper and the lower 32 bits of Fd[rs1] right (toward the lower-order),
replacing the left (high-order) vacated positions with the value of Fd[rs1]<63> and
Fd[rs1]<31> respectively and stores the result into Fd[rd].

F{SLL|SRL|SRA}32 will not update any fields in the FSR.

70 Ver 20, Oct., 2017

Exception Target
instruction

Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 71

 Partitioned Multiply 7.144.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPMUL32XII 0 0100 11112 32-bit partitioned multiply   fpmul32 fregrs1,
freg_or_fsimm, fregrd

FPMUL64XII 0 0100 11102 64-bit partitioned multilpy   fpmul64 fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description Multiplication for 32-bit integers or 64-bit integers stored in floating-point registers.

If xar_i = 0, FPMUL32 multiplies the two 32-bit integers in the same position of Fd[rs1] and
Fd[rs2]. The lower 32 bits of the results will be stored in the same position of Fd[rd]. If
xar_i = 1, FPMUL32 multiplies the two 32-bit integers in the same position of Fd[rs1] and
Fsimm8_32x2. The lower 32 bits of the results will be stored in the same position of Fd[rd].
The operation is illustrated in Figure 7-7.

Figure 7-7 The behavior of FPMUL32

If xar_i = 0, FPMUL64 multiplies the 64-bit integers of Fd[rs1] and Fd[rs2]. The lower 64 bits
of the result will be stored in Fd[rd]. If xar_i = 1, FPMUL64 multiplies the 64-bit integers of
Fd[rs1] and Fsimm8_64x1. The lower 64 bits of the result will be stored in Fd[rd].

 FPMUL32 and FPMUL64 will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

72 Ver 20, Oct., 2017

 Integer Sign/Zero Extension 7.145.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FSEXTWXII 1 0000 00002 Sign extension for 32-bit
integers in double floating-point
registers

  fsextw freg_or_fsimm, fregrd

FZEXTWXII 1 0000 00012 Zero extension for 32-bit
integers in double floating-point
registers

  fzextw freg_or_fsimm, fregrd

102 rd op3 = 11 01102  opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description FSEXTW extends the lower 32 bits of the input integer to the sign-extended 64-bit integer
and stores the result in Fd[rd]. If xar_i = 0, Fd[rs2]<31:0> is copied into Fd[rd]<31:0> and
Fd[rd]<63:32> is filled with Fd[rs2]<31>. If xar_i = 1, Fsimm8_64x1 is copied to Fd[rd]<63:0>.

FZEXTW extends the lower 32 bits of the input integer to the zero-extended 64-bit integer
and stores the result in Fd[rd]. If xar_i = 0, Fd[rs2]<31:0> is copied into Fd[rd]<31:0> and
Fd[rd]<63:32> is zero-filled. If xar_i = 1, Fsimm8_64x1<31:0> is copied to Fd[rd]<31:0> and
Fd[rd]<63:32> is zero-filled.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_instruction All iw<18:14> ≠ 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1 ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 73

 Fixed-Point Partitioned Add (8-bit) 7.146.

Opcode opf Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPADD8XII 1 0010 01002 Eight 8-bit adds   fpadd8 fregrs1, freg_or_fsimm,

fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description Addition for 8-bit integers stored in a floating-point register.

If xar_i = 0, FPADD8 adds each element in the same 8-bit integer position of Fd[rs1] to Fd[rs2].
The results are stored in the same position in Fd[rd].

If xar_i = 1, FPADD8 adds each element in the same 8-bit integer position of Fd[rs1] to
Fsimm8_8x8. The results are stored in the same position in Fd[rd].

FPADD8 will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

74 Ver 20, Oct., 2017

 Fixed-Point Partitioned Subtract (8-bit) 7.147.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPSUB8XII 1 0101 01002 Eight 8-bit subtracts   fpsub8 fregrs1, freg_or_fsimm,
fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description Subtraction for 8-bit integers stored in a floating-point register.

If xar_i = 0, FPSUB8 subtracts each element in the same 8-bit integer position of Fd[rs2] from
Fd[rs1]. The results are stored in the same position in Fd[rd].

If xar_i = 1, FPSUB8 subtracts each element in the same 8-bit integer position of
Fsimm8_8x8 from Fd[rs1]. The results are stored in the same position in Fd[rd].

FPSUB8 will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 75

 Full Element Permutation 7.148.

Opcode opf Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FEPERM32XXII 1 1000 01002 Sorts 32-bit data among double

floating-point registers
  feperm32x fregrs1,

freg_or_fsimm, fregrd
FEPERM64XXII 1 1000 01012 Sorts 64-bit data among double

floating-point registers
  feperm64x fregrs1,

freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description

non-SIMD operation

FEPERM32X and FEPERM64X are mainly used to permutate or mask the SIMD data. These
instructions can be used in non-SIMD operations but the purpose is different from SIMD
operations.

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) – (3) as stated below) to
Fd[rd]<63:32> according to Fd[rs2]<63, 32>, and to Fd[rd]<31:0> according to Fd[rs2]<31, 0>.

(1) data in Fd[rs1]<63:32>

(2) data in Fd[rs1]<31:0>

(3) all 0

The behavior of FEPERM32X is described in Figure 7-8, Table 7-10, and Table 7-11. The
value of Fd[rs2]<62:33, 30:1> is ignored.

Figure 7-8 Behavior of FEPERM32X (xar_i = 0)

76 Ver 20, Oct., 2017

Table 7-10 Results of FEPERM32X (Fd[rd]<63:32>, xar_i = 0)

Fd[rs2]<63> Fd[rs2]<32> Fd[rd]<63:32>

0 0 Fd[rs1]<63:32>

1 Fd[rs1]<31:0>

1 − all 0

Table 7-11 Results of FEPERM32X (Fd[rd]<31:0>, xar_i = 0)

Fd[rs2]<31> Fd[rs2]<0> Fd[rd]<31:0>

0 0 Fd[rs1]<63:32>

1 Fd[rs1]<31:0>

1 − all 0

If xar_i = 1, FEPERM32X broadcasts one of the 32-bit data ((1) – (3) as stated below) to
Fd[rd]<63:32> and Fd[rd]<31:0> according to Fsimm8<7, 0>.

(1) data in Fd[rs1]<63:32>

(2) data in Fd[rs1]<31:0>

(3) all 0

The behavior of FEPERM32X is described in Figure 7-9 and Table 7-12. The value of
Fsimm8<6:1> is ignored.

Figure 7-9 Behavior of FEPERM32X (xar_i = 1)

Table 7-12 Results of FEPERM32X (xar_i = 1)

Fsimm8<7> Fsimm8<0> Fd[rd]<63:32>, Fd[rd]<31:0>

0 0 Fd[rs1]<63:32>

1 Fd[rs1]<31:0>

1 − all 0

 7. Instructions 77

If xar_i = 0, FEPERM64X copies one of the 64-bit data ((1) or (2) as stated below) to
Fd[rd]<63:0> according to Fd[rs2]<63>.

(1) data in Fd[rs1]<63:0>

(2) all 0

The behavior of FEPERM64X is described in Figure 7-10 and Table 7-13. The value of
Fd[rs2]<62:0> is ignored.

Figure 7-10 Behavior of FEPERM64X (xar_i = 0)

Table 7-13 Results of FEPERM64X (xar_i = 0)

Fd[rs2]<63> Fd[rd]<63:0>

0 Fd[rs1]<63:0>

1 all 0

If xar_i = 1 and Fsimm8<7> = 0, FEPERM64X copies Fd[rs1] to Fd[rd]. If if xar_i = 1 and
Fsimm8<7> = 1, Fd[rd] is filled with 0.

These instructions will not update any fields in the FSR.

SIMD operation

In this section 7.148, Fd[rs1][BASIC] and Fd[rs1][EXTEND] mean Fd[rs1] and Fd[rs1 + 256]
respectively. The same applies to Fd[rs2] and Fd[rd].

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) – (5) as stated below) to
Fd[rd]<63:32>[BASIC] according to Fd[rs2]<63, 33:32>[BASIC], and to Fd[rd]<31:0>[BASIC]
according to Fd[rs2]<31, 1:0>[BASIC].

(1) data in Fd[rs1][BASIC]<63:32>

(2) data in Fd[rs1][BASIC]<31:0>

(3) data in Fd[rs1][EXTEND]<63:32>

(4) data in Fd[rs1][EXTEND]<31:0>

(5) all 0

78 Ver 20, Oct., 2017

The behavior of FEPERM32X is described in Figure 7-11, Table 7-14, and Table 7-15. The
value of Fd[rs2]<62:34, 30:2>[BASIC] is ignored.

The same applies to Fd[rs1][EXTEND], Fd[rs2][EXTEND], and Fd[rd][EXTEND].

Figure 7-11 Behavior of FEPERM32X (xar_i = 0)

Table 7-14 Results of FEPERM32X (Fd[rd]<63:32>[BASIC], xar_i = 0)

Fd[rs2]<63>[BASIC] Fd[rs2]<33:32>[BASIC] Fd[rd]<63:32>[BASIC]

0 0 Fd[rs1][BASIC]<63:32>

1 Fd[rs1][BASIC]<31:0>

2 Fd[rs1][EXTEND]<63:32>

3 Fd[rs1][EXTEND]<31:0>

1 − all 0

Table 7-15 Results of FEPERM32X (Fd[rd]<31:0>[BASIC], xar_i = 0)

Fd[rs2]<31>[BASIC] Fd[rs2]<1:0>[BASIC] Fd[rd]<31:0>[BASIC]

0 0 Fd[rs1][BASIC]<63:32>

1 Fd[rs1][BASIC]<31:0>

2 Fd[rs1][EXTEND]<63:32>

3 Fd[rs1][EXTEND]<31:0>

1 − all 0

 7. Instructions 79

 If xar_i = 1, FEPERM32X broadcasts one of the 32-bit data ((1) – (5) as stated below) to
Fd[rd]<63:32>[BASIC] and Fd[rd]<31:0>[BASIC] according to Fsimm8<7, 1:0>.

(1) data in Fd[rs1][BASIC]<63:32>

(2) data in Fd[rs1][BASIC]<31:0>

(3) data in Fd[rs1][EXTEND]<63:32>

(4) data in Fd[rs1][EXTEND]<31:0>

all 0

The behavior of FEPERM32X is described in Figure 7-12 and Table 7-16. The value of
Fsimm8<6:2> is ignored.

The same applies to Fd[rs1][EXTEND] and Fd[rd][EXTEND].

Figure 7-12 Behavior of FEPERM32X (xar_i = 1)

Table 7-16 Results of FEPERM32X (Fd[rd]<63:32, 31:0>[BASIC], xar_i = 1)

Fsimm8<7> Fsimm8<1:0> Fd[rd]<63:32>[BASIC],
Fd[rd]<31:0>[BASIC]

0 0 Fd[rs1][BASIC]<63:32>

1 Fd[rs1][BASIC]<31:0>

2 Fd[rs1][EXTEND]<63:32>

3 Fd[rs1][EXTEND]<31:0>

1 − all 0

 If xar_i = 0, FEPERM64X copies one of the 64-bit data ((1) – (3) as stated below) to
Fd[rd]<63:0>[BASIC] according to Fd[rs2]<63, 0>[BASIC].

80 Ver 20, Oct., 2017

(1) data in Fd[rs1][BASIC]<63:0>

(2) data in Fd[rs1][EXTEND]<63:0>

(3) all 0

The behavior of FEPERM64X is described in Figure 7-13 and Table 7-17. The value of
Fd[rs2]<62:1>[BASIC] is ignored.

The same applies to Fd[rs1][EXTEND], Fd[rs2][EXTEND], and Fd[rd][EXTEND].

Figure 7-13 Behavior of FEPERM64X (xar_i = 0)

Table 7-17 Results of FEPERM64X (Fd[rd]<63:0>[BASIC], xar_i = 0)

Fd[rs2]<63>[BASIC] Fd[rs2]<0>[BASIC] Fd[rd]<63:0>[BASIC]

0 0 Fd[rs1][BASIC]<63:0>

1 Fd[rs1][EXTEND]<63:0>

1 − all 0

If xar_i = 1, FEPERM64X broadcasts one of the 64-bit data ((1) – (3) as stated below) to
Fd[rd]<63:0>[BASIC] according to Fsimm8<7, 0>.

(1) data in Fd[rs1][BASIC]<63:0>

(2) data in Fd[rs1][EXTEND]<63:0>

(3) all 0

The behavior of FEPERM64X is described in Figure 7-14 and Table 7-18. The value of
Fsimm8<6:1> is ignored.

The same applies to Fd[rs1][EXTEND] and Fd[rd][EXTEND].

 7. Instructions 81

Figure 7-14 Behavior of FEPERM64X (xar_i = 1)

Table 7-18 Results of FEPERM64X (Fd[rd]<63:0>[BASIC], xar_i = 1)

Fsimm8<7> Fsimm8<0> Fd[rd]<63:0>[BASIC]

0 0 Fd[rs1][BASIC]<63:0>

1 Fd[rs1][EXTEND]<63:0>

1 − all 0

These instructions will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

82 Ver 20, Oct., 2017

 Partition Concatenate Shift Left 7.149.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPCSL8XXII 0 1001 11102 Concatenates two registers and
shifts left

  fpcsl8x fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description FPCSL8X concatenates the lower bits of Fd[rd] and the upper bits of Fd[rs1] to form a 64-bit
value and stores it in Fd[rd].

Non-SIMD operation

If xar_i = 0, “shift_amount” is specified by “Fd[rs2]<2:0> × 8” bits and if xar_i = 1,
“shift_amount” is specified by “Fsimm8<2:0> × 8” bits. Fd[rs2]<63:3> and Fsimm8<63:3>
are ignored.

If shift_amount is not 0, FPCSL8X concatenates Fd[rd]<63 – shift_amount:0> and
Fd[rs1]<63:63 – shift_amount + 1>, and stores it in Fd[rd]<63:0>. If shift_amount is 0, the
value of Fd[rd] remains unchanged.

The operation is illustrated in Figure 7-15.

Figure 7-15 Behavior of FPCSL8X (non-SIMD)

SIMD operation

 In this section 7.149, Fd[rs1][BASIC] and Fd[rs1][EXTEND] mean Fd[rs1] and Fd[rs1 + 256]
respectively. The same applies to Fd[rs2] and Fd[rd].

For the basic side, if xar_i = 0, “shift_amount” is specified by “Fd[rs2][BASIC]<2:0> × 8” bits
and if xar_i = 1, “shift_amount” is specified by “Fsimm8<2:0> × 8” bits.
Fd[rs2][BASIC]<63:3> and Fsimm8<63:3> are ignored.

 7. Instructions 83

If shift_amount is not 0, FPCSL8X concatenates Fd[rd][BASIC]<63 – shift_amount:0> and
Fd[rs1][BASIC]<63:63 – shift_amount + 1>, and stores it in Fd[rd][BASIC]<63:0>. If
shift_amount is 0, the value of Fd[rd][BASIC] remains unchanged.

For the extended side, if xar_i = 0, “shift_amount” is specified by
“Fd[rs2][EXTEND]<2:0> × 8” and if xar_i = 1, “shift_amount” is specified by
“Fsimm8<2:0> × 8”. Fd[rs2][EXTEND]<63:3> and Fsimm8<63:3> are ignored.

The behavior of the extended side is the same as that of basic side.

 The operation is illustrated in Figure 7-16.

Figure 7-16 Behavior of FPCSL8X (SIMD)

FPCSL8X will not update any fields in the FSR.

Programming Note FPCSL8X is mainly used to support unaligned loads.
Refer to the pseudo-code below.

/* pseudo-code */

 x = addr & ~(8-1)
 y = addr & (8-1)
 ldd,s data0, [x]
 ldd,s data1, [x+8]
 fpcsl8x,s data0, data1, y

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

84 Ver 20, Oct., 2017

 SIMD Compare (type B) 7.150.
Opcode opf urs3

<1:0>
Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPCMPLE16FXXII 0 1100 00002 102 Compares four 16-bit

signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPULE16FXXII 0 1100 00012 102 Compares four 16-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPLE4FXXII 0 1100 00102 102 Compares sixteen 4-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE16FXXII 0 1100 00112 102 Compares four 16-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPLE32FXXII 0 1100 01002 102 Compares two 32-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple32fx fregrs1,
freg_or_fsimm, fregrd

FPCMPULE32FXXII 0 1100 01012 102 Compares two 32-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule32fx fregrs1,
freg_or_fsimm, fregrd

FPCMPULE4FXXII 0 1100 01102 102 Compares sixteen 4-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE32FXXII 0 1100 01112 102 Compares two 32-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune32fx fregrs1,
freg_or_fsimm, fregrd

FPCMPGT16FXXII 0 1100 10002 102 Compares four 16-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT16FXXII 0 1100 10012 102 Compares four 16-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ16FXXII 0 1100 10112 102 Compares four 16-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq16fx fregrs1,
freg_or_fsimm, fregrd

FPCMPGT32FXXII 0 1100 11002 102 Compares two 32-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt32fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT32FXXII 0 1100 11012 102 Compares two 32-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt32fx fregrs1,
freg_or_fsimm, fregrd

 7. Instructions 85

Opcode opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPCMPUNE4FXXII 0 1100 11102 102 Compares sixteen 4-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ32FXXII 0 1100 11112 102 Compares two 32-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq32fx fregrs1,
freg_or_fsimm, fregrd

FPCMPLE8FXXII 0 1101 00002 102 Compares eight 8-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPULE8FXXII 0 1101 00012 102 Compares eight 8-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPGT4FXXII 0 1101 00102 102 Compares sixteen 4-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE8FXXII 0 1101 00112 102 Compares eight 8-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPLE64FXXII 0 1101 01002 102 Compares 64-bit signed
integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple64fx fregrs1,
freg_or_fsimm, fregrd

FPCMPULE64FXXII 0 1101 01012 102 Compares 64-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule64fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT4FXXII 0 1101 01102 102 Compares sixteen 4-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE64FXXII 0 1101 01112 102 Compares 64-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune64fx fregrs1,
freg_or_fsimm, fregrd

FPCMPGT8FXXII 0 1101 10002 102 Compares eight 8-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT8FXXII 0 1101 10012 102 Compares eight 8-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ8FXXII 0 1101 10112 102 Compares eight 8-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq8fx fregrs1,
freg_or_fsimm, fregrd

FPCMPGT64FXXII 0 1101 11002 102 Compares 64-bit signed
integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt64fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT64FXXII 0 1101 11012 102 Compares 64-bit
unsigned integers

※  fpcmpugt64fx fregrs1,
freg_or_fsimm, fregrd

86 Ver 20, Oct., 2017

Opcode opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

If src1 > src2, the
corresponding result is 1.

FPCMPUEQ4FXXII 0 1101 11102 102 Compares sixteen 4-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq4fx fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ64FXXII 0 1101 11112 102 Compares 64-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq64fx fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions compare several elements (partitions) in the two floating-point registers
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point
register Fd[rd].

A 64-bit input register includes elements corresponding to the data type. The number of
elements and bit positions of the elements corresponding to the data type are shown in
Table 7-19 and Table 7-20.

Table 7-19 Number of elements and the bit position of the elements (4-bit data)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

4-bit signed
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

4-bit unsigned
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

Data type Element9 Element
10

Element
11

Element
12

Element
13

Element
14

Element
15

Element
16

4-bit signed
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

4-bit unsigned
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

 7. Instructions 87

Table 7-20 Number of elements and the bit position of the elements corresponding to the
data type (8-bit, 16-bit, 32-bit, and 64-bit)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

8-bit signed
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

8-bit unsigned
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

16-bit signed
integer

4 63:48 47:32 31:16 15:0    

16-bit
unsigned
integer

4 63:48 47:32 31:16 15:0    

32-bit signed
integer

2 63:32 31:0      

32-bit
unsigned
integer

2 63:32 31:0      

64-bit signed
integer

1 63:0       

64-bit
unsigned
integer

1 63:0       

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same
position, are compared. The results are then written to the corresponding elements of Fd[rd].
The bits corresponding to the element of Fd[rd] are set to all 0 or all 1. For example, with
32-bit unsigned integers, 0x00000000 or 0xffffffff is set to Fd[rd]<63:32> and Fd[rd]<31:0>
according to the compared results of each element.

Note The results (all 0 or all 1) are written to the corresponding
elements of Fd[rd]. In this specification, these instructions are called
“SIMD compare type B”. See also “SIMD compare type A (page 63)”.

If xar_i = 0, FPCMPLE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of
Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they are all set to 0.
If xar_i = 1, FPCMPLE{4|8|16|32|64}FX compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding elements of Fd[rd] are all
set to 1, otherwise they are all set to 0.

If xar_i = 0, FPCMPGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of
Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they are all set to 0.
If xar_i = 1, FPCMPGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding elements of Fd[rd] are all
set to 1, otherwise they are all set to 0.

If xar_i = 0, FPCMPULE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they
are all set to 0. If xar_i = 1, FPCMPULE{4|8|16|32|64}FX compares the elements of Fd[rs1]
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned

88 Ver 20, Oct., 2017

integers. If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding elements of
Fd[rd] are all set to 1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUNE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≠
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they
are all set to 0. If xar_i = 1, FPCMPUNE{4|8|16|32|64}FX compares the elements of Fd[rs1]
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned
integers. If “elements of Fd[rs1]” ≠ “elements of Fsimm8”, the corresponding elements of
Fd[rd] are all set to 1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” >
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they
are all set to 0. If xar_i = 1, FPCMPUGT{4|8|16|32|64}FX compares the elements of Fd[rs1]
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned
integers. If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding elements of
Fd[rd] are all set to 1, otherwise they are all set to 0.

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” =
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they
are all set to 0. If xar_i = 1, FPCMPUEQ{4|8|16|32|64}FX compares the elements of Fd[rs1]
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned
integers. If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding elements of
Fd[rd] are all set to 1, otherwise they are all set to 0.

 These instructions will not update any field in the FSR.

Note To use these instructions, XAR.v must be 1 and XAR.urs3<1:0>
must be 102. If “XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1:0> is 002”,
FPCMP*{4|8|16|32|64}X will be executed (page 63). If XAR.v is 1 and
XAR.urs3<1:0> is 112, FPCMP*{4|8|16|32|64}XACC will be executed
(page 89). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action will occur.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> = 012
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 89

 SIMD Compare and Accumulate Results 7.151.
Opcode opf urs3

<1:0>
Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPCMPLE16XACCXII 0 1100

00002
112 Compares four 16-bit

signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPULE16XACCXII 0 1100
00012

112 Compares four 16-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPLE4XACCXII 0 1100
00102

112 Compares sixteen 4-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple4xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE16XACCXII 0 1100
00112

112 Compares four 16-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPLE32XACCXII 0 1100
01002

112 Compares two 32-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPULE32XACCXII 0 1100
01012

112 Compares two 32-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPULE4XACCXII 0 1100
01102

112 Compares sixteen 4-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule4xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE32XACCXII 0 1100
01112

112 Compares two 32-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPGT16XACCXII 0 1100
10002

112 Compares four 16-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT16XACCXII 0 1100
10012

112 Compares four 16-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ16XACCXII 0 1100
10112

112 Compares four 16-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq16xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPGT32XACCXII 0 1100
11002

112 Compares two 32-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT32XACCXII 0 1100
11012

112 Compares two 32-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE4XACCXII 0 1100
11102

112 Compares sixteen 4-bit
unsigned integers
If src1 ≠ src2, the

※  fpcmpune4xacc fregrs1,
freg_or_fsimm, fregrd

90 Ver 20, Oct., 2017

Opcode opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

corresponding result is 1.
FPCMPUEQ32XACCXII 0 1100

11112
112 Compares two 32-bit

unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq32xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPLE8XACCXII 0 1101
00002

112 Compares eight 8-bit
signed integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPULE8XACCXII 0 1101
00012

112 Compares eight 8-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPGT4XACCXII 0 1101
00102

112 Compares sixteen 4-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt4xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE8XACCXII 0 1101
00112

112 Compares eight 8-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPLE64XACCXII 0 1101
01002

112 Compares 64-bit signed
integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmple64xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPULE64XACCXII 0 1101
01012

112 Compares 64-bit
unsigned integers
If src1 ≤ src2, the
corresponding result is 1.

※  fpcmpule64xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT4XACCXII 0 1101
01102

112 Compares sixteen 4-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt4xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUNE64XACCXII 0 1101
01112

112 Compares 64-bit
unsigned integers
If src1 ≠ src2, the
corresponding result is 1.

※  fpcmpune64xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPGT8XACCXII 0 1101
10002

112 Compares eight 8-bit
signed integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT8XACCXII 0 1101
10012

112 Compares eight 8-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ8XACCXII 0 1101
10112

112 Compares eight 8-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq8xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPGT64XACCXII 0 1101
11002

112 Compares 64-bit signed
integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpgt64xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUGT64XACCXII 0 1101
11012

112 Compares 64-bit
unsigned integers
If src1 > src2, the
corresponding result is 1.

※  fpcmpugt64xacc fregrs1,
freg_or_fsimm, fregrd

 7. Instructions 91

Opcode opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPCMPUEQ4XACCXII 0 1101
11102

112 Compares sixteen 4-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq4xacc fregrs1,
freg_or_fsimm, fregrd

FPCMPUEQ64XACCXII 0 1101
11112

112 Compares 64-bit
unsigned integers
If src1 = src2, the
corresponding result is 1.

※  fpcmpueq64xacc fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description These instructions compare several elements (partitions) in the two floating-point registers
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point
register Fd[rd]. The comparison results for these elements are written to Fd[rd] from the
MSB. Before new results are written, the previous results are shifted to the right, that is,
the previous results are accumulated.

A 64-bit input register includes elements corresponding to the data type. The number of
elements and bit range of the elements corresponding to the data type are shown in Table
7-21 and Table 7-22.

Table 7-21 Number of elements and their bit range for each data type (4-bit data)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

4-bit signed
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

4-bit unsigned
integer

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32

Data type Element9 Element
10

Element
11

Element
12

Element
13

Element
14

Element
15

Element
16

4-bit signed
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

4-bit unsigned
integer

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

92 Ver 20, Oct., 2017

Table 7-22 Number of elements and their bit range for each data type (8-bit, 16-bit, 32-bit,
and 64-bit)

Data type Number
of
elements

Element
1

Element
2

Element
3

Element
4

Element
5

Element
6

Element
7

Element
8

8-bit signed
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

8-bit unsigned
integer

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

16-bit signed
integer

4 63:48 47:32 31:16 15:0    

16-bit
unsigned
integer

4 63:48 47:32 31:16 15:0    

32-bit signed
integer

2 63:32 31:0      

32-bit
unsigned
integer

2 63:32 31:0      

64-bit signed
integer

1 63:0       

64-bit
unsigned
integer

1 63:0       

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same
position, are compared. The results are then written to the corresponding bits of Fd[rd]. The
bits corresponding to each element of Fd[rd] are shown in Table 7-23 and Table 7-24.

Table 7-23 Elements and their corresponding bit positions in Fd[rd] (4-bit data)

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8
Fd[rd] 63 62 61 60 59 58 57 56

 Element 9 Element

10
Element
11

Element
12

Element
13

Element
14

Element
15

Element
16

Fd[rd] 55 54 53 52 51 50 49 48

Table 7-24 Elements and their corresponding bit positions in Fd[rd] (8-bit, 16-bit, 32-bit,
and 64-bit data)

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8
Fd[rd] 63 62 61 60 59 58 57 56

Before new results are written to Fd[rd], previous results are shifted to the right as shown
in Figure 7-17.

 7. Instructions 93

Figure 7-17 shift amount for each data

If xar_i = 0, FPCMPLE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0.
Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPLE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1,
otherwise they are all set to 0. Before new results are written, previous results are shifted
to the right.

If xar_i = 0, FPCMPGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0.
Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1,
otherwise they are all set to 0. Before new results are written, previous results are shifted
to the right.

If xar_i = 0, FPCMPULE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPULE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to

94 Ver 20, Oct., 2017

1, otherwise they are all set to 0. Before new results are written, previous results are
shifted to the right.

If xar_i = 0, FPCMPUNE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≠
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPUNE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” ≠ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set
to 1, otherwise they are all set to 0. Before new results are written, previous results are
shifted to the right.

If xar_i = 0, FPCMPUGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” >
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPUGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0. Before new results are written, previous results are
shifted to the right.

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2],
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” =
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1,
FPCMPUEQ{4|8|16|32|64}XACC compares the elements of Fd[rs1] and
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers.
If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to
1, otherwise they are all set to 0. Before new results are written, previous results are
shifted to the right.

These instructions will not update any fields in the FSR.

Note To use these instructions, XAR.v must be 1 and XAR.urs3<1:0>
must be 112. If “XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1:0> is 002”,
FPCMP*{4|8|16|32|64}X will be executed (page 63). If XAR.v is 1 and
XAR.urs3<1:0> is 102, FPCMP*{4|8|16|32|64}FX will be executed (page
84). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action will occur.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<1:0> = 012
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

 7. Instructions 95

 Partitioned Move for Selected 7.152.
Floating-Point Register on
Floating-Point Register’s Condition
(extended for SPARC64™ XII)

Opcode opf urs3
<1>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPSELMOV8FXXII 0 1001 01012 1 Select eight 8-bit
data from the
registers

※  fpselmov8fx fregrs1,
freg_or_fsimm, fregrd

FPSELMOV16FXXII 0 1001 01102 1 Select four 16-bit
data from the
registers

※  fpselmov16fx fregrs1,
freg_or_fsimm, fregrd

FPSELMOV32FXXII 0 1001 01112 1 Select two 32-bit
data from the
registers

※  fpselmov32fx fregrs1,
freg_or_fsimm, fregrd

102 rd op3 = 11 01102 rs1 opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description For FPSELMOV8FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into eight 8-bit data.
According to the value of Fd[rs1] (corresponding to each data), each divided 8-bit data in
Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, the
data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected.

 If xar_i = 1, the data in Fsimm8_8x8 and Fd[rd] are divided into eight 8-bit data. According to
the value of Fd[rs1] (corresponding to each data), each divided 8-bit data in Fsimm8_8x8 or
Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, the data in
Fsimm8_8x8 is selected. If it is 0, the data in Fd[rd] is selected.

 For FPSELMOV16FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into four 16-bit
data. According to the value of Fd[rs1] (corresponding to each data), each divided 16-bit data
in Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1,
the data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected.

If xar_i = 1, the data in Fsimm8_16x4 and Fd[rd] are divided into four 16-bit data. According
to the value of Fd[rs1] (corresponding to each data), each divided 16-bit data in
Fsimm8_16x4 or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is
1, the data in Fsimm8_16x4 is selected. If it is 0, the data in Fd[rd] is selected.

For FPSELMOV32FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into two 32-bit
data. According to the value of Fd[rs1] (corresponding to each data), each divided 32-bit data
in Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1,
the data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected.

If xar_i = 1, the data in Fsimm8_32x2 and Fd[rd] are divided into two 32-bit data. According
to the value of Fd[rs1] (corresponding to each data), each divided 32-bit data in
Fsimm8_32x2 or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is
1, the data in Fsimm8_32x2 is selected. If it is 0, the data in Fd[rd] is selected.

 The bit ranges of Fd[rs2] and Fd[rd] that are selected by Fd[rs1] are shown below.

96 Ver 20, Oct., 2017

 Fd[rs1]

bit 63

Fd[rs1]

bit 55

Fd[rs1]

bit 47

Fd[rs1]

bit 39

Fd[rs1]

bit 31

Fd[rs1]

bit 23

Fd[rs1]

bit 15

Fd[rs1]

bit 7

Corresponding
bits of Fd[rs2],
Fsimm8, and
Fd[rd] for
FPSELMOV8FX

<63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0>

Corresponding
bits of Fd[rs2],
Fsimm8, and
Fd[rd] for
FPSELMOV16FX

<63:48> <47:32> <31:16> <15:0>

Corresponding
bits of Fd[rs2],
Fsimm8, and
Fd[rd] for
FPSELMOV32FX

<63:32> <31:0>

Figure 7-18 Behavior of FPSELMOV8FX (example)

Figure 7-19 Behavior of FPSELMOV16FX (example)

 7. Instructions 97

Figure 7-20 Behavior of FPSELMOV32FX (example)

These instructions will not update any fields in the FSR.

Note The field of Fd[rs1]<62:56, 54:48, 46:40, 38:32, 30:24, 22:16, 14:8,
6:0> for FPSELMOV8FX, Fd[rs1]<62:48, 46:32, 30:16, 14:0> for
FPSELMOV16FX, and Fd[rs1]<62:32, 30:0> for FPSELMOV32FX are ignored
and have no effect.

Note XAR.v must be 1 and XAR.urs3<1> must be 1 to use these
instructions. If ”XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1> is 0”,
FPSELMOV{8|16|32}X will be executed (refer to 7.134 in the SPARC64™
X/X+ specification).

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.urs1<1> ≠ 0
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0
• XAR.urs3<0> ≠ 0
• XAR.urd<1> ≠ 0
• XAR.simd = 1 and XAR.urs1<2> ≠ 0
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and

XAR.urs3<2> = 0
• XAR.simd = 1 and XAR.urd<2> ≠ 0

98 Ver 20, Oct., 2017

 Move Floating-Point Register to Integer 7.153.
Register

Opcode opf urs3
<0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

MOVdTOxXII 1 0001 00002 Copies 64 bits of a double
floating-point register to an
integer register

 movdtox fregrs2, regrd

MOVsTOuwXII 1 0001 0001 0 Copies 32 bits of a floating-point
register to an integer register
(without sign-extension)

 movstouw fregrs2, regrd

MOVsTOswXII 1 0001 0011 0 Copies 32 bits of a floating-point
register to an integer register
(with sign-extension)

 movstosw fregrs2, regrd

MOVfwTOuwXII 1 0001 0001 1 Copies 32 bits of a double
floationg-point register to an
integer register (without
sign-extension)

※ movfwtouw fregrs2, regrd

MOVfwTOswXII 1 0001 0011 1 Copies 32 bits of a double
floatint-point register to an
integer register (with
sign-extension)

※ movfwtosw fregrs2, regrd

102 rd op3 = 11 01102  opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description MOVdTOx copies 64 bits of a double floating-point register Fd[rs2] to a general-purpose
register R[rd]. No conversion is performed on the copied 64 bits.

If XAR.v = 0, MOVsTOuw copies 32 bits of a single floating-point register Fs[rs2] to the lower
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of R[rd] is set to 0 (without sign-extension).

If XAR.v = 1 and XAR.urs3<0> = 0, MOVsTOuw copies the upper 32 bits of a double
floating-point register Fd[rs2] to the lower 32 bits of a general-purpose register R[rd]. No
conversion is performed on the copied 32 bits. The upper 32 bits of R[rd] is set to 0 (without
sign-extension).

If XAR.v = 0, MOVsTOsw copies 32 bits of a single floating-point register Fs[rs2] to the lower
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of R[rd] is set to Fs[rs2]<31> (with sign-extension).

If XAR.v = 1 and XAR.urs3<0> = 0, MOVsTOsw copies the upper 32 bits of a double
floating-point register Fd[rs2] to the lower 32 bits of a general-purpose register R[rd]. No
conversion is performed on the copied 32 bits. The upper 32 bits of R[rd] is set to Fd[rs2]<63>
(with sign-extension).

MOVfwTOuw copies the lower 32 bits of a double floating-point register Fd[rs2] to the lower
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of R[rd] is set to 0 (without sign-extension).

 7. Instructions 99

MOVfwTOsw copies the lower 32 bits of a double floating-point register Fd[rs2] to the lower
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of R[rd] is set to Fd[rs2]<31> (with sign-extension).

These instructions will not update any fields in the FSR.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_instruction All iw<18:14> ≠ 0
illegal_action MOVdTOx If XAR.v = 1 and one of the following is true:

• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2<1> ≠ 0
• XAR.urs3 ≠ 0
• XAR.urd ≠ 0

MOVsTOuw,
MOVsTOsw,
MOVfwTOuw,
MOVfwTOsw

If XAR.v = 1 and one of the following is true:
• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2<1> ≠ 0
• XAR.urs3<2:1> ≠ 0
• XAR.urd ≠ 0

100 Ver 20, Oct., 2017

 Move Integer Register to Floating-Point 7.154.
Register

Opcode opf urs3
<1:0>

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

MOVwTOfuwXII 1 0001 10012 012 Copies the lower 32 bits
of an integer register to a
double floating-point
register (without
sign-extension)

※ movwtofuw regrs2, fregrd

MOVwTOfswXII 1 0001 10012 112 Copies the lower 32 bits
of an integer register to a
double floating-point
register (with
sign-extension)

※ movwtofsw regrs2, fregrd

102 rd op3 = 11 01102  opf rs2

31 30 29 25 24 19 18 14 13 5 4 0

Description MOVwTOfuw copies the lower 32 bits of a general-purpose register R[rs2] to the lower 32 bits
of a double floating-point register Fd[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of Fd[rd] is set to 0 (without sign-extension).

 MOVwTOfsw copies the lower 32 bits of a general-purpose register R[rs2] to the lower 32 bits
of a double floating-point register Fd[rd]. No conversion is performed on the copied 32 bits.
The upper 32 bits of Fd[rd] is set to R[rs2]<31> (with sign-extension).

 These instructions will not update any fields in the FSR.

Note To use these instructions, XAR.v must be 1. In addition,
XAR.urs3<1:0> must be 012 for MOVwTOfuw and must be 112 for
MOVwTOfsw. In other cases, an another instruction will be executed or an
exception will occur as follows.

- XAR.v = 0: MOVwTOs will be executed (refer to 7.142 in the SPARC64™
X/X+ specification).
- XAR.v = 1 and XAR.urs3<1:0> = 002: MOVwTOs will be executed (refer to
7.142 in the SPARC64™ X/X+ specification).
- XAR.v = 1 and XAR.urs3<1:0> = 102: illegal_action will occur.

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_instruction All iw<18:14> ≠ 0
illegal_action All If XAR.v = 1 and one of the following is true:

• XAR.simd = 1
• XAR.urs1 ≠ 0
• XAR.urs2 ≠ 0
• XAR.urs3<2> ≠ 0
• XAR.urs3<1:0> = 102
• XAR.urd<1> ≠ 0

 7. Instructions 101

102 Ver 20, Oct., 2017

 Montgomery Multiplication 7.155.

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FMONTMULXII 0 1000 11102 Montgomery
Multiplication

iii iv fmontmul fregrs1, length,
fregrd

FMONTSQRXII 0 1000 11102 Montgomery
Multiplication (squared)

iii iv fmontmul fregrs1, length,
fregrd

102 rd op3 = 11 01102 rs1 opf length

31 30 29 25 24 19 18 14 13 5 4 0

Description FMONTMUL and FMONTSQR performs a calculation shown below (as pseudo-code) with length
equal to ”length + 1” (the value of “length” is specified in the instruction field). The data size
for data A, B, and N used in the calculation is “length × 64” bits. The maximum length is
32. If the length of FMONTMUL and FMONTSQR is less than 32, the remaining operand
locations are not used and the remaining result locations are unchanged. The combinations
of basic and extended double precision floating-point registers are used as input data and
output data.

 For FMONTMUL and FMONTSQR, data A, B, N, and N’ are used as input data and data A is
overwritten as the output data. For FMONTSQR, data B is the same as data A. Refer to
Figure 7-21 and Figure 7-24.

 The first number of registers used for data A, B, N, and N’ are fixed. The rd field is used for
specfy the first number of registers for data A. The value of 0x00 (that means “%f0”) must
be specified to this field. In addition the rs1 field is used for specify the first number of
registers for data B. The value of 0x01 (that means “%f32”) must be specified to this field for
FMONTMUL and the value of 0x00 (that means “%f0”) for FMONTSQR. The first number of
registers for N and N’ is fixed to “%f64” and “%f352” respectively.

The pseudo-code of FMONTMUL and FMONTSQR is shown below.

/* Pseudo-code of FMONTMUL and */
/* Pseudo-code of FMONTSQR (in case A = B) */

input : A, B, N, n’0
output : Y

/* multi-precision integers */
/* Each element of A, B, N, X, Y, and N’ is 64-bit integer. */
/* C and tmp : 64-bit integer */

A = (ak-1, … , a0)
B = (bk-1, … , b0)
N = (nk-1, … , n0)
X = (xk+1, … , x0)
Y = (Yk, …, Y0)
N’ = (n’k-1, … , n’0)

/* Algorithm */

iii The registers cannot be extended, but XAR.v must be set to 1 in order to execute these instructions.
iv XAR.simd must be set to 1 in order to execute these instructions.

 7. Instructions 103

r = 264
Y = (0, 0, … , 0)

for j = 0 to k-1

 C = 0
 for i = 0 to k-1
 (C, xi) = yi + C + ai × bj ! A × bj
 next i
 (xk+1, xk) = C + yk

 m = x0 × n’0 (mod r)
 (C, tmp) = x0 + n0 × m ! tmp is not used

 for i = 1 to k-1
 (C, yi-1) = xi + C + ni × m ! N × m
 next i
 (C, yk-1) = C + xk
 yk = C + xk+1

next j

if Y >= N then Y = Y – N
return Y

If A, B, N, and N’ satisfy the all of the following conditions, the result of FMONTMUL and
FMONTSQR is the same as the result of the Montgomery multiplication.

・N is an odd number.

・NN’ mod R = −1 (R = 2k > N, k = 64 × length)

・A < N, B < N

The Montgomery multiplication is calculated with the following formula.

Y = A ⊗ B = A × B × R-1 mod N (⊗ : Montogomery Multiplication)

(A, B: input, R = 2k > N, k = 64 × length, RR-1 = 1 mod N)

Programming Note RSA encryption requires to use a lot of
multiplications and modular arithmetics (A^D mod N), and it requires a
lot of clock cycles. The calculations can be accelerated using FMONTMUL
and FMONTSQR.

 ・FMONTMUL

The input data A, B, N, and N’ are stated in Table 7-25.

Table 7-25 Data A, B, N, and N’ for FMONTMUL (the length is 32)

Data Corresponding Registers

A %f30::%f286::%f28::%f284:: … ::%f0::%f256

B %f62::%f318::%f60::%f316:: … ::%f32::%f288

104 Ver 20, Oct., 2017

N %f94::%f350::%f92::%f348:: … ::%f64::%f320

N’ %f352

 The registers corresponding to data A, B, N, and N’ must be set before FMONTMUL is
executed. The result of FMONTMUL is overwritten to the registers corresponding to data A.

 The register assignments used for FMONTMUL are shown in Figure 7-21.

Figure 7-21 Register Assignments for FMONTMUL

 Data A, B, and N are composed of the corresponding basic and extended registers. For
example, the register corresponding to data A is shown in Figure 7-22.

Figure 7-22 Combinations of basic and extended registers for data A

 The number of registers used for FMONTMUL (as data A, B, and N) is specified by the length.
Therefore each number of registers in use can be specified with a range of 1 – 32.

For example, if the length is 30 (that means the field of length is set to “0x1D”), 30 registers
from LSB are used for data A, B, and N but not the two registers from MSB as shown in
Figure 7-23. In addition, 30 registers from LSB that correspond to data A are updated as a
result of the calculation, but not the two registers from MSB (%f30, %f286).

 7. Instructions 105

Figure 7-23 Example of registers specified for FMONTMUL

If A, B, N, and N’ satisfy all the conditions stated in Table 7-26, the result of FMONTMUL is
the same as the value calculated by the following formula (Montgomery multiplication).

A × B × R-1 mod N (NN’ mod R = -1)

Table 7-26 The conditions for the Montgomery Multiplication

data The condition

A A is a number that satisfies “A < N”.

B B is a number that satisfies “B < N”.

N N is an odd number.

N’
N’ is a number that satisfies “NN’ mod R= −1”. (R is a number that satisfies
“R = 2k > N, k = 64 × length”.)

(Only the lower 64 bits of N’ is used for calculations)

・FMONTSQR

 The input data A, N, and N’ are stated in Table 7-27.

Table 7-27 Data A, N, and N’ for FMONTSQR (the length is 32)

Data Corresponding Registers

A %f30::%f286::%f28::%f284:: … ::%f0::%f256

106 Ver 20, Oct., 2017

N %f94::%f350::%f92::%f348:: … ::%f64::%f320

N’ %f352

 The registers corresponding to data A, N, and N’ must be set before FMONTSQR is
executed. The result of FMONTSQR is overwritten to the registers corresponding to data A.

 The register assignments used for FMONTSQR are shown in Figure 7-24.

Figure 7-24 Register Assignments for FMONTSQR

 Data A and N are composed of the corresponding basic and extended registers.

The number of registers used for FMONTSQR (as data A and N) is specified by the length.
Therefore each number of registers in use can be specified with a range of 1 – 32.

For example, if the length is 30 (that means the field of length is set to “0x1D”), 30 registers
from LSB are used for data A and N but not the two registers from MSB as shown in Figure
7-25. In addition, 30 registers from LSB that correspond to data A are updated as a result of
the calculation, but not the two registers from MSB (%f30, %f286).

 7. Instructions 107

Figure 7-25 Example of registers specified for FMONTSQR

If A, N, and N’ satisfy all the conditions stated in Table 7-28, the result of FMONTSQR is the
same as the value calculated by the following formula (Montgomery multiplication).

A × A × R-1 mod N (NN’ mod R = -1)

Table 7-28 The conditions for the Montgomery Multiplication

data the condition

A A is a number that satisfies “A < N”.

N N is an odd number.

N’

N’ is a number that satisfies “NN’ mod R= −1”. (R is a number that satisfies
“R = 2k > N, k = 64 × length”.)

(Only the lower 64 bits of N’ is used for calculations)

108 Ver 20, Oct., 2017

・Pseudo-code example used with FMONTMUL and FMONTSQR

 A pseudo-code example used with FMONTMUL and FMONTSQR in multiplication and modular
arithmetic (A^D mod N) for RSA encryption is shown below.

/* (A^D mod N) for RSA encryption */
/* MONTMUL: (OP1) × (OP2) × R-1 mod N → OP1 (overwritten) */
/* MONTSQR: (OP1) × (OP1) × R-1 mod N → OP1 (overwritten) */
/* D = (1, dk-2, … , d1, d0): binary notation（k bit） */
/* ⊗ : Montgomery Multiplication */

load A to OP1 ! OP1 = A
load (R2 mod N) to OP2 ! OP2 = R2 mod N
load N to OP3 ! OP3 = N
load n’0 to OP4 ! OP4 = n’0
fmontmul ! A × R2 × R-1 mod N
 ! = A × R mod N = FR(A)
copy OP1 to OP2 ! OP1, OP2 = FR(A)

for (i = k-2; i >= 0; i --) { ! OP1 = FR(X)
 fmontsqr ! FR(X) ⊗ FR(X) = FR(X2) → OP1
 if (di == 1) {
 fmontmul ! FR(X2) ⊗ FR(A) = FR(X2 × A) → OP1
 }
}
 ! OP1 = FR(A^D) (temporary result)
load 1 to OP2 ! OP2 = 1
fmontmul ! FR(A^D) × 1 × R-1 mod N = A^D mod N
 ! (This result is written to OP1.)

Exception Target

instruction
Detection condition

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_instruction All One of the following is true:

• rs1 ≠ 0 and rs1 ≠ 32
• rd ≠ 0

illegal_action All • XAR.v = 0
• If XAR.v = 1 and one of the following is true:

・XAR.simd = 0
・XAR.urs1 ≠ 0
・XAR.urs2 ≠ 0
・XAR.urs3 ≠ 0
・XAR.urd ≠ 0

 8. IEEE Std. 754-1985 Requirements for SPARC-V9 109

8. IEEE Std. 754-1985
Requirements for SPARC-V9

 Behavior when FSR.ns = 1 8.1.2.

Compatibility Note In section 8.4 in UA2011, the behavior of some
instructions (for example, FADD, FDIV, and FMUL) is required to follow
IEEE Std. 754 at all times regardless of the value of FSR.ns. However, in
SPARC64™ XII, the behavior of all floating-point instructions is changed
according to the value of FSR.ns.

110 Ver 20, Oct., 2017

9. Memory Models

Refer to the SPARC64 X/X+ specification.

 10. Address Space Identifiers 111

10. Address Space Identifiers

 ASI Assignment 10.3.

 Supported ASIs 10.3.1.
ASIs supported in SPARC64™ XII are listed in Table 10-2. The notation for the Type and
Sharing columns in Table 10-2 are described in Table 10-1.

Table 10-1 Notation used in Table 10-2

Column Symbol Meaning
Type Trans. The translation mode is determined by the privilege level and the

MMU settings.
Real The address is treated as a real address (RA).
non-T Not translated by the MMU. VA watchpoint is not detected.

Sharing(non-T
only)

Chip The register is shared by the entire CPU.
Core The register is shared by VCPUs in the same core.
VCPU Each VCPU has its own copy of the register.

Table 10-2 ASI list

ASI VA ASI name Access Type Sharing Pag
e

8016  ASI_PRIMARY
(ASI_P)

RW Trans. 

8116  ASI_SECONDARY
(ASI_S)

RW Trans. 

8216  ASI_PRIMARY_NO_FAULT
(ASI_PNF)

RO Trans. 

8316  ASI_SECONDARY_NO_FAULT
(ASI_SNF)

RO Trans. 

8416 – 8716     
8816  ASI_PRIMARY_LITTLE

(ASI_PL)
RW Trans. 

8916  ASI_SECONDARY_LITTLE
(ASI_SL)

RW Trans. 

8A16  ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

RO Trans. 

8B16  ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

RO Trans. 

8C16 – BF16     

112 Ver 20, Oct., 2017

ASI VA ASI name Access Type Sharing Pag
e

C016  ASI_PST8_PRIMARY
(ASI_PST8_P)

WO Trans. 

C116  ASI_PST8_SECONDARY
(ASI_PST8_S)

WO Trans. 

C216  ASI_PST16_PRIMARY
(ASI_PST16_P)

WO Trans. 

C316  ASI_PST16_SECONDARY
(ASI_PST16_S)

WO Trans. 

C416  ASI_PST32_PRIMARY
(ASI_PST32_P)

WO Trans. 

C516  ASI_PST32_SECONDARY
(ASI_PST32_S)

WO Trans. 

C616 – C716     
C816  ASI_PST8_PRIMARY_LITTLE

(ASI_PST8_PL)
WO Trans. 

C916  ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

WO Trans. 

CA16  ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

WO Trans. 

CB16  ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

WO Trans. 

CC16  ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

WO Trans. 

CD16  ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

WO Trans. 

CE16 – CF16     
D016  ASI_FL8_PRIMARY

(ASI_FL8_P)
RW Trans. 

D116  ASI_FL8_SECONDARY
(ASI_FL8_S)

RW Trans. 

D216  ASI_FL16_PRIMARY
(ASI_FL16_P)

RW Trans. 

D316  ASI_FL16_SECONDARY
(ASI_FL16_S)

RW Trans. 

D416 – D716     
D816  ASI_FL8_PRIMARY_LITTLE

(ASI_FL8_PL)
RW Trans. 

D916  ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW Trans. 

DA16  ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW Trans. 

DB16  ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW Trans. 

DC16 – DF16     
E016  ASI_BLOCK_COMMIT_PRIMARY

(ASI_BLK_COMMIT_P)
WO Trans. 

E116  ASI_BLOCK_COMMIT_SECONDARY
(ASI_BLK_COMMIT_S)

WO Trans. 

E216  ASI_TWINX_P/ASI_STBI_P RW Trans. 
E316  ASI_TWINX_S/ASI_STBI_S RW Trans. 
E616     
E716 21016 ASI_RANDOM_NUMBER RO non-T Chip 113
EA16  ASI_TWINX_PL/ASI_STBI_PL RW Trans. 

 10. Address Space Identifiers 113

ASI VA ASI name Access Type Sharing Pag
e

EB16  ASI_TWINX_SL/ASI_STBI_SL RW Trans. 
EC16 – EF16     
F016  ASI_BLOCK_PRIMARY

(ASI_BLK_P)
RW Trans. 

F116  ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW Trans. 

F216 any ASI_STBI_MRU_P WO Trans. 
F316 any ASI_STBI_MRU_S WO Trans. 
F416  ASI_XFILL_P WO Trans. 
F516  ASI_XFILL_S WO Trans. 
F616 – F716     
F816  ASI_BLOCK_PRIMARY_LITTLE

(ASI_BLK_PL)
RW Trans. 

F916  ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW Trans. 

FA16 any ASI_STBI_MRU_P_LITTLE WO Trans. 
FB16 any ASI_STBI_MRU_S_LITTLE WO Trans. 
FC16 – FF16     

 ASI-Accessible Registers 10.5.

 ASI_RANDOM_NUMBER 10.5.5.

Register name ASI_RANDOM_NUMBER

ASI number E716
VA 21016
Range of sharing Chip
Access read write

user OK DAE_invalid_asi

random_number

63 0

Bit Field Access Description
63:0 random_number RO The value (64-bit) generated by Onchip Random

Number Generator

The value (64-bit) generated by Onchip Random Number Generator can be read from the
random_number field in ASI_RANDOM_NUMBER. LDXA, LDDFA, and LDTWA can be used to
access this ASI (LDTWA is deprecated).

When the value read from ASI_RANDOM_NUMBER is valid, XASR.rng_stat is set to 1. If
invalid, XASR.rng_stat is set to 0. If XAR.rng_stat is 0, the value of R[rd] or F[rd] is updated
by an undefined value and must not be used.

114 Ver 20, Oct., 2017

The factors for the invalid value are stated below.
a) the temporary read value does not have sufficient precision
b) read failure based on the continuous hardware error

In case of a), the value can become valid with a retry, but in case of b), the value will remain
invalid even with a retry. Therefore a retry process and a retry timeout process (after
several retry processes) must be implemented in the software.

/* pseudo asm code */
init_rnd_num:
 wr 0xe7, %asi
 orcc %g0, 0x8, %l7 /* set retry counter */
rd_rnd_num:
 bne rd_rnd_fail /* retry out */
 nop
 ldda [%g0+0x210] %asi, %f0
 membar #Sync
 rd %xasr, %l0
 srlx %l0, 40, %l0
 xorcc %l0, 1, %l0
 bne,a rd_rnd_num
 subcc %l7,1,%l7

 11. Performance Instrumentation 115

11. Performance Instrumentation

11.1 Overview
Performance counters are comprised of one “Performance Control Register (PCR) (ASR 16)”
and multiple instances of “Performance Instrumentation Counter Register (PIC) (ASR 17)”.

SPARC64™ XII implements 4 PIC registers, which are selected by PCR.SC, and are
accessed via ASR 17. Each PIC register contains two counters.

Performance Control Register (PCR) (ASR 16)

 toe  ovf ovro ulro  nc su sl  sc ht ut st priv
63 56 55 48 47 40 39 32 31 30 29 27 26 24 23 16 15 8 7 6 4 3 2 1 0

Bits Field Access Description
55:48 toe<7:0> RW Controls whether an overflow exception is generated

for the performance counters.
A write updates the field and a read returns the
current settings.
If toe<i> is 1 and the counter corresponding to ovf<i>
overflows, ovf<i> = 1 and a pic_overflow exception is
generated.
If toe<i> is 0 and the counter corresponding to ovf<i>
overflows, ovf<i> = 1 but a pic_overflow exception is
not generated.
When ovf<i> = 1 and the value of toe<i> is changed to
1, a pic_overflow exception is not generated.

39:32 ovf<7:0> RW Overflow Clear/Set/Status. A read by RDPCR returns
the overflow status of the counters, and a write by
WRPCR clears or sets the overflow status bits.
The following figure shows the PIC counters
corresponding to the OVF bits.
A write of 0 to an OVF bit clears the overflow status of
the corresponding counter.

U3 L3 U2 L2 U1 L1 U0 L0
7 6 5 4 3 2 1 0

31 ovro RW Overflow Read-Only. A write to the PCR register with
write data containing a value of ovro = 0 updates the
PCR.ovf field with the OVF write data.
If the write data contains a value of ovro = 1, the OVF
write data is ignored and the PCR.ovf field is not
updated. A read of the PCR.ovro field returns 0.
The PCR.ovro field allows PCR to be updated without
changing the overflow status.
The hardware maintains the most recent state of
PCR.ovf so that a subsequent read of the PCR returns
the current overflow status.

30 ulro RW su/sl Read-Only. A write to the PCR register with
write data containing a value of ulro = 0 updates the
PCR.su and PCR.sl fields with the su/sl write data.
If the write data contains a value of ulro = 1, the su/sl
write data is ignored and the PCR.su and PCR.sl
fields are not updated. A read of the PCR.ulro field
returns 0.
The PCR.ulro field allows the PIC pair selection field

116 Ver 20, Oct., 2017

to be updated without changing the PCR.su and
PCR.sl settings.

26:24 nc RO This read-only field indicates the number of PIC
counter pairs.

23:16 su RW This field selects the event counted by PIC<63:32>.
A write updates the setting, and a read returns the
current setting.

15:8 sl RW This field selects the event counted by PIC<31:0>.
A write updates the setting, and a read returns the
current setting.

6:4 sc RW PIC Pair Selection.
A write updates the PIC counter pair that is selected,
and a read returns the current selection.
When a “1” is written to bit<6>, no counter pair is
selected and a subsequent read returns “0”.

3 ht RW

Hyperprivileged mode.
If PCR.ht = 1, events that occur while in
hyperprivileged mode are counted.
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are
counted.
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is
disabled.
PCR.ht is a global field and applies to all PICs.

2 ut RW User mode.
If PCR.ut = 1, events that occur while in
non-provileged mode are counted.
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are
counted.
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is
disabled.
PCR.ut is a global field and applies to all PICs.

1 st RW System mode.
If PCR.st = 1, events that occur while in privileged
mode are counted.
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are
counted.
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is
disabled.
PCR.st is a global field and applies to all PICs.

0 priv RW Privileged.
If PCR.priv = 1, executing an RDPCR, WRPCR, RDPIC, or
WRPIC instruction in non-privileged mode causes a
privileged_action exception.
If PCR.priv = 0, an attempt to update PCR.priv
(writing a value of 1) in non-privileged mode via a
WRPCR instruction causes a privileged_action
exception.
PCR.priv is a global field and applies to all PICs.

Performance Instrumentation Counter (PIC) Register (ASR 17)

picu picl
63 32 31 0

Bits Field Access Description
63:32 picu RW 32bits counter selected by PCR.su for the event
31:0 picl RW 32bits counter selected by PCR.sl for the event

 11. Performance Instrumentation 117

11.1.1 Pseudo-code Examples

11.1.1.1 Counter Clear/Set

The counter fields in the PIC registers are read/write fields. Writing zero clears a counter
and writing any other value sets the counter to that value. The following pseudo-code clears
all PIC registers (privileged access is assumed).

/* Clear PICs without updating SL/SU values */
pic_init = 0x0;
pcr = rd_pcr();
pcr.ulro = 0x1; /* don’t update SU/SL on write */
pcr.ovf = 0x0; /* clear overflow bits */
pcr.ut = 0x0;
pcr.st = 0x0; /* disable counts */
pcr.ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
for (i=0; i<=pcr.nc; i++) {
/* select the PIC to be written */
pcr.sc = i;
wr_pcr(pcr);
wr_pic(pic_init); /* clear PIC[i] */
}

11.1.1.2 Counter Event Selection and Start

Counter events are selected using the PCR.sc and PCR.su/PCR.sl fields. The following
pseudo-code selects events and enables the counters (privileged access is assumed).

pcr.ut = 0x0; /* Disable user counts */
pcr.st = 0x0; /* Disable system counts also */
pcr.ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
pcr.ulro = 0x0; /* Make SU/SL writeable */
pcr.ovro = 0x1; /* Overflow is read-only */
/* Select events without enabling counters */
for(i=0; i<=pcr.nc; i++) {
pcr.sc = i;
pcr.sl = select an event;
pcr.su = select an event;
wr_pcr(pcr);

}
/* Start counting */
pcr.ut = 0x1;
pcr.st = 0x1;
pcr.ulro = 0x1; /* SU/SL is read-only */
/* Clear overflow bits here if needed */
wr_pcr(pcr);

118 Ver 20, Oct., 2017

11.1.1.3 Stop Counter and Read

The following pseudo-code disables the counters and reads the value (privileged access is
assumed).

pcr.ut = 0x0; /* Disable user counts */
pcr.st = 0x0; /* Disable system counts, too */
pcr.ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
pcr.ulro = 0x1; /* Make SU/SL read-only */
pcr.ovro = 0x1; /* Overflow is read-only */
for(i=0; i<=pcr.nc; i++) {
 pcr.sc = i;
 wr_pcr(pcr);
 pic = rd_pic();
 picl[i] = pic.picl;
 picu[i] = pic.picu;
}

11.2 Description of PA Events

The performance counter (PA) events can be divided into the following groups:

1. Instruction and trap statistics

2. MMU and L1 cache events

3. L2 cache events

4. LL cache events

5. Bus transaction events

There are 2 types of PA events, standard and supplemental, that can be measured in
SPARC64™ XII.

Standard events in SPARC64™ XII have been verified for correct behavior. They are
guaranteed to be compatible with future processors.

Supplemental events are primarily intended for debugging the hardware.

a. The behavior of supplemental events may not be fully verified. There is a possibility that
some of these events may not behave as specified in this document.

b. The definition of these events may be changed without notice. Compatibility with future
processors is not guaranteed.

Table 11-1 shows the PA events defined in SPARC64™ XII.

Shaded events are supplemental events.

For details on each event, refer to the descriptions in the following sections. Unless
otherwise indicated, speculative instructions are also counted by the PA events.

 11. Performance Instrumentation 119

Table 11-1 PA Events and Encodings

Encoding
(bin)

Counter
pic u0 pic l0 pic u1 pic l1 pic u2 pic l2 pic u3 pic l3

0000_0000 cycle_counts
0000_0001 instruction_counts
0000_0010 instruction_

flow_counts
only_this_
thread_active

single_mode_
cycle_counts

single_mode_
instruction_counts

instruction_
flow_counts d_move_wait cse_priority_wait xma_inst

0000_0011 iwr_empty w_cse_window_
empty w_eu_comp_wait w_branch_comp

_wait iwr_empty w_op_stv_wait w_d_move w_0endop

0000_0100 Reserved w_op_stv_wait_
nc_pend

w_op_stv_
wait_ｌｌ_miss

w_op_stv_wait_
ｌｌ_miss_ex Reserved w_fl_comp_wait w_cse_window_

empty_sp_full
w_op_stv_
wait_ex

0000_0101 op_stv_wait
0000_0110 effective_instruction_counts
0000_0111 SIMD_load_sto

re_instructions
SIMD_floating_
instructions

SIMD_fma_
instructions

sxar1_
instructions

sxar2_
instructions unpack_sxar1 unpack_sxar2 Reserved

0000_1000 load_store_instructions
0000_1001 branch_instructions
0000_1010 floating_instructions
0000_1011 fma_instructions
0000_1100 prefetch_instructions

0000_1101 fixed_point_ins
tructions

ex_load_
instructions

ex_store_
instructions

fl_load_
instructions

fl_store_
instructions

SIMD_fl_load_
instructions

SIMD_fl_store_
instructions

SIMD_fixed_point_instr
uctions

0000_1110 op_stv_wait_l2
_miss

op_stv_wait_l2_
miss_ex

w_op_stv_wait_l2
_miss

w_op_stv_wait_l2_mi
ss_ex

op_stv_wait_l1d_
miss

op_stv_wait_l1d_m
iss_ex

w_op_stv_wait_l1d
_miss

w_op_stv_wait_l1d_mis
s_ex

0000_1111 x_move_instruc
tions

w_op_stv_wait_p
fp_busy

w_op_stv_wait_pf
p_busy_ex

w_op_stv_wait_pfp_b
usy_swpf

load_DSP_instruc
tions

SIMD_load_DSP_i
nstructions

store_DSP_instruci
tons

SIMD_store_DSP_instr
uctions

0001_0000 Reserved
0001_0001 Reserved
0001_0010 rs1 flush_rs Reserved
0001_0011 1iid_use 2iid_use 3iid_use 4iid_use Reserved sync_intlk regwin_intlk Reserved
0001_0100 Reserved
0001_0101 Reserved toq_rsbr_phanto

m Reserved flush_rs Reserved rs1 Reserved
0001_0110 trap_all trap_int_level trap_spill trap_fill trap_trap_inst
0001_0111 Reserved Reserved other_thread_com

mit w_strand_id_not_empty

0001_1000 only_this_
thread _active

both_
threads _active

both_
threads _empty Reserved op_stv_wait_

pfp_busy_swpf
op_stv_
wait_ｌｌ_miss

0001_1001 Reserved
0001_1010 Reserved single_sxar_comm

it Reserved suspend_cycle

0001_1011 rsf_pmmi Reserved op_stv_wait_
nc_pend 0iid_use flush_rs Reserved decode_all_intlk

120 Ver 20, Oct., 2017

0001_1100 Reserved

0001_1101 op_stv_wait_
pfp_busy_ex Reserved op_stv_wait_

ll_miss_ex
op_stv_wait_
nc_pend

cse_window_
empty_sp_full

op_stv_wait_
pfp_busy

both_ threads _
suspended Reserved

0001_1110 cse_window_
empty eu_comp_wait branch_comp_

wait 0endop op_stv_wait_ex fl_comp_wait 1endop 2endop

0001_1111 single_uop_com
mit Reserved 3endop Reserved sleep_cycle op_stv_wait_swpf

0010_0000 ITLB_write DTLB_write uITLB_miss uDTLB_miss L1I_miss L1D_miss L1I_wait_all L1D_wait_all
0010_0001 Reserved
0010_0010 Reserved
0010_0011 L1I_thrashing L1D_thrashing Reserved

0010_0100
swpf_success_a
ll swpf_fail_all Reserved swpf_lbs_hit Reserved

0010_0101 Reserved
0010_0110 Reserved
0010_0111 Reserved
0010_1000 Reserved
0010_1001 Reserved
0010_1010 Reserved
0010_1011 Reserved
0010_1100 Reserved
0010_1101 Reserved
0010_1110 Reserved
0010_1111 Reserved
0011_0000 Reserved LL_miss_dm LL_miss_pf LL_read_dm LL_read_pf LL_wb_dm LL_wb_pf

0011_0001 bi_counts cpi_counts cpb_counts cpd_counts cpu_mem_
read_counts

cpu_mem_
write_counts

IO_mem_
read_counts

IO_mem_
write_counts

0011_0010
LL_miss_wait_
dm_bank0

LL_miss_wait_
pf_bank0

LL_miss_counts_
dm_bank0

LL_miss_counts_
pf_bank0

LL_miss_wait_
dm_bank1

LL_miss_wait_
pf_bank1

LL_miss_counts_
dm_bank1

LL_miss_counts_
pf_bank1

0011_0011
LL_miss_counts_
dm_bank2

LL_miss_counts_
pf_bank2

LL_miss_wait_
dm_bank2

LL_miss_wait_
pf_bank2

LL_miss_counts_
dm_bank3

LL_miss_counts_
pf_bank3

LL_miss_wait_
dm_bank3

LL_miss_wait_
pf_bank3

0011_0100 lost_pf_pfp_full lost_pf_by_abort IO_pst_counts Reserved
0011_0101 Reserved
0011_0110 Reserved
0011_0111 Reserved
0011_1000 Reserved
0011_1001 Reserved
0011_1010 Reserved
0011_1011 Reserved
0011_1100 Reserved
0011_1101

0011_1110 Reserved

 11. Performance Instrumentation 121

0011_1111 Reserved

0101_0000 l2_sy_miss_dm l2_sy_read_dm Reserved l2_wb_dm Reserved l2_sy_miss_wait_
dm_part1 Reserved l2_sy_miss_wait_dm_part

2
0101_0001 Reserved l2_bi_counts l2_cpi_counts l2_cpb_counts l2_cpd_counts
0101_0010 Reserved
0101_0011 Reserved
0101_0100 Reserved
0101_0101 Reserved
0101_0110 Reserved
0101_0111 Reserved
0101_1000 Reserved
0101_1001 Reserved
0101_1010 Reserved
0101_1011 Reserved
0101_1100 Reserved
0101_1101 Reserved
0101_1110 Reserved
0101_1111 Reserved
1111_1111 Disabled(No PIC is counted up)

※Encodings not shown are Reserved.

122 Ver 20, Oct., 2017

11.2.1 Instruction and Trap Statistics

Standard PA Events

1 cycle_counts
Counts the number of cycles when the performance counter is enabled. Based on the
settings of PCR.ut and PCR.st, this counter which is similar to the TICK register can
count user cycles and system cycles separately.

2 instruction_counts (Non-Speculative)
Counts the number of committed instructions, including SXAR1 and SXAR2.
SPARC64™ XII commits up to 4 non-SXAR instructions per cycle and up to 2 SXAR
instructions. Thus, instruction_counts /cycle_counts can be greater than 4.

3 effective_instruction_counts (Non-Speculative)
Counts the number of committed non-SXAR instructions. Instructions per cycle (IPC)
can be derived from this event with cycle_counts.

IPC = effective_instruction_counts / cycle_counts

If effective_Instruction_counts and cycle_counts are collected for the user or the
system modes, the IPC can be calculated in either user or system mode.

4 load_store_instructions (Non-Speculative)
Counts the number of committed non-SIMD load/store instructions. Also counts the
number of atomic load-store instructions.

5 branch_instructions (Non-Speculative)
Counts the number of committed branch instructions. Also counts the number of CALL,
JMPL, and RETURN instructions.

6 floating_instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point instructions. The counted
instructions are FPop1, FPop2, FSELMOV{s|d}, and IMPDEP1 with opf<8:4> = 0A16,
0B16, 1616, or 1716.

7 fma_instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point multiply and add
instructions. The counted instructions are FM{ADD|SUB}{s|d}, FNM{ADD|SUB}{s|d},

 11. Performance Instrumentation 123

and FTRIMADDd. Two operations are executed per instruction and the number of
operations is obtained by multiplying by 2.

8 prefetch_instructions (Non-Speculative)
Counts the number of committed prefetch instructions.

9 SIMD_load_store_instructions (Non-Speculative)
Counts the number of committed SIMD load/store instructions.

10 SIMD_floating_instructions (Non-Speculative)
Counts the number of committed SIMD floating-point instructions. The counted
instructions are the same as floating_instructions. Two operations are executed per
instruction and the number of operations is obtained by multiplying by 2.

11 SIMD_fma_instructions (Non-Speculative)
Counts the number of committed SIMD floating-point multiply and add instructions.
The counted instructions are the same as fma_instructions. Four operations are
executed per instruction and the number of operations is obtained by multiplying by 4.

12 sxar1_instructions (Non-Speculative)
Counts the number of committed SXAR1 instructions.

13 sxar2_instructions (Non-Speculative)
Counts the number of committed SXAR2 instructions.

14 trap_all (Non-Speculative)
Counts the number of all trap event occurrences. The number of counted occurrences
equals the sum of the occurrences that are counted by all trap PA events.

16 trap_int_level (Non-Speculative)
Counts the number of interrupt_level_n occurrences.

17 trap_spill (Non-Speculative)
Counts the number of spill_n_normal and spill_n_other occurrences.

18 trap_fill (Non-Speculative)

124 Ver 20, Oct., 2017

Counts the number of fill_n_normal and fill_n_other occurrences.

19 trap_trap_inst (Non-Speculative)
Counts the number of trap_instruction occurrences.

Supplemental PA Events

23 xma_inst (Non-Speculative)
Counts the number of committed FPMADDX and FPMADDXHI instructions.

24 unpack_sxar1 (Non-Speculative)
Counts the number of unpacked SXAR1 instructions that are committed.

25 unpack_sxar2 (Non-Speculative)
Counts the number of unpacked SXAR2 instructions that are committed.

26 instruction_flow_counts (Non-Speculative)
Counts the number of committed instruction flows. In SPARC64™ XII, some
instructions are processed internally as several separate instructions and are called as
instruction flows. This event does not count packed SXAR1 and SXAR2 instructions.

27 single_uop_commit (Non-Speculative)
Counts the number of committed instruction flows except for the last flow.

28 ex_load_instructions (Non-Speculative)
Counts the number of committed integer-load instructions. Counts the LD{S|U}B{A},
LD{S|U)H{A}, LD{S|U)W{A}, LDD{A}, and LDX{A} instructions.

29 ex_store_instructions (Non-Speculative)
Counts the number of committed integer-store and atomic instructions. Counts the
STB{A}, STH{A}, STW{A}, STD{A}, STX{A}, LDSTUB{A}, SWAP{A}, and CAS{X}A
instructions.

30 fl_load_instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point load instructions. Counts
the LDF{A}, LDDF{A}, and LD{X}FSR instructions. This event does not count
LDQF{A}.

 11. Performance Instrumentation 125

31 fl_store_instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point store instructions. Counts
the STF{A}, STDF{A}, STFR, STDFR, and ST{X}FSR instructions. This event does not
count STQF{A}.

32 SIMD_fl_load_instructions (Non-Speculative)
Counts the number of committed SIMD floating-point load instructions. Counts the
LDF{A} and LDDF{A} instructions.

33 SIMD_fl_store_instructions (Non-Speculative)
Counts the number of committed SIMD floating-point store instructions. Counts the
STF{A}, STDF{A}, STFR, and STDFR instructions.

34 x_move_instructions (Non-Speculative)
Counts the number of commited move instructions. Counts the MOVdTOx, MOVsTOuw,
MOVfwTOuw, MOVsTOsw, MOVfwTOsw, MOVxTOd, MOVwTOs, MOVwTOfuw, and MOVwTOfsw
instructions.

35 fixed_point_instructions (Non-Speculative)
Counts the number of commited integer instructions. Counts the FSLL32, FSRL32, FSRA32,
FPSLL64x, FPSRL64x, FPSRA64x, FPADD{8|64}, FPSUB{8|64}, FPMUL64, FPMUL32,
FPADD128XHI, FPADD{16|32}{|S}, FPSUB{16|32}{|S}, FZERO{|S}, FNOR{|S},
FANDNOT{1|2}{|S}, FNOT{1|2}{|S}, FXOR{|S}, FNAND{|S}, FAND{|S}, FXNOR{|S},
FSRC{1|2}{|S}, FORNOT{1|2}{|S}, FOR{|S}, FONE{|S}, FPMADDX, and FPMADDXHI
instructions.

36 SIMD_fixed_point_instructions (Non-Speculative)
Counts the number of commited SIMD integer instructions. Counts the SIMD version of the
FSLL32, FSRL32, FSRA32, FPSLL64x, FPSRL64x, FPSRA64x, FPADD{8|64}, FPSUB{8|64},
FPMUL64, FPMUL32, FPADD128XHI, FPADD{16|32}{|S}, FPSUB{16|32}{|S},
FZERO{|S}, FNOR{|S}, FANDNOT{1|2}{|S}, FNOT{1|2}{|S}, FXOR{|S}, FNAND{|S},
FAND{|S}, FXNOR{|S}, FSRC{1|2}{|S}, FORNOT{1|2}{|S}, FOR{|S}, FONE{|S},
FPMADDX, and FPMADDXHI instructions.

37 load_DSP_instructions (Non-Speculative)
Counts the number of commited load_DSP instructions. Counts the LDDFDS instructions.

38 store_DSP_instructions (Non-Speculative)
Counts the number of commited store_DSP instructions. Counts the STDFDS, STDFRDS, and
STDFRDW instructions.

126 Ver 20, Oct., 2017

39 SIMD_load_DSP_instructions (Non-Speculative)
Counts the number of commited SIMD load_DSP instructions. Counts the SIMD version of
the LDDFDS instructions.

40 SIMD_store_DSP_instructions (Non-Speculative)
Counts the number of commited SIMD store_DSP instructions. Counts the SIMD version of
the STDFDS, STDFRDS, and STDFRDW instructions.

41 iwr_empty
Counts the number of cycles when the Issue Word Register (IWR) is empty. The IWR is a
four entry register that holds instructions during a decoding and the IWR may be empty if
an instruction cache miss prevents an instruction fetch.

42 rs1 (Non-Speculative)
Counts the number of cycles in which a normal execution is halted due to one of the
following:

■ a trap or interrupt

■ update of privileged registers

■ guarantee of memory ordering

■ RAS-initiated hardware retry

43 flush_rs (Non-Speculative)
Counts the number of pipeline flushes due to a branch misprediction. Since SPARC64™ XII
supports speculative execution, instructions that should not have been executed may be
in-flight. When it is determined that the predicted path is incorrect, these instructions are
cancelled. A pipeline flush occurs at this time.

misprediction rate = flush_rs / branch_instructions

44 0iid_use
Counts the number of cycles when no instruction is issued. SPARC64™ XII issues up to
four non-SXAR instructions per cycle. When no instruction is issued, 0iid_use is
incremented. In SPARC64™ XII, some instructions are processed internally as several
separate instructions and are called as instruction flows. Each of these instruction flows is
counted. SXAR instructions are also counted.

45 1iid_use
Counts the number of cycles when one instruction is issued.

46 2iid_use

 11. Performance Instrumentation 127

Counts the number of cycles when two instructions are issued.

47 3iid_use
Counts the number of cycles when three instructions are issued.

48 4iid_use
Counts the number of cycles when four instructions are issued.

49 sync_intlk
Counts the number of cycles when the instructions that are issued are blocked by a pipeline
sync.

50 regwin_intlk
Counts the number of cycles when the instructions that are issued are blocked by a register
window switch.

51 decode_all_intlk
Counts the number of cycles when the instructions that are issued are blocked by a static
interlock condition during the decode stage. decode_all_intlk includes sync_intlk and
regwin_intlk. Stall cycles due to dynamic conditions (such as reservation station full) are
not counted.

52 rsf_pmmi (Non-Speculative)
Counts the number of cycles when mixing single-precision and double-precision
floating-point operations prevents instructions from being issued.

53 toq_rsbr_phantom
Counts the number of instructions that are not branch instructions but are predicted as
branch instructions to be taken. Branch prediction in SPARC64™ XII is done prior to
instruction decode. In other words, branch prediction occurs regardless of whether the
instruction is actually a branch instruction. Instructions that are not branch instructions
may be incorrectly predicted as branch instructions to be taken.

54 op_stv_wait (Non-Speculative)
Counts the number of cycles when no instructions are committed because the oldest,
uncommitted instruction is a memory access waiting for data. op_stv_wait does not count
cycles when a store instruction is waiting for data (atomic instructions are counted).

Note that op_stv_wait does not measure the cache-miss latency, since any cycles prior to
becoming the oldest, uncommitted instruction are not counted.

128 Ver 20, Oct., 2017

55 op_stv_wait_nc_pend (Non-Speculative)
Counts the number of op_stv_wait for noncacheable accesses.

56 op_stv_wait_ex (Non-Speculative)
Counts the number of op_stv_wait for integer memory access instructions. Does not
distinguish between L1 cache and L2 cache misses.

57 op_stv_wait_ll_miss (Non-Speculative)
Counts the number of op_stv_wait caused by a Last Level cache (LL cache) miss. Does not
distinguish between integer and floating-point loads.

58 op_stv_wait_ll_miss_ex (Non-Speculative)
Counts the number of op_stv_wait caused by an integer-load Last Level cache (LL cache)
miss.

59 op_stv_wait_pfp_busy (Non-Speculative)
Counts the number of op_stv_wait caused by a memory access instruction that cannot be
executed due to the lack of an available prefetch port.

60 op_stv_wait_pfp_busy_ex (Non-Speculative)
Counts the number of op_stv_wait caused by an integer memory access instruction that
cannot be executed due to the lack of an available prefetch port.

61 op_stv_wait_swpf (Non-Speculative)
Counts the number of op_stv_wait caused by a prefetch instruction.

62 op_stv_wait_pfp_busy_swpf (Non-Speculative)
Counts the number of op_stv_wait caused by a prefetch instruction that cannot be executed
due to the lack of an available prefetch port.

63 op_stv_wait_l2_miss (Non-Speculative)
Counts the number of op_stv_wait caused by an L2 cache miss. Does not distinguish
between integer and floating-point loads.

64 op_stv_wait_l2_miss_ex (Non-Speculative)
Counts the number of op_stv_wait caused by an integer-load L2 cache miss.

 11. Performance Instrumentation 129

65 op_stv_wait_l1d_miss (Non-Speculative)
Counts the number of op_stv_wait caused by an L1D cache miss. Does not distinguish
between integer and floating-point loads.

66 op_stv_wait_l1d_miss_ex (Non-Speculative)
Counts the number of op_stv_wait caused by an integer-load L1D cache miss.

67 cse_window_empty_sp_full (Non-Speculative)
Counts the number of cycles when no instructions are committed because the CSE is empty
and the store ports are full.

68 cse_window_empty (Non-Speculative)
Counts the number of cycles when no instructions are committed because the CSE is empty.

69 branch_comp_wait (Non-Speculative)
Counts the number of cycles when no instructions are committed and the oldest,
uncommitted instruction is a branch instruction. Measuring branch_comp_wait has a lower
priority than measuring eu_comp_wait.

70 eu_comp_wait (Non-Speculative)
Counts the number of cycles when no instructions are committed and the oldest,
uncommitted instruction is an integer or floating-point instruction. Measuring
eu_comp_wait has a higher priority than measuring branch_comp_wait.

71 fl_comp_wait (Non-Speculative)
Counts the number of cycles when no instructions are committed and the oldest,
uncommitted instruction is a floating-point instruction.

72 0endop (Non-Speculative)
Counts the number of cycles when no instructions are committed. 0endop also counts cycles
where the only instruction committed is an SXAR instruction.

73 1endop (Non-Speculative)
Counts the number of cycles when one instruction is committed.

74 2endop (Non-Speculative)
Counts the number of cycles when two instructions are committed.

130 Ver 20, Oct., 2017

75 3endop (Non-Speculative)
Counts the number of cycles when three instructions are committed.

77 sleep_cycle (Non-Speculative)
Counts the number of cycles when the instruction unit is halted by a SLEEP instruction.

78 single_sxar_commit (Non-Speculative)
Counts the number of cycles when the only instruction committed is an unpacked SXAR
instruction. These cycles are also counted by 0endop.

79 d_move_wait (non-speculative)
Counts the number of cycles when no instructions are committed while waiting for the
register window to be updated.

80 cse_priority_wait
Counts the number of cycles when no instructions are committed because the SMT thread
is waiting for the commit priority. In SPARC64™ XII, only one thread can commit
instructions in a given cycle, and the priority is switched every cycle as long as the other
thread is active. The event is counted only when there is an instruction ready to be
committed for the thread.

81 w_cse_window_empty (non-speculative)
Counts the number of cycles when cse_window_empty is observed for the thread that has
the commit priority.

82 w_eu_comp_wait (non-speculative)
Counts the number of cycles when eu_comp_wait is observed for the thread that has the
commit priority.

83 w_branch_comp_wait (non-speculative)
Counts the number of cycles when branch_comp_wait is observed for the thread that has
the commit priority.

84 w_op_stv_wait (non-speculative)
Counts the number of cycles when op_stv_wait is observed for the thread that has the
commit priority.

 11. Performance Instrumentation 131

85 w_d_move_wait
Counts the number of cycles when d_move_wait is observed for the thread that has the
commit priority.

86 w_0endop (non-speculative)
Counts the number of cycles when 0endop is observed for the thread that has the commit
priority.

87 w_op_stv_wait_nc_pend (non-speculative)
Counts the number of cycles when op_stv_wait_nc_pend is observed for the thread that has
the commit priority.

88 w_op_stv_wait_ll_miss (non-speculative)
Counts the number of cycles when op_stv_wait_ll_miss is observed for the thread that has
the commit priority.

89 w_op_stv_wait_ll_miss_ex (non-speculative)
Counts the number of cycles when op_stv_wait_ll_miss_ex is observed for the thread that
has the commit priority.

90 w_fl_comp_wait (non-speculative)
Counts the number of cycles when fl_comp_wait is observed for the thread that has the
commit priority.

91 w_cse_window_empty_sp_full (non-speculative)
Counts the number of cycles when cse_window_empty_sp_full is observed for the thread
that has the commit priority.

92 w_op_stv_wait_ex (non-speculative)
Counts the number of cycles when op_stv_wait_ex is observed for the thread that has the
commit priority.

93 w_op_stv_wait_pfp_busy (Non-Speculative)
Counts the number of cycles when op_stv_wait_pfp_busy is observed for the thread that has
the commit priority.

94 w_op_stv_wait_pfp_busy_ex (Non-Speculative)
Counts the number of cycles when op_stv_wait_pfp_busy_ex is observed for the thread that
has the commit priority.

132 Ver 20, Oct., 2017

95 w_op_stv_wait_pfp_busy_swpf (Non-Speculative)
Counts the number of cycles when op_stv_wait_pfp_busy_swpf is observed for the thread
that has the commit priority.

96 w_op_stv_wait_l2_miss (Non-Speculative)
Counts the number of cycles when op_stv_wait_l2_miss is observed for the thread that has
the commit priority.

97 w_op_stv_wait_l2_miss_ex (Non-Speculative)
Counts the number of cycles when op_stv_wait_l2_miss_ex is observed for the thread that
has the commit priority.

98 w_op_stv_wait_l1d_miss (Non-Speculative)
Counts the number of cycles when op_stv_wait_l1d_miss is observed for the thread that has
the commit priority.

99 w_op_stv_wait_l1d_miss_ex (Non-Speculative)
Counts the number of cycles when op_stv_wait_l1d_miss_ex is observed for the thread that
has the commit priority.

100 only_this_thread_active
Counts the number of cycles when SMT is enabled, the CSE of this thread is not empty, and
the CSEs of the other threads are empty.

101 single_mode_cycle_counts
Counts the number of cycles when the thread is active in the single-threaded mode (SMT
disabled).

102 single_mode_instructions
Counts the number of committed instructions in the single-threaded mode (SMT disabled).

103 both_threads_active
Counts the number of cycles when SMT is enabled and the CSEs of all threads are active.

104 both_threads_empty

 11. Performance Instrumentation 133

Counts the number of cycles when SMT is enabled and the CSEs of all threads are empty.

105 both_threads_suspended
Counts the number of cycles when all threads in a core are in the suspended state.

106 other_thread_commit
Counts the number of cycles when no instructions are committed because the instructions
in the other threads are commited.

107 w_strand_id_not_empty
Counts the number of cycles when CSE is not empty for the thread that has the commit
priority.

11.2.2 MMU and L1 cache Events

Standard PA Events

1 uITLB_miss
Counts the number of instruction uTLB misses.

2 uDTLB_miss
Counts the number of data uTLB misses.

3 L1I_miss
Counts the number of L1 instruction cache misses.

4 L1D_miss
Counts the number of L1 data cache misses.

5 L1I_wait_all
Counts the total time spent on processing L1 instruction cache misses (that is, the
total miss latency). In SPARC64™ XII, the L1 cache is a non-blocking cache that can
process multiple cache misses simultaneously. L1I_wait_all only counts the miss
latency for one of these misses. That is, the overlapped miss latencies are not counted.

6 L1D_wait_all

134 Ver 20, Oct., 2017

Counts the total time spent on processing L1 data cache misses (that is, the total miss
latency). In SPARC64™ XII, the L1 cache is a non-blocking cache that can process
multiple cache misses simultaneously. L1D_wait_all only counts the miss latency for
one of these misses. That is, the overlapped miss latencies are not counted.

Supplemental PA Events

7 ITLB_write
Counts the number of ITLB writes caused by an instruction fetch ITLB miss.

8 DTLB_write
Counts the number of DTLB writes caused by a data access DTLB miss.

9 swpf_success_all
Counts the number of prefetch instructions that are not lost in the L1 cache and are
sent to the LL cache .

10 swpf_fail_all
Counts the number of prefetch instructions that are lost in the L1 cache.

11 swpf_lbs_hit
Counts the number of prefetch instructions that hit in the L1 cache.

Prefetch instructions sent to the L1 cache

= swpf_success_all + swpf_fail_all + swpf_lbs_hit

12 L1I_thrashing
Counts the number of L2 read requests being issued twice during the period between
acquiring and releasing a store port. When an instruction fetch causes an L1
instruction cache miss, the requested data is updated in L1I cache. This counter is
incremented if the updated data is evicted before it can be read.

13 L1D_thrashing
Counts the number of L2 read requests being issued twice during the period between
acquiring and releasing a store port. When a memory access instruction causes an L1
data cache miss, the requested data is updated in L1D cache. This counter is
incremented if the updated data is evicted before it can be read.

14 L1D_miss_dm
Counts the number of L1 data cache misses for the load/store instructions.

 11. Performance Instrumentation 135

15 L1D_miss_pf
Counts the number of L1 data cache misses for the prefetch instructions.

16 L1D_miss_qpf
Counts the number of L1 data cache misses for the hardware prefetch requests.

11.2.3 L2 cache Events

L2 cache events may be due to the actions of VCPUs, I/Os or external requests. Events
caused by VCPUs are counted separately for each VCPU. Those caused by I/Os or
external requests are counted for all VCPUs.

In the L2 cache, the demand (dm) events are counted, but the prefetch (pf) events are
not checked. The prefetch (pf) events are counted in the LL cache. For more
information about prefetch (pf) events, refer to 11.2.4.

Standard PA Events

1 l2_sy_read_dm
Counts the number of L2 cache references in the demand requests. References in the
external requests are not counted.

2 l2_sy_miss_dm
Counts the number of L2 cache misses caused by demand requests.

3 l2_sy_miss_wait_dm_part{1,2}
Counts the total time spent on processing L2 cache misses caused by demand requests,
that is, the total miss latency. The latency of each memory access request is counted.
The total time is the sum of L2_sy_miss_wait_dm_part{1,2}.

4 l2_wb_dm
Counts the number of writebacks to the memory caused by L2 cache misses for the
demand requests.

5 l2_bi_counts
Counts the number of external cache-invalidate requests. Cache-invalidate requests
caused by IO-FST/PST requests are also counted as this event. These requests do not
check the cache data before invalidating.

136 Ver 20, Oct., 2017

6 l2_cpi_counts
Counts the number of external cache-copy-and-invalidate requests received. These
requests copy the updated cache data to memory before invalidating for inter
CPU-chip copies. Cache data that is consistent with the memory does not need to be
copied and is invalidated.

7 l2_cpb_counts
Counts the number of external cache-copyback requests received. These requests copy
updated cache data to memory.

8 l2_cpd_counts
Counts the number of internal or external IO cache-read requests (DMA read
requests).

11.2.4 LL cache Events

LL cache events may be due to the actions of VCPUs, I/Os or external requests. Events
caused by VCPUs are counted separately for each VCPU. Those caused by I/Os or external
requests are counted for all VCPUs.

Most LL cache events are categorized as either demand (dm) or prefetch (pf) events.

LL demand requests are basically due to an instruction fetch, a load/store instruction, or an
L1 prefetch (by software and hardware) instruction that misses the L1 cache and the L2
cache.

LL prefetch requests are basically due to a LL prefetch (by software and hardware) that
misses the L1 cache. LL prefetch requests are directly sent from the L1 cache to the LL
cache without referencing the L2 cache.

Due to lack of CPU resources to access the L2 cache, however, an instruction fetch, a
load/store instruction, and an L1 prefetch instruction (that misses the L1 cache and the L2
cache) can be processed as LL prefetch requests at first, and then processed as LL demand
requests. In this case, these requests are double counted as LL prefetch requests and LL
demand requests.

For example, when a load/store instruction cannot be executed due to lack of resources
needed to move data into the L1 cache, the data is first moved into the LL cache by the
prefetch request generated by hardware. Once the L1 cache resources become available, the
load/store instruction is executed by the demand request.

Standard PA Events

1 LL_read_dm
Counts the number of LL cache references in the demand requests. References by
external requests are not counted.

 11. Performance Instrumentation 137

Compatibility Note For compatibility with previous versions of the CPU,
L2_read_dm can be specified but is handled as LL_read_dm by the
software in SPARC64™ XII (such as cpustat).

2 LL_read_pf
Counts the number of LL cache references in the prefetch requests.

Compatibility Note For compatibility with previous versions of the CPU,
L2_read_pf can be specified but is handled as LL_read_pf by the software
in SPARC64™ XII (such as cpustat).

3 LL_miss_dm
Counts the number of LL cache misses caused by demand requests. This counter is the
sum of LL_miss_counts_dm_bank{0,1,2,3}.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_dm can be specified but is handled as LL_miss_dm by the
software in SPARC64™ XII (such as cpustat).

4 LL_miss_pf
Counts the number of LL cache misses caused by prefetch requests. This counter is the
sum of LL_miss_counts_pf_bank {0, 1, 2, 3}.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_pf can be specified but is handled as LL_miss_pf by the software
in SPARC64™ XII (such as cpustat).

5 LL_miss_counts_dm_bank {0, 1, 2, 3}
Counts the number of LL cache misses for each bank caused by demand requests.

When an LL cache miss causes a prefetch request for an address to be issued and then
a demand request for the same address is issued before the data is returned from the
memory, an external LCU, or an external CPU, the demand request is not counted in
LL_miss_counts_dm_bank{0,1,2,3}.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_counts_dm_bank{0, 1, 2, 3} can be specified but is handled as
LL_miss_counts_dm_bank{0, 1, 2, 3} by the software in SPARC64™ XII
(such as cpustat).

6 LL_miss_counts_pf_bank {0, 1, 2, 3}
Counts the number of LL cache misses for each bank caused by prefetch requests.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_count_pf_bank{0, 1, 2, 3} can be specified but is handled as
LL_miss_count_pf_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such
as cpustat).

7 LL_miss_wait_dm_bank {0, 1, 2, 3}

138 Ver 20, Oct., 2017

Counts the total time spent on processing LL cache misses for each bank caused by
demand requests (that is, the total miss latency for each bank). The latency of each
memory access request is counted.

When an LL cache miss causes a prefetch request for an address to be issued and then
a demand request for the same address is issued before the data is returned from the
memory, an external LCU, or an external CPU, the cycles are counted in
LL_miss_wait_dm_bank{0,1,2,3} after the demand request but before the data is
received.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_wait_dm_bank{0, 1, 2, 3} can be specified but is handled as
LL_miss_wait_dm_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such
as cpustat).

8 LL_miss_wait_pf_bank {0, 1, 2, 3}
Counts the total time spent on processing LL cache misses for each bank caused by
prefetch requests, (that is, the total miss latency for each bank). The latency of each
memory access request is counted.

The LL cache miss latencies can be derived by summing LL_miss_wait_* and then
dividing by the sum of LL_miss_counts_*.

If individual LL cache-miss latencies are calculated for pf/dm requests, the value
obtained for the miss latency of dm requests may be higher than expected.

Compatibility Note For compatibility with previous versions of the CPU,
L2_miss_wait_pf_bank{0, 1, 2, 3} can be specified but is handled as
LL_miss_wait_pf_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such
as cpustat).

9 LL_wb_dm
Counts the number of writebacks to memory caused by LL cache misses for the
demand requests.

Compatibility Note For compatibility with previous versions of the CPU,
L2_wb_dm can be specified but is handled as LL_wb_dm by the software in
SPARC64™ XII (such as cpustat).

10 LL_wb_pf
Counts the number of writebacks to memory caused by LL cache misses for the
prefetch requests.

Compatibility Note For compatibility with previous versions of the CPU,
L2_wb_pf can be specified but is handled as LL_wb_pf by the software in
SPARC64™ XII (such as cpustat).

Supplemental PA Events

11 lost_pf_pfp_full
Counts the number of weak prefetch requests that are lost due to LL-PF port full.

 11. Performance Instrumentation 139

12 lost_pf_by_abort
Counts the number of weak prefetch requests that are lost due to LL-pipe abort.

11.2.5 Bus Transaction Events

Standard PA Events

1 cpu_mem_read_counts
Counts the number of memory read requests issued by the CPU. For this event, the
same value is counted by all VCPUs.

2 cpu_mem_write_counts
Counts the number of memory write requests issued by the CPU. For this event, the
same value is counted by all VCPUs.

3 IO_mem_read_counts
Counts the number of memory read requests issued by I/O. For this event, the same
value is counted by all VCPUs.

4 IO_mem_write_counts
Counts the number of memory write requests issued by I/O. For this event, the same
value is counted by all VCPUs.

5 bi_counts
Counts the number of external cache-invalidate requests received by the LCU.
Cache-invalidate requests caused by internal IO-FST/PST requests are also counted
by this event. These requests do not check the cache data before invalidating. For this
event, the same value is counted by all VCPUs in the LCU.

6 cpi_counts
Counts the number of external cache-copy-and-invalidate requests received by the
LCU. These requests copy updated cache data to the memory before invalidating for
inter CPU-chip copies. Cache data that is consistent with the memory does not need to
be copied and is invalidated. For this event, the same value is counted by all VCPUs in
the LCU.

7 cpb_counts

140 Ver 20, Oct., 2017

Counts the number of external cache-copyback requests received by the LCU. These
requests copy updated cache data to the memory for inter CPU-chip copies. For this
event, the same value is counted by all VCPUs in the LCU.

8 cpd_counts
Counts the number of internal or external IO cache-read requests (DMA read requests)
received by the CPU chip. For this event, the same value is counted by all VCPUs in
the LCU.

Supplemental PA Events

9 IO_pst_counts
Counts the number of memory write requests (IO-PST) issued by I/Os.

11.3 Cycle Accounting

Cycle accounting is a method used for analyzing performance bottlenecks. The total time
(number of CPU cycles) required to execute an instruction sequence can be divided into
time spent in various CPU execution states (such as executing instructions, waiting for
memory access, and waiting for an execution to be completed).

SPARC64™ XII defines a large number of PA events that record detailed information about
CPU execution states, enable efficient analysis of bottlenecks, and are useful for
performance tuning.

In this document, cycle accounting is specifically defined as the analysis of instructions as
they are committed in order. SPARC64™ XII executes instructions out-of-order and has
multiple execution units. The CPU is generally in a mixed state where instructions are
being executed or waiting. One instruction may be waiting for data from memory, another
executing a floating-point multiplication, and yet another waiting for confirmation of the
branch direction. Simply analyzing the reasons why individual instructions are waiting is
not useful. Instead, cycle accounting classifies cycles by the number of instructions
committed. When a cycle commits no instructions, the conditions that prevented
instructions from committing are analyzed.

SPARC64™ XII commits up to 4 instructions per cycle. The more cycles that commit the
maximum number of instructions, the better the execution efficiency. Cycles that do not
commit any instructions have an extremely negative effect on performance, so it is
important to perform a detailed analysis of these cycles. The main causes are:

■ Waiting for a memory access to return data.

■ Waiting for an instruction execution to be completed.

■ An instruction fetch is unable to supply the pipeline with instructions.

Table 11-2 highlights some useful PA events and descibes how they can be used to analyze
the execution efficiency.

Figure 11-1 shows the relationship between the various op_stv_wait_* events. The PA
events marked with a † in the figure are synthetic events calculated from other PA events.

 11. Performance Instrumentation 141

Figure 11-1 Breakdown of op_stv_wait

Table 11-2 Useful Performance Events for Cycle Accounting

Instructions
Committed
per Cycle

Cycles Remarks

4 cycle_counts
- 3endop - 2endop
- 1endop - 0endop

N/A (maximum number of instructions are
committed)

3 3endop
2 2endop
1 1endop
0 Execution:

eu_comp_wait
+ branch_comp_wait
+ d_move_wait

eu_comp_wait
= ex_comp_wait†+ fl_comp_wait

Instruction Fetch:
cse_window_empy

L1D cache miss:
op_stv_wait
-op_stv_wait_l2_miss
-op_stv_wait_ll_miss

L2 cache miss:
op_stv_wait_l2_miss

LL cache miss:
op_stv_wait_ll_miss

Waiting Other Thread:
other_thread_commit

Others:
0endop
- op_stv_wait
- cse_window_empy
- eu_comp_wait
- branch_comp_wait
- d_move_wait
- other_thread_commit
-(instruction_flow_counts
- instruction_counts)

142 Ver 20, Oct., 2017

 12. Traps 143

12. Traps

 Trap list and priorities 12.5.

Symbol Description
-x- Traps will not occur in this mode.
P Change to privileged mode.
P(ie) Change to privileged mode if PSTATE.ie = 1.
H Change to hyperprivileged mode.

Table 12-1 Trap list, by TT value

TT Trap name Type Priority Privil
ege
level
after
the
traps
occur

Definitio
n

00016 reserved    

00616 reserved    

00716 reserved    

00816 IAE_privilege_violation precise 3.1 H

00B16 IAE_unauth_access precise 2.7 H

00C16 IAE_nfo_page precise 3.3 H

00D16 reserved    

00E16 reserved    

00F16 reserved    

01016 illegal_instruction precise 6.2 H

01116 privileged_opcode precise 7 P

01216 reserved    

01316 reserved    

01416 DAE_invalid_asi precise 12.1 H

01516 DAE_privilege_violation precise 12.5 H

01616 DAE_nc_page precise 12.6 H

01716 DAE_nfo_page precise 12.7 H

01816-01F16 reserved    

144 Ver 20, Oct., 2017

TT Trap name Type Priority Privil
ege
level
after
the
traps
occur

Definitio
n

02016 fp_disabled precise 8 P

02116 fp_exception_ieee_754 precise 11.1 P

02216 fp_exception_other precise 11.1 P

02316 tag_overflow precise 14 P

02416 clean_window precise 10.1 P

02516-02716 reserved    

02816 division_by_zero precise 15 P

02916 reserved    

02C16 reserved 

02D16 reserved    

02E16 reserved    

02F16 reserved    

03016 DAE_side_effect_page precise 12.7 H

03316 reserved    

03416 mem_address_not_aligned precise 10.2 H

03516 LDDF_mem_address_not_aligned precise 10.1 H

03616 STDF_mem_address_not_aligned precise 10.1 H

03716 privileged_action precise 11.1 H

03816 reserved    

03916 reserved    

03C16 reserved    

03D16 reserved    

04116-04F16 interrupt_level_n (n = 1 – 15)
(Interrupt_level_15 is written as
pic_overflow.)

disrupting 32-ni P(ie)

05016-05D16 reserved    

06116 PA_watchpoint (RA_watchpoint) precise 12.9 H

06216 VA_watchpoint precise 11.2 H

06516-06716 reserved    

06916-06B16 reserved    

06D16-07016 reserved    

07316 illegal_action precise 8.5 H

07416 control_transfer_instruction precise 11.1 P

07516 reserved    

i In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. In SPARC64™ XII, both have a priority of
17.

 12. Traps 145

TT Trap name Type Priority Privil
ege
level
after
the
traps
occur

Definitio
n

07816-07B16 reserved    

07C16 cpu_mondo disrupting 16.8 P(ie)

07D16 dev_mondo disrupting 16.11 P(ie)

07E16 resumable_error disrupting 33.3 P(ie)

07F16 nonresumable_error (not by hardware)  

08016-09C16 spill_n_normal (n = 0 – 7) precise 9 P

0A016-0BC16 spill_n_other (n = 0 – 7) precise 9 P

0C016-0DC16 fill_n_normal (n = 0 – 7) precise 9 P

0E016-
0FC16

fill_n_other (n = 0 – 7) precise 9 P

10016-17F16 trap_instruction precise 16.2 P

Table 12-2 Trap list, by priority

TT Trap name Type Priority Privil
ege
level
after
the
trap
occur

Definiti
on

00B16 IAE_unauth_access precise 2.7 H

00816 IAE_privilege_violation precise 3.1 H

00C16 IAE_nfo_page precise 3.3 H

01016 illegal_instruction precise 6.2 H

01116 privileged_opcode precise 7 P

02016 fp_disabled precise 8 P

07316 illegal_action precise 8.5 H

08016-09C16 spill_n_normal (n = 0 – 7) precise 9 P

0A016-0BC16 spill_n_other (n = 0 – 7) precise 9 P

0C016-0DC16 fill_n_normal (n = 0 – 7) precise 9 P

0E016-
0FC16

fill_n_other (n = 0 – 7) precise 9 P

02416 clean_window precise 10.1 P

03516 LDDF_mem_address_not_aligned precise 10.1 H

03616 STDF_mem_address_not_aligned precise 10.1 H

03416 mem_address_not_aligned precise 10.2 H

02116 fp_exception_ieee_754 precise 11.1 P

02216 fp_exception_other precise 11.1 P

146 Ver 20, Oct., 2017

TT Trap name Type Priority Privil
ege
level
after
the
trap
occur

Definiti
on

03716 privileged_action precise 11.1 H

07416 control_transfer_instruction precise 11.1 P

06216 VA_watchpoint precise 11.2 H

01416 DAE_invalid_asi precise 12.1 H

01516 DAE_privilege_violation precise 12.5 H

01616 DAE_nc_page precise 12.6 H

01716 DAE_nfo_page precise 12.7 H

03016 DAE_side_effect_page precise 12.7 H

06116 PA_watchpoint (RA_watchpoint) precise 12.9 H

02316 tag_overflow precise 14 P

02816 division_by_zero precise 15 P

10016-17F16 trap_instruction precise 16.2 P

07C16 cpu_mondo disrupting 16.8 P(ie)

07D16 dev_mondo disrupting 16.11 P(ie)

04116-04F16 interrupt_level_n (n = 1 – 15)
(Interrupt_level_15 is written as
pic_overflow.)

disrupting 32-nii P(ie)

07E16 resumable_error disrupting 33.3 P(ie)

07F16 nonresumable_error (not by hardware)  

ii In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. In SPARC64™ XII, both have a priority of
17.

 13. Memory Management Unit 147

13. Memory Management Unit

This chapter provides information about the SPARC64™ XII Memory Management Unit. It
describes the internal architecture of the MMU and how to program it.

 Address types 13.1.
The SPARC64™ XII MMUs support a 64-bit virtual address (VA) space (no VA hole) and a
48-bit real address (RA) space.

• VA(Virtual Address): Access to a virtual address is protected at the granularity of a
page. A VA is 64 bits, and all 64 bits are available in SPARC64™ XII (no VA hole). It is
identified by a context number.

• RA(Real Address): All 64 bits of an RA are valid for software, but only 48 bits are valid
for hardware.

Refer to Section 14.1 in UA2011 for information on Virtual-to-Real Translation.

Table 13-1 the SPARC64™ XII address width

 VA RA
Address width 64 bits 64 bits
Legal address width 64 bits (No VA hole) 48 bits

 TSB Translation Table (TTE) 13.4.
A TSB TTE contains the VA to RA translation for a single page mapping.

TTE Tag
context_id  va<63:22>

63 48 47 42 41 0

TTE Data
v nfo soft2 taddr<55:13> ie e cp cv p ep w soft size
63 62 61 56 55 13 12 11 10 9 8 7 6 5 4 3 0

Table 13-2 TSB TTE

Bit Field Description
Tag 63:48 context_id
Tag 41:0 va<63:22>
Data 63 v
Data 62 nfo

148 Ver 20, Oct., 2017

Data 61:56 soft2
Data 55:13 taddr<55:13> Target address (RA).

In SPARC64™ XII, if the bits taadr<55:48> are not zero, an
invalid_TSB_entry exception is generated.

Data 12 ie This ie bit in the IMMU is ignored.
Data 11 e
Data 10 cp This cp bit is ignored in SPARC64™ XII.
Data 9 cv This cv bit is ignored in SPARC64™ XII.
Data 8 p
Data 7 ep
Data 6 w
Data 5:4 soft
Data 3:0 size The page size of this entry is encoded as shown in the table below.

Size<3:0> Page size

0000 8KB

0001 64KB

0010 reserved

0011 4MB

0100 reserved

0101 256MB

0110 2GB

0111 16GB

1000-1111 reserved

 Page sizes 13.8.
SPARC64™ XII supports six page sizes : 8 KB, 64 KB, 4 MB, 256 MB, 2GB, and 16GB. The
TLBs can hold translations of all six sizes concurrently.

Table 13-3 Page types supported by SPARC64™ XII

Page type Virtual page number Page offset Encode
8KB page 51 bits 13 bits 0002
64KB page 48 bits 16 bits 0012
4MB page 42 bits 22 bits 0112
256MB page 36 bits 28 bits 1012
2GB page 33 bits 31 bits 1102
16GB 30 bits 34 bits 1112

 14. Opcode Maps 149

14. Opcode Maps

This chapter contains the opcode maps for the SPARC64™ XII instructions.

Opcodes marked with an em dash ‘’ are reserved. An attempt to execute a reserved opcode
causes an exception (Illegal_instruction).

In this chapter, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in Table 7-1 (page 26).

Table 14-1 op<1:0>

op<1:0>
0 1 2 3
Branch instruction and SETHI
Refer to Table 14-2.

CALL Arithmetic &
Miscellaneous
Refer to Table 14-3.

Memory access
instructions
Refer to Table 14-4.

Table 14-2 Branches, SETHI, and SXAR (op<1:0> = 0)

op2<2:0>
0 1 2 3 4 5 6 7
ILLTRAP BPcc

Refer to
Table 14-8.

BiccD
Refer to
Table 14-8.

BPr
Refer to
Table 14-9.

SETHI,
NOP

FBPfcc
Refer to Table
14-8.

FBfccD
Refer to
Table 14-8.

SXAR1,
SXAR2

150 Ver 20, Oct., 2017

Table 14-3 Arithmetic & Miscellaneous (op<1:0> = 2)

op3<3:0> op3<5:4>
0 1 2 3

0 ADD ADDcc TADDcc WRYD (rd = 0)
WRCCR (rd = 2)
WRASI (rd = 3)
WRFPRS (rd = 6)
WRPCRPPCR (rd = 16)
WRPICPPIC (rd = 17)
WRGSR (rd = 19)
WRPAUSE (rd = 27)
WRXAR (rd = 29)
WRXASR (rd = 30)

1 AND ANDcc TSUBcc
2 OR Orcc TADDccTVD

3 XOR XORcc TSUBccTVD

4 SUB SUBcc MULSccD FPop1 (Refer to Table 14-5 and
Table 14-6)

5 ANDN ANDNcc SLL (x = 0, r = 0), SLLX (x = 1, r = 0), ROLX
(x = 1, r = 1)

FPop2 (Refer to Table 14-7)

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (Refer to Table 14-13)
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2 (Refer to Table 14-16)
8 ADDC ADDCcc RDYD (rs1 = 0, i = 0)

RDCCR (rs1 = 2, i = 0)
RDASI (rs1 = 3, i = 0)
RDTICKPNPT (rs1 = 4, i = 0)
RDPC (rs1 = 5, i = 0)
RDFPRS (rs1 = 6, i = 0)
MEMBAR (rs1 = 15, rd = 0,
i = 1)
RDPCRPPCR (rs1 = 16, i = 0)
RDPICPPIC (rs1 = 17, i = 0)
RDGSR (rs1 = 19, i = 0)
RDSTICKPNPT (rs1 = 24, i = 0)
RDXASR (rs1 = 30, i = 0)

JMPL

9 MULX  RETURN
A16 UMULD UMULccD Tcc

B16 SMULD SMULccD FLUSHW FLUSH

C16 SUBC SUBCcc MOVcc SAVE
D16 UDIVX  SDIVX RESTORE
E16 UDIVD UDIVccD POPC (rs1 = 0)

F16 SDIVD SDIVccD MOVR (rs1 = 0) 

 14. Opcode Maps 151

Table 14-4 Memory access instruction (op<1:0> = 3)

op3<3:0> op3<5:4>
0 1 2 3

0 LDUW LDUWAPASI LDF (urs2<2:1> = 002)
LDFUWXII (urs2<2:1> = 012)
LDFSWXII (urs2<2:1> = 112)

LDFAPASI

1 LDUB LDUBAPASI LDFSRD (rd = 0)
LDXFSR (rd = 1)
LDXEFSR (rd = 3)



2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDTWD
(rd even)

LDTWAD,PASI (rd even)
LDTXA (rd even)

LDDF (urs2<1> = 0)
LDDFDSXII (urs2<1> = 1)

LDDFAPASI

LDBLOCKF
LDSHORTF

4 STW STWAPASI STF (urs2<1> = 0)
STFUWXII (urs2<1> = 1)

STFAPASI

5 STB STBAPASI STFSRD (rd = 0)
STXFSR (rd = 1)



6 STH STHAPASI STQF STQFAPASI

7 STTWD
(rd even)

STTWAD,PASI (rd even)
STBIN

XFILLN

STDF (urs2<1> = 0)
STDFDSXII (urs2<1> = 1)

STDFAPASI

STBLOCKF
STPARTIALF
STSHORTF

XFILLN
8 LDSW LDSWAPASI  

9 LDSB LDSBAPASI  

A16 LDSH LDSHAPASI  

B16 LDX LDXAPASI  

C16   STFR (type = 0 or i = 1)
STFRUWXII (type = 1)

CASAPASI

D16 LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E16 STX STXAPASI

STBIN

XFILLN

 CASXAPASI

F16 SWAPD SWAPAD,PASI STDFR (type = 0 or i = 1)
STDFRDSXII(type = 1 and
m = 0)
STDFRDWXII(type = 1 and
m = 1)



152 Ver 20, Oct., 2017

Table 14-5 FPop1 (op<1:0> = 2, op3 = 3416) (1/2)

opf<8:4> opf<3:0>
0 1 2 3 4 5 6 7

0016  FMOVs FMOVd FMOVq  FNEGs FNEGd FNEGq
0116        
0216        
0316        
0416  FADDs FADDd FADDq  FSUBs FSUBd FSUBq
0516  FNADDs FNADDd     
0616        
0716        
0816  FsTOx FdTOx FqTOx FxTOs   
0916        
0A16        
0B16        
0C16     FiTOs  FdTOs FqTOs
0D16  FsTOi FdTOi FqTOi    
0E16 – 1F16        

Table 14-6 FPop1 (op<1:0> = 2, op3 = 3416) (2/2)

opf<8:4> opf<3:0>
8 9 A16 B16 C16 D16 E16 F16

0016  FABSs FABSd FABSq    
0116        
0216  FSQRTs FSQRTd FSQRTq    
0316        
0416  FMULs FMULd FMULq  FDIVs FDIVd FDIVq
0516  FNMULs FNMULd     
0616  FsMULd     FdMULq 
0716  FNsMULd      
0816 FxTOd    FxTOq   
0916        
0A16        
0B16        
0C16 FiTOd FsTOd  FqTOd FiTOq FsTOq FdTOq 
0D16        
0E16 – 1F16        

 14. Opcode Maps 153

Table 14-7 FPop2 (op<1:0> = 2, op3 = 3516)

opf<8:4> opf<3:0>
0 1 2 3 4 5 6 7 8-F16

0016  FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0)  (Reserve for FMOVR enhance) 

0116         
0216      FMOVRsZiii FMOVRdZiii FMOVRqZiii 

0316         
0416  FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1)  FMOVRsLEZiii FMOVRdLEZiii FMOVRqLEZiii 
0516  FCMPs FCMPd FCMPq  FCMPEsiii FCMPEdiii FCMPEqiii 
0616      FMOVRsLZiii FMOVRdLZiii FMOVRqLZiii 
0716         
0816  FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2)  (Reserve for FMOVR enhance) 
0916         
0A16      FMOVRsNZiii FMOVRdNZiii FMOVRqNZiii 
0B16         
0C16  FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3)  FMOVRsGZiii FMOVRdGZiii FMOVRqGZiii 
0D16         
0E16      FMOVRsGEZiii FMOVRdGEZiii FMOVRqGEZiii 
0F16         
1016  FMOVs (icc) FMOVd (icc) FMOVq (icc)     
1116-1716         
1816  FMOVs (xcc) FMOVd (xcc) FMOVq (xcc)     
1916-1F16         

iii iw<13> = 0

154 Ver 20, Oct., 2017

Table 14-8 cond<3:0>

cond<3:0> BPcc
op = 0
op2 = 1

Bicc
op = 0
op2 = 2

FBPfcc
op = 0
op2 = 5

FBfcc
op = 0
op2 = 6

Tcc
op = 2
op3 = 3A16

016 BPN BND FBPN FBND TN

116 BPE BED FBPNE FBNED TE

216 BPLE BLED FBPLG FBLGD TLE

316 BPL BLD FBPUL FBULD TL

416 BPLEU BLEUD FBPL FBLD TLEU

516 BPCS BCSD FBPUG FBUGD TCS

616 BPNEG BNEGD FBPG FBGD TNEG

716 BPVS BVSD FBPU FBUD TVS

816 BPA BAD FBPA FBAD TA

916 BPNE BNED FBPE FBED TNE

A16 BPG BGD FBPUG FBUGD TG

B16 BPGE BGED FBPGE FBGED TGE

C16 BPGU BGUD FBPUGE FBUGED TGU

D16 BPCC BCCD FBPLE FBLED TCC

E16 BPPOS BPOSD FBPULE FBULED TPOS

F16 BPVC BVCD FBPO FBOD TVC

Table 14-9 rcond<2:0>

rcond<2:0> BPr
op = 0
op2 = 3
iw<28> = 0

Cbcond
op = 0
op2 = 3
iw<28> = 1

MOVr
op = 2
op2 = 2F16

FMOVr
op = 2
op2 = 3516

0    
1 BRZ C{W|X}B{NE|E} MOVRZ FMOVR{s|d|q}Z
2 BRLEZ C{W|X}B{G|LE} MOVRLEZ FMOVR{s|d|q}LEZ
3 BRLZ C{W|X}B{GE|L} MOVRLZ FMOVR{s|d|q}LZ
4  C{W|X}B{GU|LEU}  
5 BRNZ C{W|X}B{CC|CS} MOVRNZ FMOVR{s|d|q}NZ
6 BRGZ C{W|X}B{POS|NEG} MOVRGZ FMOVR{s|d|q}GZ
7 BRGEZ C{W|X}B{VC|VS} MOVRGEZ FMOVR{s|d|q}GEZ

 14. Opcode Maps 155

Table 14-10 cc, opf_cc (MOVcc, FMOVcc)

cc2 cc1 cc0 Condition code used
0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 
1 1 0 xcc

1 1 1 

Table 14-11 cc fields (FBPfcc, FCMP, FCMPE, FLCMP and FPCMP)

cc1 cc0 Condition code used
0 0 fcc0
0 1 fcc1
1 0 fcc2
1 1 fcc3

Table 14-12 cc fields (BPcc and Tcc)

cc1 cc0 Condition code used
0 0 icc
0 1 
1 0 xcc
1 1 

Table 14-13 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (1/3)

opf<3:0
>

opf<8:4>
0016 0116 0216 0316 0416 0516 0616 0716

016 EDGE8 ARRAY8 FCMPLE16   FPADD16 FZERO FAND

116 EDGE8N   FMUL8x16  FPADD16S FZEROS FANDS

216 EDGE8L ARRAY16 FCMPNE16  FPADD64 FPADD32 FNOR FXNOR

316 EDGE8LN   FMUL8x16AU  FPADD32S FNORS FXNORS

416 EDGE16 ARRAY32 FCMPLE32   FPSUB16 FANDNOT2 FSRC1

516 EDGE16N  FSLL32XII FMUL8x16AL  FPSUB16S FANDNOT2S FSRC1S

616 EDGE16L  FCMPNE32 FMUL8sUx16 FPSUB64 FPSUB32 FNOT2 FORNOT2

716 EDGE16LN LZD FSRL32XII FMUL8uLx16  FPSUB32S FNOT2S FORNOT2S

816 EDGE32 ALIGNAD
DRES

FCMPGT16 FMULD8sUx16 FALIGNDAT
A

 FANDNOT1 FSRC2

916 EDGE32N BMASK  FMULD8uLx16   FANDNOT1S FSRC2S

A16 EDGE32L ALIGNAD
DRES
_LITTLE

FCMPEQ16 FPACK32   FNOT1 FORNOT1

B16 EDGE32LN   FPACK16 FPMERGEXII

 FNOT1S FORNOT1S

C16   FCMPGT32  BSHUFFLE  FXOR FOR

D16    FPACKFIX FEXPAND  FXORS FORS

156 Ver 20, Oct., 2017

opf<3:0

opf<8:4>
E16   FCMPEQ32 PDIST FPMUL64XII  FNAND FONE

F16   FSRA32XII  FPMUL32XII  FNANDS FONES

Table 14-14 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (2/3)

opf
<3:0>

opf<8:4>
0816 0916 0A16 0B16 0C16 0D16 0E16 0F16

016 SHUTDOW
N

FAESENCX FADDtd FADDo
d

FCMPLE16X
(urs3<1:0> = 002)
FPCMPLE16X
(urs3<1:0> = 002)

FPCMPLE16FXXII
(urs3<1:0> = 102)
FPCMPLE16XACCXII
(urs3<1:0> = 112)

FCMPLE8X
(urs3<1:0> = 002)
FPCMPLE8X
(urs3<1:0> = 002)

FPCMPLE8FXXII
(urs3<1:0> = 102)
FPCMPLE8XACCXII
(urs3<1:0> = 112)

 

116 SIAM FAESDECX FSUBtd FSUBo
d

FUCMPLE16X
(urs3<1:0> = 002)
FPCMPULE16X
(urs3<1:0> = 002)

FPCMPULE16FX XII
(urs3<1:0> = 102)
FPCMPULE16XACCXII
(urs3<1:0> = 112)

FUCMPLE8X
(urs3<1:0> = 002)
FPCMPULE8X
(urs3<1:0> = 002)

FPCMPULE8FXXII
(urs3<1:0> = 102)
FPCMPULE8XACCXII
(urs3<1:0> = 112)

 

216 FAESENCLX FMULtd FMULo
d FPCMPLE4XXII

(urs3<1:0> = 002)
FPCMPLE4FXXII
(urs3<1:0> = 102)
FPCMPLE4XACCXII
(urs3<1:0> = 112)

FPCMPGT4XXII
(urs3<1:0> = 002)
FPCMPGT4FXXII
(urs3<1:0> = 102)
FPCMPGT4XACCXII
(urs3<1:0> = 112)

 

316 SLEEP FAESDECLX FDIVtd FDIVo
d

FUCMPNE16X
(urs3<1:0> = 002)
FPCMPUNE16X
(urs3<1:0> = 002)

FPCMPUNE16FXXII
(urs3<1:0> = 102)
FPCMPUNE16XACCXII
(urs3<1:0> = 112)

FUCMPNE8X
(urs3<1:0> = 002)
FPCMPUNE8X
(urs3<1:0> = 002)

FPCMPUNE8FXXII
(urs3<1:0> = 102)
FPCMPUNE8XACCXII
(urs3<1:0> = 112)

 

 14. Opcode Maps 157

416  FAESKEYX FCMPtd FCMPo
d

FCMPLE32X
(urs3<1:0> = 002)
FPCMPLE32X
(urs3<1:0> = 002)

FPCMPLE32FXXII
(urs3<1:0> = 102)
FPCMPLE32XACCXII
(urs3<1:0> = 112)

FCMPLE64X
(urs3<1:0> = 002)
FPCMPLE64X
(urs3<1:0> = 002)

FPCMPLE64FXXII
(urs3<1:0> = 102)
FPCMPLE64XACCXII
(urs3<1:0> = 112)

FPMAX
32x



516 SDIAM FPSELMOV8X
(urs3<1> = 0)
FPSELMOV8F

XXII
(urs3<1> = 1)

FCMPEtd  FUCMPLE32X
(urs3<1:0> = 002)
FPCMPULE32X
(urs3<1:0> = 002)

FPCMPULE32FXXII
(urs3<1:0> = 102)
FPCMPULE32XACCXII
(urs3<1:0> = 112)

FUCMPLE64X
(urs3<1:0> = 002)
FPCMPULE64X
(urs3<1:0> = 002)

FPCMPULE64FXXII
(urs3<1:0> = 102)
FPCMPULE64XACCXII
(urs3<1:0> = 112)

FPMAX
u32x



616  FPSELMOV16
X
(urs3<1> = 0)
FPSELMOV16

FXXII
(urs3<1> = 1)

FQUAtd FQUAo
d

FPCMPULE4XXII
(urs3<1:0> = 002)
FPCMPULE4FXXII
(urs3<1:0> = 102)
FPCMPULE4XACCXII
(urs3<1:0> = 112)

FPCMPUGT4XXII
(urs3<1:0> = 002)
FPCMPUGT4FXXII
(urs3<1:0> = 102)
FPCMPUGT4XACCXII
(urs3<1:0> = 112)

FPMIN
32x



716  FPSELMOV32
X
(urs3<1> = 0)
FPSELMOV32

FXXII
(urs3<1> = 1)

 FRQUA
od

FUCMPNE32X
(urs3<1:0> = 002)
FPCMPUNE32X
(urs3<1:0> = 002)

FPCMPUNE32FXXII
(urs3<1:0> = 102)
FPCMPUNE32XACCXII
(urs3<1:0> = 112)

FUCMPNE64X
(urs3<1:0> = 002)
FPCMPUNE64X
(urs3<1:0> = 002)

FPCMPUNE64FXXII
(urs3<1:0> = 102)
FPCMPUNE64XACCXII
(urs3<1:0> = 112)

FPMIN
u32X



816  FDESENCX  FXADD
odLO

FCMPGT16X
(urs3<1:0> = 002)
FPCMPGT16X
(urs3<1:0> = 002)

FPCMPGT16FXXII
(urs3<1:0> = 102)
FPCMPGT16XACCXII
(urs3<1:0> = 112)

FCMPGT8X
(urs3<1:0> = 002)
FPCMPGT8X
(urs3<1:0> = 002)

FPCMPGT8FXXII
(urs3<1:0> = 102)
FPCMPGT8XACCXII
(urs3<1:0> = 112)

 

916 PADD32 FDESPC1X  FXADD
odHI

FUCMPGT16X
(urs3<1:0> = 002)
FPCMPUGT16X
(urs3<1:0> = 002)

FPCMPUGT16FXXII
(urs3<1:0> = 102)
FPCMPUGT16XACCXII
(urs3<1:0> = 112)

FUCMPGT8X
(urs3<1:0> = 002)
FPCMPUGT8X
(urs3<1:0> = 002)

FPCMPUGT8FXXII
(urs3<1:0> = 102)
FPCMPUGT8XACCXII
(urs3<1:0> = 112)

 

A16  FDESIPX  FXMUL
odLO

   

B16  FDESIIPX   FUCMPEQ16X
(urs3<1:0> = 002)
FPCMPUEQ16X
(urs3<1:0> = 002)

FPCMPUEQ16FXXII
(urs3<1:0> = 102)
FPCMPUEQ16XACCXII
(urs3<1:0> = 112)

FUCMPEQ8X
(urs3<1:0> = 002)
FPCMPUEQ8X
(urs3<1:0> = 002)

FPCMPUEQ8FXXII
(urs3<1:0> = 102)
FPCMPUEQ8XACCXII
(urs3<1:0> = 112)

 

158 Ver 20, Oct., 2017

C16  FDESKEYX FbuxTOt
d

 FCMPGT32X
(urs3<1:0> = 002)
FPCMPGT32X
(urs3<1:0> = 002)

FPCMPGT32FXXII
(urs3<1:0> = 102)
FPCMPGT32XACCXII
(urs3<1:0> = 112)

FCMPGT64X
(urs3<1:0> = 002)
FPCMPGT64X
(urs3<1:0> = 002)

FPCMPGT64FXXII
(urs3<1:0> = 102)
FPCMPGT64XACCXII
(urs3<1:0> = 112)

FPMAX
64x



D16   FtdTObu
x

 FUCMPGT32X
(urs3<1:0> = 002)
FPCMPUGT32X
(urs3<1:0> = 002)

FPCMPUGT32FXXII
(urs3<1:0> = 102)
FPCMPUGT32XACCXII
(urs3<1:0> = 112)

FUCMPGT64X
(urs3<1:0> = 002)
FPCMPUGT64X
(urs3<1:0> = 002)

FPCMPUGT64FXXII
(urs3<1:0> = 102)
FPCMPUGT64XACCXII
(urs3<1:0> = 112)

FPMAX
u64x



E16 FMONTMU

LXII

FMONTSQ

RXII

FPCSL8XXII FbsxTOt
d

FodTO
td

FPCMPUNE4XXII
(urs3<1:0> = 002)
FPCMPUNE4FXXII
(urs3<1:0> = 102)
FPCMPUNE4XACCXII
(urs3<1:0> = 112)

FPCMPUEQ4XXII
(urs3<1:0> = 002)
FPCMPUEQ4FXXII
(urs3<1:0> = 102)
FPCMPUEQ4XACCXII
(urs3<1:0> = 112)

FPMIN
64x



F16  FPADD128XH
I

FtdTObs
x

FtdTO
od

FUCMPEQ32X
(urs3<1:0> = 002)
FPCMPUEQ32X
(urs3<1:0> = 002)

FPCMPUEQ32FXXII
(urs3<1:0> = 102)
FPCMPUEQ32XACCXII
(urs3<1:0> = 112)

FUCMPEQ64X
(urs3<1:0> = 002)
FPCMPUEQ64X
(urs3<1:0> = 002)

FPCMPUEQ64FXXII
(urs3<1:0> = 102)
FPCMPUEQ64XACCXII
(urs3<1:0> = 112)

FPMIN
u64x



Table 14-15 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (3/3)

opf<
3:0>

opf<8:4>
1016 1116 1216 1316 1416 1516 1616 1716 1816 1916-

1F16
016 FSEXTWXII MOVdTOxXII FPCMPULE8    FCMP

EQd
FMAXd  

116 FZEXTWXII MOVsTOuwXII
(urs3<0> = 0)
MOVfwTOuwXII
(urs3<0> = 1)

   FLCMPs FCMP
EQs

FMAXs  

216   FPCMPUNE8   FLCMPd FCMP
EQEd

FMINd  

316  MOVsTOswXII
(urs3<0> = 0)
MOVfwTOswXII
(urs3<0> = 1)

    FCMP
EQEs

FMINs  

416 FPCMP64X  FPADD8XII   FPSUB8XII FCMP
LEEd

FRCPA
d

FEPERM32XXII 

516 FPCMPU64X      FCMP
LEEs

FRCPA
s

FEPERM64XXII 

616 FPSLL64X      FCMP
LTEd

FRSQR
TAd

 

716 FPSRL64X      FCMP
LTEs

FRSQR
TAs

 

 14. Opcode Maps 159

816  MOVxTOd FPCMPUGT8    FCMP
NEd

FTRIS
SELd

 

916  MOVwTOs
(urs3<1:0> = 0
02)
MOVwTOfuwXII
(urs3<1:0> = 0
12)
MOVwTOfswXII
(urs3<1:0> = 1
12)

    FCMP
NEs

  

A16   FPCMPUEQ8    FCMP
NEEd

FTRIS
MULd

 

B16       FCMP
NEEs

  

C16       FCMP
GTEd

FEXPA
d

 

D16       FCMP
GTEs

  

E16       FCMP
GEEd

  

F16 FPSRA64X      FCMP
GEEs

  

Table 14-16 IMPDEP2: (op<1:0> = 2, op3 = 3716)

size var
0 1 2 3

016 FPMADDX FPMADDXHI FTRIMADDd FSELMOVd

116 FMADDs FMSUBs FNMSUBs FNMADDs

216 FMADDd FMSUBd FNMSUBd FNMADDd

316   FSHIFTORX FSELMOVs

160 Ver 20, Oct., 2017

15. Assembly Language Syntax

Refer to the SPARC64 X/X+ specification.

	Contents
	Preface
	1. Document Overview
	1.1. Fonts and Notations
	1.1.1. Font
	1.1.2. Notation
	1.1.3. Meaning of reserved and (
	1.1.4. Access attribute
	1.1.5. Informational Notes

	2. Definitions
	3. Architecture Overview
	4. Data Formats
	5. Register
	5.5. Ancillary State Registers
	5.5.4. Tick (TICK) Register (ASR 4)
	5.5.12. System Tick (STICK) Register (ASR 24)
	5.5.15. Extended Arithmetic Register (XAR) (ASR 29)
	5.5.16. Extended Arithmetic Register Status Register (XASR) (ASR 30)

	6. Instruction Set Overview
	7. Instructions
	7.41. Floating-Point Merge
	7.55. Load Floating-Point Register
	7.56. Load Floating-Point from Alternate Space
	7.75. Prefetch
	7.75.1. Prefetch Variants
	7.75.2. Weak versus Strong Prefetches

	7.89. Sleep
	7.94. Block Initializing Store
	7.96. Store Floating-Point
	7.97. Store Floating-Point into Alternate Space
	7.114. Cache Line Fill with Undetermined Values
	7.137. Store Floating-Point Register on Register Condition
	7.139. SIMD Compare (type A)
	7.143. Partitioned Shift
	7.144. Partitioned Multiply
	7.145. Integer Sign/Zero Extension
	7.146. Fixed-Point Partitioned Add (8-bit)
	7.147. Fixed-Point Partitioned Subtract (8-bit)
	7.148. Full Element Permutation
	7.149. Partition Concatenate Shift Left
	7.150. SIMD Compare (type B)
	7.151. SIMD Compare and Accumulate Results
	7.152. Partitioned Move for Selected Floating-Point Register on Floating-Point Register’s Condition (extended for SPARC64™ XII)
	7.153. Move Floating-Point Register to Integer Register
	7.154. Move Integer Register to Floating-Point Register
	7.155. Montgomery Multiplication

	8. IEEE Std. 754-1985 Requirements for SPARC-V9
	8.1.2. Behavior when FSR.ns = 1

	9. Memory Models
	10. Address Space Identifiers
	10.3. ASI Assignment
	10.3.1. Supported ASIs

	10.5. ASI-Accessible Registers
	10.5.5. ASI_RANDOM_NUMBER

	11. Performance Instrumentation
	11.1 Overview
	11.1.1 Pseudo-code Examples
	11.1.1.1 Counter Clear/Set
	11.1.1.2 Counter Event Selection and Start
	11.1.1.3 Stop Counter and Read

	11.2 Description of PA Events
	11.2.1 Instruction and Trap Statistics
	11.2.2 MMU and L1 cache Events
	11.2.3 L2 cache Events
	11.2.4 LL cache Events
	11.2.5 Bus Transaction Events

	11.3 Cycle Accounting

	12. Traps
	12.5. Trap list and priorities

	13. Memory Management Unit
	13.1. Address types
	13.4. TSB Translation Table (TTE)
	13.8. Page sizes

	14. Opcode Maps
	15. Assembly Language Syntax

