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Preface 

This documentation defines the logical specification of SPARC64™ XII which is based on 
Oracle SPARC Architecture 2011 (UA2011). The differences from the UA2011 specification 
and the SPARC64™ X/X+ specification are noted in this document or as references to other 
specifications.  

This specification refers to the following documents.  
• Oracle SPARC Architecture 2011. Draft D1.0.0, Jan 2016. 

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentati
on/140521-ua2011-d096-p-ext-2306580.pdf 
This document is referred to as UA2011. 

• SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010 
http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf 
This document is referred to as SPARC64™ VIIIfx Extensions. 

• SPARC64™ X/X+ specification ver.29, 27 Jan. 2015 
http://www.fujitsu.com/global/Images/SPARC64X_Xplus_Specification_v29.pdf 
This document is referred to as the SPARC64™ X/X+ specification. 

• SPARC® Joint Programming Specification (JPS1): Commonality Release 1.0.4, 31 
May 2002 
http://www.fujitsu.com/downloads/PRMPWR/JPS1-R1.0.4-Common-pub.pdf  
This document is referred to as JPS1.  

  

http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf
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1. Document Overview 

 Fonts and Notations 1.1.

 Font 1.1.1.
• Arial font is used for registers and register fields (REG and REG.field, respectively). 

This font is also used when referring to the field of an ASI register.  
• Courier font is used for ASI names (ASI_NAME), which are prefixed by ASI_. We 

avoid the use of the construction ASI_NAME.field. 
• Italic Arial font is used for exceptions (exception_name). 
• Uppercase Courier font is used for instructions (INSTRUCTION). 
• Courier font is used for CPU states (CPU_state).  
• Italic Times Roman font or “” is used for reserved, which indicates that a register 

field is reserved for future expansion. 

 Notation 1.1.2.
The notation used in this document generally follows the notation used in JPS1.  

Specifically, 
• Numbers are decimal unless otherwise indicated by a numeric subscript (for example, 

10002). 
• Spaces may be inserted in long binary or hex numbers (for example, 1000 000016) to 

improve readability.  
• Verilog notation may be used for some numbers. For example, the prefixes 

“{bit_width}’b” and “{bit_width}’h” indicate binary and hexadecimal numbers, 
respectively. When Verilog notation is used, there is no numeric subscript indicating 
the base. 

• Numbered integer and floating-point registers are written as R[number] and 
F[number], respectively.  

• Instruction names and various objects may contain the symbols {} | * and n.  
• A character string enclosed by {} is optional. For example, 

ASI_PRIMARY{_LITTLE} expands to ASI_PRIMARY and 
ASI_PRIMARY_LITTLE.  

• If there are | symbols inside the curly braces {}, one of the character strings 
separated with the pipe must be selected. For example, FMUL{s|d} expands to 
FMULs and FMULd. An empty charater string makes the alternatives inside the 
braces optional. For example, F{|N}sMULd is equivalent to F{N}sMULd. 

• The * and n symbols indicate a character string and numeric substitution, 
respectively, for all possible values. For example, DAE_* expands to 
DAE_invalid_asi, DAE_nc_page, DAE_nfo_page, DAE_privilege_violation, and 
DAE_side_effect_page. And spill_n_normal expands to spill_0_normal, 
spill_1_normal, spill_2_normal, spill_3_normal, spill_4_normal, spill_5_normal, 
spill_6_normal, and spill_7_normal.  
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• Bit string formats <a> and <a:b>. 
• The double colon (::) operator concatenates two bit strings. 
• ASCII characters are used.  

 Meaning of reserved and  1.1.3.
reserved or  indicates that a bit field is reserved for future expansion and has an undefined 
value. reserved is used when a future expansion is expected and a brief description of the 
field is provided.  is used when the usage is undecided. No description is provided for 
fields marked with . 

 Access attribute 1.1.4.
Registers and register fields may have the access attributes shown in the table below.  

Table 1-1 Access attribute 

Access 
attribute 

Object Operation 
Read Write 

 Field Undefined value Ignored.  
R Register and Field The value is read.  Ignored.  
RO Register and Field The value is read.  Not permitted.  
R0 Field Zero is read.  Ignored.  
W Register and Field Undefined value The value is written.  
WO Register and Field Not permitted.  The value is written.  
RW Register and Field The value is read.  The value is written.  
RW1C Field The value is read.  Writing 1 clears the 

field. (The bit range that 
is reset to 0 depends on 
the field.) 

 

 Informational Notes 1.1.5.
This document contains several different types of informational notes. 

Compatibility Note Compatibility notes explain compatibility differences 
versus SPARC V8/V9, JPS1, SPARC64 VIIIfx, SPARC64 X/X+, and 
UA2011.  

 

Note Notes provide general information. 
 

Programming Note Programming notes provide information for writing 
software.  
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2. Definitions 

- CPUID :  

A CPUID is the unique logical ID of a strand in a system. The CPUID contains the 
logical system board ID (LSBID), physical processor ID (chip ID) within a system board, 
last level cache and core unit ID (LCU ID), Core ID, and SMT ID. 

 

- LCU :  

L3 cache is divided into four blocks. One of the L3 blocks (and three cores 
corresponding to that L3 block) is called as LCU in this specification. 

 

- Virtual Processor (VCPU) :  

A virtual processor (refer to Chapter 2 of UA2011). SPARC64™ XII has eight VCPUs 
per physical CPU core. 
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3. Architecture Overview 

Feature 
• HPC-ACE and 8-SMT are supported.  
• VA is 64bits wide and has no hole bit. 
• RA is normally 64 bits wide.  
• Instructions only on the local ROM can be executed for noncacheable space. 
 

Present parameter 
• 12 cores (chip) and 8-SMT (core) 
• L1 instruction cache : 64KB/4way (core) ; L1 data cache : 64KB/8way (core) ; line size 

of L1 cache memories: 128 bytes. 
• Unified L2 cache : 512KB/16way (core); line size of L2 cache memories: 128 bytes. 
• Unified L3 cache : 8MB/16way (LCU); line size of L3 cache memories: 128bytes. 
• For main TLB, set-associative TLB only. Instruction : 2,048 entries/16way (core); 

data : 2,048 entries/16way (core); page size : 6 sizes (8KB, 64KB, 4MB, 256MB, 2GB, 
and 16GB).  
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4. Data Formats 

Refer to the SPARC64 X/X+ specification.
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5. Register 

 Ancillary State Registers 5.5.

 Tick (TICK) Register (ASR 4) 5.5.4.
 

 
 counter 
63 62 0 

 
Bit Field Access Description 
62:0 counter R TICK counter 

 

The counter field of the TICK register is a 63-bit counter (SPARC V9 Impl. Dep. #105b) that 
counts the processor clock cycles. Reading TICK<63> returns 0. 

Nonprivileged software can read the TICK register using the RDTICK instruction but only if 
nonprivileged access to the TICK register is enabled. If nonprivileged access is disabled, an 
attempt by nonprivileged software to read the TICK register causes a privileged_action 
exception. 

Table 5-1 shows the exceptions generated by reading or writing the TICK register. 

Table 5-1 exceptions by reading or writing the TICK register 

RDTICK (WRTICK does not 
exist) 

RDPR WRPR 

OK (if nonprivileged access is enabled) 
privileged_action (if nonprivileged 
access is disabled) 

 privileged_opcode privileged_opcode 

 

 System Tick (STICK) Register (ASR 24) 5.5.12.
 

 
 counter 
63 62 0 

 

Bit Field Access Description 
62:0 counter R Elapsed time value 

 

The counter field of the STICK register is a 63-bit counter that increments at a rate 
determined by a clock signal external to the processor. Reading STICK<63> returns 0. 
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Nonprivileged software can read the STICK register by using the RDSTICK instruction, but 
only if nonprivileged access to STICK register is enabled. If nonprivileged access is disabled, 
an attempt by nonprivileged software to read the STICK register causes a privileged_action 
exception. 

Table 5-2 shows the exceptions generated by reading or writing the STICK register. 

   Table 5-2  exceptions by reading or writing the STICK register 

RDSTICK WRSTICK 

OK (if nonprivileged access is enabled) 
privileged_action (if nonprivileged access is 
disabled) 

illegal_instruction 
(different from TICK 
register) 

 

Compatibility Note In JPS1, writing the STICK register in nonprivileged 
mode generates a privileged_opcode exception. 

A read of the STICK<62:0> register returns 63-bit data. 

 Extended Arithmetic Register (XAR) (ASR 29) 5.5.15.
 

 
0 f_v 0 f_simd f_urd f_urs1 f_urs2 f_urs3 s_v 0 s_simd s_urd s_urs1 s_urs2 s_urs3 

63 32 31 30 29 28 27 25 24 22 21 19 18 16 15 14 13 12 11 9 8 6 5 3 2 0 

 
Bit Field Access Description 

31 f_v RW Indicates whether the contents of the fields 
beginning with f_ are valid. If f_v = 1, the contents 
of the f_ fields are applied to the instruction that 
executes first. After the 1st instruction completes, 
all f_ fields are cleared. 

28 f_simd RW If f_simd = 1, the 1st instruction is executed as a 
SIMD instruction. If f_simd = 0, execution is 
non-SIMD. 

27:25 f_urd RW Extends the rd field of the 1st instruction.  
24:22 f_urs1 RW Extends the rs1 field of the 1st instruction.  
21:19 f_urs2 RW Extends the rs2 field of the 1st instruction.  
18:16 f_urs3 RW Extends the rs3 field of the 1st instruction.  
15 s_v RW Indicates whether the contents of the fields 

beginning with s_ are valid. If s_v = 1, the contents 
of the s_ fields are applied to the instruction that 
executes second. After the 2nd instruction 
completes, all s_ fields are cleared. 

12 s_simd RW If s_simd = 1, the 2nd instruction is executed as a 
SIMD instruction. If s_simd = 0, execution is 
non-SIMD. 

11:9 s_urd RW Extends the rd field of the 2nd instruction.  
8:6 s_urs1 RW Extends the rs1 field of the 2nd instruction.  
5:3 s_urs2 RW Extends the rs2 field of the 2nd instruction.  
2:0 s_urs3 RW Extends the rs3 field of the 2nd instruction.  

 

The XAR register extends the instruction fields. It holds the upper 3 bits of an instruction’s 
register number fields (rs1, rs2, rs3, rd) and indicates whether the instruction is a SIMD 
instruction.  
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The register contains fields for two separate instructions. There are V (valid) bits for the 
first and second instructions; all other fields for a given instruction are valid only when v = 
1. These register fields are mainly used to specify floating-point registers, except the 
*_urs3<1> fields, which are also used to disable hardware prefetch for integer and 
floating-point load/store instructions.  

 

Aliases of the XAR field in this specification 
The fields described in Table 5-3 have the following aliases. 

 

Table 5-3 Aliases for memory access 

Aliases Field  Usage 
XAR.f_dis_hw_pf XAR.f_urs3<1> Disable hardware prefetch 
XAR.s_dis_hw_pf XAR.s_urs3<1> Disable hardware prefetch  
XAR.f_negate_mul XAR.f_urd<2> For SIMD FMA 
XAR.s_negate_mul XAR.s_urd<2> For SIMD FMA 
XAR.f_rs1_copy XAR.f_urs3<2> For SIMD FMA 
XAR.s_rs1_copy XAR.s_urs3<2> For SIMD FMA 
XAR.f_xar_i XAR.f_urs3<2> For Fsimm8 
XAR.s_xar_i XAR.s_urs3<2> For Fsimm8 

 

XAR operation 
Only some instructions can reference the XAR register. In this document, instructions that 
can reference XAR are called “XAR-eligible instructions”. 

 
• XAR-eligible instructions have the following behavior. 

• If XAR.v =1, the XAR.urs1, XAR.urs2, XAR.urs3 and XAR.urd fields are 
concatenated with the instruction fields rs1, rs2, rs3 and rd respectively, to 
specify floating-point registers.  
Floating-point registers are referenced by 9-bit register numbers with the XAR 
fields specifying the upper 3 bits. A double-precision encoded 5-bit instruction 
field is decoded to generate the lower 6 bits of the register number. Refer to 
“5.3.1 Floating-Point Register Number Encoding” (in the SPARC64™ X / X+ 
specification) for details.  

• XAR.urs2<2:1> and XAR.urs3<1:0> fields may be specified to use the newly 
implemented instructions in SPARC64™ XII (refer to page 18). 

• The XAR.urs3<1> field may be specified to disable hardware prefetch for integer 
and floating-point load/store instructions. 

• The XAR.urs3<2> field may be specified to use an 8-bit signed immediate value 
(Fsimm8) for some IMPDEP1 instructions (refer to page 18). 

• The XAR.urs3<2> and XAR.urd<2> fields can be specified for SIMD FMA 
instructions. 

• If XAR.f_v = 1, the XAR.f_urs1, XAR.f_urs2, XAR.f_urs3 and XAR.f_urd fields are 
used.  

• If XAR.f_v = 0 and XAR.s_v = 1, XAR.s_urs1, XAR.s_urs2, XAR.s_urs3 and 
XAR.s_urd fields are used.  

• The value of the f_ or s_ fields are only valid once. After the instruction referencing 
the XAR register completes, the referenced fields are set to 0.  

• XAR-eligible instructions cause illegal_action exceptions for the following cases.  
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• An attempt to execute an instruction that is not XAR-eligible while XAR.v = 1. 
• XAR.simd = 1 for an instruction (including integer arithmetic) that does not 

support SIMD execution. 
• XAR.urs1 ≠ 0 is specified for an instruction that does not use rs1. The same 

applies for rd. 
• XAR.urs2 ≠ 0 is specified for an instruction that does not use rs2 and for an 

instcution whose rs2 field holds an immediate value (such as simm13 or fcn). 
• XAR urs3 ≠ 0 is specified for an instruction that does not use rs3 except for the 

following. 
• XAR urs3<1:0> is specified to use the newly implemented instructions for 

SPARC64™ XII. 
• XAR urs3<1> is specified to disable hardware prefetch for integer and 

floating-point load/store instructions. 
• XAR urs3<2> is specified to use Fsimm8 for some IMPDEP1 instructions. 

• XAR urs1<1> ≠ 0 is specified when XAR.urs1 is used as the upper 3 bits of the 
concatenated floating-point register. The same applies for XAR.urs2, XAR.urs3 
and XAR.urd. 

• A register number greater than or equal to F[256] is specified for the rd field of 
the FDIV{S|D} or FSQRT{S|D} instruction.   

• XAR.simd = 1, and a register number greater than or equal to F[256] is specified. 
Some instructions (such as F{N}MADD{s|d}, F{N}MSUB{s|d}, and FAES*X) 
are exceptions to this rule and register numbers greater than or equal to F[256] 
can be speficied. Refer to the specification for each instruction.  

• An attempt to execute STFRUW, STDFRDS, STDFRDW, FMONTMUL, and FMONTSQR 
while XAR.v = 0. 

 

If XAR specifies register numbers for only one instruction, either the f_ or s_ fields can be 
used. 

Programming Note If WRXAR is used, either XAR.f_v or XAR.s_v can be set 
to 1. SXAR1 sets XAR.f_v to 1.  

If XAR.f_v = 0, the f_simd, f_urs1, f_urs2, f_urs3, and f_urd fields are ignored even when the 
fields contain non-zero values. The value of each field after the execution is undefined. If 
XAR.s_v = 0, the s_simd, s_urs1, s_urs2, s_urs3, and s_urd fields are ignored even when the 
fields contain non-zero values. The value of each field after the execution is undefined. 

  

XAR.urs2 (extended for SPARC64™ XII)  
In SPARC64™ XII, XAR.urs2<2:1> can be specified to use the newly implemented 
instructions for SPARC64™ XII, such as LDFUW, LDFSW, LDDFDS, STFUW, and STDFDS. Refer 
to page 37 and page 48. 

 

XAR.urs3 (extended for SPARC64™ XII) 
In SPARC64™ XII, XAR.urs3 can be specified for the purpose stated below. 

1) To use Fsimm8 by XAR.urs3<2> 

2) To use the new instructions implemented in SPARC64™ XII by XAR.urs3<1:0> 
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In this specification, XAR.urs3<2> is also described as XAR.xar_i. If XAR.xar_i = 1, Fsimm8 is 
used instead of F[rs2] for some IMPDEP1 instructions. Fsimm8 is an 8-bit signed immediate 
value and used as a 64-bit immediate data (refer to page 27). 

All IMPDEP1 instructions that can use XAR.urs3 for the purpose stated above are shown in 
Table 5-4. 

There are some new IMPDEP1 instructions in SPARC64™ XII which have the same 
opecodes in SPARC64™ X/SPARC64™ X+. XAR.urs3<1:0> is specified to use those new 
instructions in SPARC64™ XII. Refer to page 84, page 89, page 95, page 98, and page 100. 

 

Table 5-4 Instructions that can use XAR.urs3. 

Instruction XAR.urs3<2> 
(Fsimm8) 

XAR.urs3<1:0> 
(specifying the 
new instruction in 
SPARC64™ XII) 

Format of 
Fsimm8 

Page 

F{SLL|SRL|SRA}32 ✓  Fsimm8_32x2 page 69 

FP{ADD|SUB}64 ✓  Fsimm8_64x1  

FPMERGE ✓  Fsimm8_8x8 page 35 

FPMUL64 ✓  Fsimm8_64x1 page 71 

FPMUL32 ✓  Fsimm8_32x2 page 71 

FPADD16{|S} ✓  Fsimm8_16x4  

FPADD32{|S} ✓  Fsimm8_32x2  

FPSUB16{|S} ✓  Fsimm8_16x4  

FPSUB32{|S} ✓  Fsimm8_32x2  

FNORS ✓  Fsimm8_32x2  

FNOR ✓  Fsimm8_64x1  

FANDNOT{1|2}S ✓  Fsimm8_32x2  

FANDNOT{1|2} ✓  Fsimm8_64x1  

FNOT2S ✓  Fsimm8_32x2  

FNOT2 ✓  Fsimm8_64x1  

FXORS ✓  Fsimm8_32x2  

FXOR ✓  Fsimm8_64x1  

FNANDS ✓  Fsimm8_32x2  

FNAND ✓  Fsimm8_64x1  

FANDS ✓  Fsimm8_32x2  

FAND ✓  Fsimm8_64x1  

FXNORS ✓  Fsimm8_32x2  

FXNOR ✓  Fsimm8_64x1  

FORNOT{1|2}S ✓  Fsimm8_32x2  

FORNOT{1|2} ✓  Fsimm8_64x1  

FSRC2S ✓  Fsimm8_32x2  

FSRC2 ✓  Fsimm8_64x1  
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FORS ✓  Fsimm8_32x2  

FOR ✓  Fsimm8_64x1  

FPSELMOV8FX ✓ ✓ Fsimm8_8x8 page 95 

FPSELMOV16FX ✓ ✓ Fsimm8_16x4 page 95 

FPSELMOV32FX ✓ ✓ Fsimm8_32x2 page 95 

FPSELMOV8X ✓  Fsimm8_8x8  

FPSELMOV16X ✓  Fsimm8_16x4  

FPSELMOV32X ✓  Fsimm8_32x2  

FPCSL8X ✓  Fsimm8_64x1 page 82 

FPADD128XHI ✓  Fsimm8_64x1  

FPCMP{LE|GT}4X ✓  Fsimm8_8x8 page 63 

FPCMP{LE|GT}8X ✓  Fsimm8_8x8 page 63 

FPCMP{LE|GT}16X ✓  Fsimm8_16x4 page 63 

FPCMP{LE|GT}32X ✓  Fsimm8_32x2 page 63 

FPCMP{LE|GT}64X ✓  Fsimm8_64x1 page 63 

FPCMPU{EQ|NE|LE|GT}4X ✓  Fsimm8_8x8 page 63 

FPCMPU{EQ|NE|LE|GT}8X ✓  Fsimm8_8x8 page 63 

FPCMPU{EQ|NE|LE|GT}16X ✓  Fsimm8_16x4 page 63 

FPCMPU{EQ|NE|LE|GT}32X ✓  Fsimm8_32x2 page 63 

FPCMPU{EQ|NE|LE|GT}64X ✓  Fsimm8_64x1 page 63 

FPCMP{LE|GT}4FX ✓ ✓ Fsimm8_8x8 page 84 

FPCMP{LE|GT}8FX ✓ ✓ Fsimm8_8x8 page 84 

FPCMP{LE|GT}16FX ✓ ✓ Fsimm8_16x4 page 84 

FPCMP{LE|GT}32FX ✓ ✓ Fsimm8_32x2 page 84 

FPCMP{LE|GT}64FX ✓ ✓ Fsimm8_64x1 page 84 

FPCMPU{EQ|NE|LE|GT}4FX ✓ ✓ Fsimm8_8x8 page 84 

FPCMPU{EQ|NE|LE|GT}8FX ✓ ✓ Fsimm8_8x8 page 84 

FPCMPU{EQ|NE|LE|GT}16FX ✓ ✓ Fsimm8_16x4 page 84 

FPCMPU{EQ|NE|LE|GT}32FX ✓ ✓ Fsimm8_32x2 page 84 

FPCMPU{EQ|NE|LE|GT}64FX ✓ ✓ Fsimm8_64x1 page 84 

FPCMP{LE|GT}4XACC ✓ ✓ Fsimm8_8x8 page 89 

FPCMP{LE|GT}8XACC ✓ ✓ Fsimm8_8x8 page 89 

FPCMP{LE|GT}16XACC ✓ ✓ Fsimm8_16x4 page 89 

FPCMP{LE|GT}32XACC ✓ ✓ Fsimm8_32x2 page 89 

FPCMP{LE|GT}64XACC ✓ ✓ Fsimm8_64x1 page 89 

FPCMPU{EQ|NE|LE|GT}4XACC ✓ ✓ Fsimm8_8x8 page 89 

FPCMPU{EQ|NE|LE|GT}8XACC ✓ ✓ Fsimm8_8x8 page 89 

FPCMPU{EQ|NE|LE|GT}16XACC ✓ ✓ Fsimm8_16x4 page 89 
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FPCMPU{EQ|NE|LE|GT}32XACC ✓ ✓ Fsimm8_32x2 page 89 

FPCMPU{EQ|NE|LE|GT}64XACC ✓ ✓ Fsimm8_64x1 page 89 

FP{MAX|MIN}{|U}32X ✓  Fsimm8_32x2  

FP{MAX|MIN}{|U}64X ✓  Fsimm8_64x1  

F{S|Z}EXTW ✓  Fsimm8_64x1 page 72 

FPCMP{|U}64X ✓  Fsimm8_64x1  

FP{SLL|SRL|SRA}64X ✓  Fsimm8_64x1  

FP{ADD|SUB}8 ✓  Fsimm8_8x8 page 73, 
page 74 

FEPERM32X ✓  Fsimm8_32x2 page 75 

FEPERM64X ✓  Fsimm8_64x1 page 75 

MOVdTOx  ✓ ― page 98 

MOVsTO{uw|sw}  ✓ ― page 98 

MOVfwTO{uw|sw}  ✓ ― page 98 

MOVwTO{fuw|fsw}  ✓ ― page 100 

 
 

 Extended Arithmetic Register Status Register (XASR) 5.5.16.
(ASR 30) 
 

 
reserved rng_stat reserved fed reserved xfd<5:4> reserved xfd<1:0> 

63     41 40 39    37 36    35      6                                            
  

5       4 3      2 1     0  

 
Bit Field Access Description 
63:41 reserved RO Reserved (undefined). 
40 rng_stat RW If rng_stat  = 1, the value which is read from 

ASI_RANDOM_NUMBER is valid, otherwise the 
value is invalid. 

39:37 reserved RO Reserved (undefined) 
36 fed RW Floating-Point Exception Disable Mode 

No floating-point exception traps are generated.  
35:6 reserved RO reserved (undefined). 
5:4 xfd<5:4> RW Updating the floating-point registers (F[382] – 

F[256]) sets the appropriate bit to 1. Refer to xfd 
(page 22) for details. 

3:2 reserved RO reserved (undefined) 
1:0 xfd<1:0> RW Updating the floating-point registers (F[126] – 

F[0]) sets the appropriate bit to 1. Refer to xfd 
(page 22) for details. 

Note A read of the reserved field returns an undefined value. Zeros must 
be written to the reserved field to preserve compatibility for future 
implementation. 
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fed  
Setting the fed field masks all floating-point exceptions. When XASR.fed = 0, the behavior 
of the floating-point exceptions are the same as SPARC64™ X. This field is updated by the 
WRXASR instruction.  

All floating-point exceptions are masked when XASR.fed = 1. That is, corresponding traps 
are not generated. In addition, FSR.aexc is not updated and, FSR.cexc and FSR.ftt are 
cleared with a 0, regardless of the values of FSR.tem and FSR.ns. In addition, the 
FSHIFTORX intsruction does not generate an illegal_instruction trap.  

  
 

Exception XASR.fed = 0 XASR.fed = 1 
fp_exception_ieee Behavior specified by 

FSR.tem 
Trap is not generated. 
If an instruction that updates FSR is 
executed 
• FSR.cexc and FSR.ftt are cleared 
• FSR.aexc is not updated 

fp_exception_other 
(unfinished_FPop) 

Behavior specified by FSR.ns Trap is not generated. 

illegal_instruction 
(FSHIFTORX) 

The illegal_instruction trap is 
generated depending on the 
value of Fd[rs3].  

Trap is not generated. 
The value of Fd[rd] is undefined.  

 

Operation results for fed = 1 are the same as fed = 0, FSR.tem = 0_00002 and FSR.ns = 1 
except for the behavior of the FSHIFTORX instruction. 

The use of this flag is determined solely by the compiler. In other words, nonprivileged 
software routines generated by the compiler, and compiler startup routines or libraries can 
use this field. 

The compiler can freely choose to alter this flag or leave it untouched. Nonprivileged 
software not generated by the compiler (for example, assembly language) should not alter 
this flag. 

When modifying this field, it is the caller’s responsibility to clear the flag before jumping to 
routines that are not generated by the compiler, such as OS library routines. 

Note Minimizing the period where XASR.fed = 1 is recommended. 

xfd 
The xfd fields are used to determine whether any of the floating-point registers need to be 
saved during a context switch. Updating a register sets the appropriate bit to 1.  

• There is no flag indicating an update to integer registers.  
• Updating a floating-point register sets the appropriate XASR.xfd<i> = 1. The 

floating-point registers and corresponding xfd bits are shown below.  
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xfd bits Corresponding floating-point registers 
0 F[0] – F[62] 

1 F[64] – F[126] 

2 Reserved 
3 Reserved 
4 F[256] – F[318] 

5 F[320] – F[382] 

6 Reserved 

7 Reserved 

 

Programming Note Updating a V9 floating-point register sets the xfd[0] bit 
of the XASR and also updates the V9 FPRS. For example, updating F[15] 
sets both FPRS.dl = 1 and XASR.xfd<0> = 1.  

Programming Note The fields XASR.xfd<7:6> and XASR.xfd<3:2> are 
undefined. 
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6. Instruction Set Overview 

Refer to the SPARC64 X/X+ specification. 
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7. Instructions 

This chapter describes instructions defined in SPARC64™ XII. Refer to Chapter 7 of the 
UA2011 or the SPARC64™ X/X+ specification for instructions not described in this chapter. 

Table 7-1 Meaning of the mnemonic superscripts 

Character Meaning 
D Instruction should not be used (Deprecated) 
N Incompatible instruction 
PASI Privileged operation when bit 7 of ASI is 0 
PASR Privileged operation depending on the ASR number 
PNPT Privileged operation when nonprivileged access is enabled in 

nonprivileged mode 
PPIC Privileged operation when PCR.priv = 1 
PPCR Privileged accesses when PCR.priv = 1  
XII Instructions supported in SPARC64™ XII only 

Table 7-2 Register notation for rs1 (same for rs2, rs3, and rd) 

Mark Meaning 
 
XAR.v = 0 XAR.v = 1 

R[rs1] Integer register encoded by the 
rs1 field of the instruction word 

Integer register encoded by the rs1 
field of the instruction word 

Fs[rs1] Single-precision floating-point 
register encoded by the rs1 field 
of the instruction word 

Single-precision floating-point 
register encoded by XAR.urs1 and 
the rs1 field of the instruction word 

Fd[rs1] Double-precision floating-point 
register encoded by the rs1 field 
of the instruction word 

Double-precision floating-point 
register encoded by XAR.urs1 and 
the rs1 field of the instruction word 

Fq[rs1] Quadruple-precision  
floating-point register encoded 
by the rs1 field of the instruction 
word 

Quadruple-precision floating-point 
register encoded by XAR.urs1 and 
the rs1 field of the instruction 
word. 

F[rs1] Floating-point register encoded 
by the rs1 field of the instruction 
word 
(There is no distinction among 
single precision, double 
precision, and quadruple 
precision.) 

Floating-point register encoded by 
XAR.urs1 and the rs1 field of the 
instruction word 
(There is no distinction among 
single precision, double precision, 
and quadruple precision.) 

 

In the Table 7-3, the columns for HPC-ACE extension show which HPC-ACE features can 
be used with an instruction on SPARC64™ XII. 

• Regs.  XAR-eligible instruction. The extended floating-point registers can be 
used. For memory access instructions, hardware prefetch can be disabled. 
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An instruction which has a ☆ in this column can specify Fd[0] – Fd[126] for the rd 
register but not Fd[256] – Fd[382] .  
For an instruction which has ※ in this column, XAR.v must be 1 to execute as a 
non-SIMD instruction. 

• SIMD Instruction can be specified as a SIMD instruction. 

Instructions without checks in either of these two columns are not XAR-eligible. 
Instructions that are XAR-eligible are described in “XAR operation” (page 17). 

 

Fsimm8 
If XAR.xar_i = 1, Fsimm8 is used instead of F[rs2] for specific XAR-eligible IMPDEP1 
instructions that use F[rs2] (refer to the Table 5-4). When XAR.xar_i = 1 is specified for the 
instrcutions that are not eligible to use XAR.xar_i, an illegal_action exception will occur. 

Fsimm8 consists of XAR.urs2 and rs2, and is shown in Figure 7-1 (Fsimm8<7:5> is specified 
by XAR.urs2<2:0> and Fsimm8<4:0> is specified by rs2<4:0>). 

 

 

Figure 7-1  Fsimm8 (by XAR.urs2 and rs2 (in the instruction field)) 

 

Fsimm8 is used as a signed 64-bit immediate value in the format described in Figure 7-2 
(Fsimm8_8x8, Fsimm8_16x4, Fsimm8_32x2, and Fsimm8_64x1). 

 

Figure 7-2  Fsimm8 Formats 

 

Fsimm8 is treated as stated below. 
• The format of Fsimm8 (Fsimm8_8x8, Fsimm8_16x4, Fsimm8_32x2, and Fsimm8_64x1) 

depends on the instruction. 
• The lower 32-bit of Fsimm8 is ignored when a double floating-point register is used as 

a single floating-point register. 
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• Even if 1 is set to the field of Fsimm8 which is not used for executions (for example, 
the upper field of shift_amount), exceptions (for example, illegal_action, 
illegal_instruction, and so on) will not occur. 

• If Fsimm8 is used for a SIMD instruction, the same value is used for both basic and 
extended sides. 

• Assembly syntax is described as “[instruction] fregrs1, freg_or_fsimm, fregrd”. For 
“freg_or_fsimm”, F[rs2] or Fsimm8 can be specified (“freg_or_fsimm8” is a newly defined 
syntax). 

• For Fsimm8, 0x00 ~ 0xff (-128 ~ 127) can be specified. 
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Table 7-3 Instruction set of SPARC64™ XII 

Instruction HPC-ACE extension Page 
Regs. SIMD 

ADD (ADDcc)    
ADDC (ADDCcc)    
ALIGNADDRESS{_LITTLE}    
AND (ANDcc)    
ANDN (ANDNcc)    
ARRAY{8|16|32}    
BMASK    
BPcc    
BPr    
BSHUFFLE    
BiccD    
CALL    

CASAPASI, CASXAPASI ✓   
CWB{NE|E|G|LE|GE|L|GU|LEU|CC|CS|POS|NEG|VC|VS}    
CXB{NE|E|G|LE|GE|L|GU|LEU|CC|CS|POS|NEG|VC|VS}    
EDGE{8|16|32}{L}N    
EDGE{8|16|32}{L}cc    
FABSq ✓   
FABS{s|d} ✓ ✓  
FADDod ☆   
FADDq ✓   
FADD{s|d} ✓ ✓  
FADDtd ☆   
FAESDECLX ✓ ✓  
FAESDECX ✓ ✓  
FAESENCLX ✓ ✓  
FAESENCX ✓ ✓  
FAESKEYX ✓ ✓  
FALIGNDATA    
FANDNOT{1|2}{s} ✓ ✓  
FAND{s} ✓ ✓  
FBPfcc    
FBfccD    
FCMP{E}{s|d|q} ✓   
FCMP{E}td ✓   
FCMP{LE|LT|GE|GT|EQ|NE}{E}{s|d} ✓ ✓  
FCMP{LE|NE|GT|EQ}{16|32}    
FCMP{LE|GT}{8X|16X|32X|X} ☆   
FPCMP{LE|GT}{8X|16X|32X|64X} ✓ ✓ 63 

FPCMP{LE|GT}{4X}XII ✓ ✓ 63 
FCMPod ✓   

FPCMP{LE|GT}{4|8|16|32|64}FXXII ※ ✓ 84 

FPCMP{LE|GT}{4|8|16|32|64}XACCXII ※ ✓ 89 
FLCMP{s|d} ✓   
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FDESENCX ✓ ✓  
FDESIIPX ✓ ✓  
FDESIPX ✓ ✓  
FDESKEYX ✓ ✓  
FDESPC1X ✓ ✓  
FDIVod ☆   
FDIV{s|d|q} ☆   
FDIVtd ☆   

FEPERM32XXII ✓ ✓ 75 

FEPERM64XXII ✓ ✓ 75 
FEXPAd ✓ ✓  
FEXPAND    
FLUSH    
FLUSHW    
FMADD{s|d} ✓ ✓  
FMAX{s|d} ✓ ✓  
FMIN{s|d} ✓ ✓  

FMONTMULXII   102 

FMONTSQRXII   102 
FMOVq ✓   
FMOVcc    
FMOVR    
FMOV{s|d} ✓ ✓  
FMSUB{s|d} ✓ ✓  
FMUL8x16    
FMUL8x16{AU|AL}    
FMUL8{SU|UL}x16    
FMULD8{SU|UL}x16    
FMULod ☆   
FMULq ✓   
FMUL{s|d} ✓ ✓  
FMULtd ☆   
FNAND{s} ✓ ✓  
FNEGq ✓   
FNEG{s|d} ✓ ✓  
FNMADD{s|d} ✓ ✓  
FNMSUB{s|d} ✓ ✓  
FNADD{s|d} ✓ ✓  
FNMUL{s|d} ✓ ✓  
FNsMULd ✓ ✓  
FNOR{s} ✓ ✓  
FNOT{1|2}{s} ✓ ✓  
FONE{s} ✓ ✓  
FORNOT{1|2}{s} ✓ ✓  
FOR{s} ✓ ✓  
FPACK{16|32|FIX}    
FPADD8XII ✓ ✓ 73 
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FPADD{16|32}{S} ✓ ✓  
FPADD64 ✓ ✓  
FPADD128XHI ✓ ✓  

FPCSL8XXII ✓ ✓ 82 
FPMADDX{HI} ✓ ✓  
FPMAX{u}{32|64} ✓ ✓  
FPMIN{u}{32|64} ✓ ✓  
FPMERGE ✓ ✓ 35 

FPMUL32XII ✓ ✓ 71 

FPMUL64XII ✓ ✓ 71 

FPSUB8XII ✓ ✓ 74 
FPSUB{16|32}{S} ✓ ✓  
FPSUB64 ✓ ✓  
F{R}QUAod ☆   
FQUAtd ☆   
FRCPA{s|d} ✓ ✓  
FRSQRTA{s|d} ✓ ✓  
FPSELMOV{8|16|32}X ✓ ✓  

FPSELMOV{8|16|32}FXXII ※ ✓ 95 
FSELMOV{s|d} ✓ ✓  

FSEXTWXII ✓ ✓ 72 

FZEXTWXII ✓ ✓ 72 
FSHIFTORX ✓ ✓  
FSQRT{s|d|q} ☆   
FSRC{1|2}{s} ✓ ✓  
FSUBod ☆   
FSUBq ✓   
FSUB{s|d} ✓ ✓  
FSUBtd ☆   
FTRIMADDd ✓ ✓  
FTRISMULd ✓ ✓  
FTRISSELd ✓ ✓  
FUCMP{LE|NE|GT|EQ}{8X|16X|32X|X} ☆   

FPCMPU{LE|NE|GT|EQ}{8X|16X|32X|64X} ✓ ✓ 63 

FPCMPU{LE|NE|GT|EQ}{4X}XII ✓ ✓ 63 
FPCMPU{LE|NE|GT|EQ}8    

FPCMPU{LE|NE|GT|EQ}{4|8|16|32|64}FXXII ※ ✓ 84 

FPCMPU{LE|NE|GT|EQ}{4|8|16|32|64}XACCXII ※ ✓ 89 

FPCMP{64|U64}X ✓   
FXADDod{LO|HI} ☆   
FXMULodLO ☆   
FXNOR{s} ✓ ✓  
FXOR{s} ✓ ✓  
FZERO{s} ✓ ✓  
FdMULq ✓   
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F{bsx|bux|od}TOtd ☆   
FqTO{i|x} ✓   
FsMULd ✓ ✓  
F{i|x}TOq ✓   
F{i|x}TO{s|d} ✓ ✓  
F{s|d}TOq ✓   
F{s|d}TO{i|x} ✓ ✓  
FsTOd, FdTOs ✓ ✓  
FtdTO{bsx|bux|od} ☆   
FqTO{s|d} ✓   
ILLTRAP    
JMPL    
LDBLOCKF ✓   
LDF, LDDF ✓ ✓ 37 
LDQF ✓  37 

LDFUWXII ※ ✓ 37 

LDFSWXII ※ ✓ 37 

LDDFDSXII ※ ✓ 37 

LDFAPASI, LDDFAPASI ✓ ✓ 42 

LDQFAPASI ✓  42 

LDFSRD ✓   
LDSHORTF    
LDSTUB ✓   

LDSTUBAPASI ✓   

LDTWD ✓   

LDTWAD,PASI ✓   

LDTXAN ✓   
LDXEFSR ✓   
LDXFSR ✓   
LD{S|U}{B|H|W}, LDX ✓   

LD{S|U}{B|H|W}APASI, LDXAPASI ✓   
LZD    
MEMBAR    
MOVcc    
MOVr    
MOVwTOs ✓   
MOVxTOd ✓   

MOVdTOxXII ✓  98 

MOVsTOuwXII ✓  98 

MOVsTOswXII ✓  98 

MOVfwTOuwXII ※  98 

MOVfwTOswXII ※  98 

MOVwTOfuwXII ※  100 

MOVwTOfswXII ※  100 

MULSccD    
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MULX    
NOP    
OR (Orcc)    
ORN (ORNcc)    
PADD32    
PAUSE    
PDIST    
POPC    
PREFETCH, PREFETCHAPASI ✓  43 
RDASI    
RDCCR    
RDFPRS    
RDGSR    
RDPC    
RDPCRPPCR    

RDPICPPIC    

RDSTICKPNPT    

RDTICKPNPT    
RDXASR    
RDYD    

RDASRPASR    
RESTORE    
RETURN    
ROLX    
SAVE    
SDIAM    

SDIVD (SDIVccD)    
SDIVX    
SETHI    
SIAM    
SLEEP   46 
SLL, SLLX    
FPSLL64X ✓ ✓  

FSLL32XII ✓ ✓ 69 

SMULD (SMULccD)    

SRA, SRAX    
FPSRA64X ✓ ✓  

FSRA32XII ✓ ✓ 69 

SRL, SRLX    
FPSRL64X ✓ ✓  

FSRL32XII ✓ ✓ 69 

STBARD    

STBIN ✓   
STBLOCKF ✓   
STF, STDF ✓ ✓ 48 
STQF ✓  48 
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STFUWXII ※ ✓ 48 

STDFDSXII ※ ✓ 48 

STFAPASI, STDFAPASI ✓ ✓ 51 

STQFAPASI ✓  51 

STFSRD, STXFSR ✓   
STPARTIALF    
STSHORTF    
ST{B|H|W|X} ✓   

ST{B|H|W|X}APASI ✓   
ST{D}FR ✓ ✓ 56 

STFRUWXII ※ ✓ 56 

STDFRDSXII ※ ✓ 56 

STDFRDWXII ※ ✓ 56 

STTWD ✓   

STTWAD,PASI ✓   

SUB (SUBcc)    
SUBC (SUBCcc)    

SWAPD, SWAPAD,PASI ✓   
SXAR{1|2}    
TADDcc (TADDccTVD)    

TSUBcc (TSUBccTVD)    
Tcc    
UDIVD (UDIVccD)    
UDIVX    

UMULD (UMULccD)    
WRASI    
WRASRPASR    
WRCCR    
WRFPRS    
WRGSR    
WRPAUSE    
WRPCRPPCR    

WRPICPPIC    
WRXAR    
WRXASR    

WRYD    

XFILLN ✓  53 

XNOR (XNORcc)    
XOR (XORcc)    
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 Floating-Point Merge 7.41.
 
Opcode opf Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FPMERGE 0 0100 10112 Two 32-bit merges   fpmerge fregrs1, freg_or_fsimm, 

fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description FPMERGE interleaves eight 8-bit data in “Fs[rs1]<31:0> and Fs[rs2]<31:0>” or 
“Fd[rs1]<63:32> and Fd[rs2]<63:32>” to produce a 64-bit data in Fd[rd]. 

If XAR.v = 0 and xar_i = 0, Fs[rs1]<31:0> and Fs[rs2]<31:0> are divided into four 8-bit data 
and merged as shown in Figure 7-3. 

 

Figure 7-3 The behavior of FPMERGE (XAR.v = 0 and xar_i = 0) 

 

If XAR.v = 1 and xar_i = 0, Fd[rs1]<63:32> and Fd[rs2]<63:32> are divided into four 8-bit 
data and merged as shown in Figure 7-4. 

If XAR.v = 1 and xar_i = 1, Fd[rs1]<63:32> and Fsimm8_8x8<63:32> are divided into four 
8-bit data and merged as shown in Figure 7-5. 

 

Figure 7-4 Behavior of FPMERGE (XAR.v = 1 and xar_i = 0) 
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Figure 7-5 Behavior of FPMERGE (XAR.v  = 1 and xar_i = 1) 

 

FPMERGE will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Load Floating-Point Register 7.55.
 

Instruction op3 rdi urs2 
<2:1> 

Operation HPC-ACE Assembly Language 
Syntax Regs SIMD 

LDF 10 
00002 

0 – 31  Load Word Data to Single 
Floating-Point Register (XAR.v = 0) 

  ld [address], fregrd 

LDF 10 
00002 

0 – 126, 
256 – 382 

002 Load Word Data to Double 
Floating-Point Register (XAR.v = 1) 

  ld [address], fregrd 

LDDF 10 
00112 

0 – 126, 
256 – 382 

002 Load Double Word Data to Double 
Floating-Point Register  
 

  ldd [address], fregrd 

LDQF 10 
00102 

0 – 126, 
256 – 382 

002 Load Quad Word Data to Quad 
Floating-Point Register  
 

  ldq [address], fregrd 

LDFUWXII 10 
00002 

0 – 126, 
256 – 382 

012 Load Word Data to Double 
Floating-Point Register as Unsigned 
Integer 

※  lduw [address], fregrd 

LDFSWXII 10 
00002 

0 – 126, 
256 – 382 

112 Load Word Data to Double 
Floating-Point Register as Signed 
Integer 

※  ldsw [address], fregrd 

LDDFDSXII 10 
00112 

0 – 126, 
256 – 382 

012 Load Double Word Data to Double 
Floating-Point Register as Two Word 
Data 

※  lddds [address], fregrd 

 
112 rd op3 rs1 i = 0  rs2 

       
112 rd op3 rs1 i = 1 simm13 

31 30 29 25 24 19 18 14 13 12 5 4 0 
 

Description 

Non-SIMD operation  

Refer to Section 7.75 in UA2011. 

LDF copies a word from memory at the effective address into the 4-byte floating-point 
destination register F[rd]. If XAR.v = 0, LDF copies a word from memory into the 4-byte 
floating-point destination register, Fs[rd]. If XAR.v = 1, LDF copies a word from memory into 
the upper 4 bytes of the 8-byte floating-point destination register, Fd[rd]. The lower 4 bytes 
of Fd[rd] is filled with 0. 

LDDF copies a word-aligned doubleword from memory at the effective address into the 
8-byte floating-point destination register, Fd[rd]. 

LDQF copies a word-aligned quadword from memory at the effective address into the 
16-byte floating-point destination register, Fq[rd]. 

LDFUW copies a word from memory at the effective address into the lower 4 bytes of the 
8-byte floating-point destination register, Fd[rd]. The upper 4 bytes of Fd[rd] is filled with 0. 

LDFSW copies a word from memory at the effective address into the lower 4 bytes of the 
8-byte floating-point destination register, Fd[rd]. The upper 4 bytes of Fd[rd] is filled with 
MSB of the copied data (sign extension). 

                                                   
i Encoding is defined in 5.3.1 “Floating-Point Register Number Encoding” in the SPARC64™ X/X+ specification. 
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LDDFDS copies a word-aligned doubleword from memory at the effective address into the 
8-byte floating-point destination register, Fd[rd] as two word data. 

An attempt to execute LDF, LDDF, LDQF, LDFUW, LDFSW and LDDFDS causes a 
mem_address_not_aligned exception when the effective address is not word-aligned. 

For LDDFDS, the endianness of each memory access for two words is handled separately, 
even if the two words are located on different pages with different endianness. 

LDDFDS can only be used to access cacheable address spaces. An attempt to access 
noncacheable address space using LDDFDS causes a DAE_nc_page exception. 

Programming Note LDFUW, LDFSW, and LDDFDS can be used only if 
XAR.v = 1. If XAR.v = 0, other XAR fields (XAR.urs1, XAR.urs2, XAR.urs3, 
XAR.urd, and XAR.simd) are treated as 0. 

SIMD operation  

In SPARC64™ XII, LDF, LDDF, LDFUW, LDFSW, and LDDFDS can be executed as a SIMD 
instructions. SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS 
simultaneously execute basic and extended loads from the effective address. Refer to 
Section 5.5.15 (page 16) for details on how to specify the registers. 

A SIMD LDF instruction copies a word from memory at the effective address into the upper 
4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word from 
memory at the “effective address + 4” into the upper 4 bytes of the 8-byte floating-point 
destination register Fd[rd + 256]. 

A SIMD LDDF instruction copies a doubleword-aligned doubleword from memory at the 
effective address into the 8-byte floating-point register, Fd[rd]. It then copies a 
doubleword-aligned doubleword from memory at the “effective address + 8” into the 8-byte 
floating-point register, Fd[rd + 256]. 

A SIMD LDFUW instruction copies a word from memory at the effective address into the 
lower 4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word 
from memory at the “effective address + 4” into the lower 4 bytes of the 8-byte floating-point 
destination register, Fd[rd + 256]. The upper 4 bytes of Fd[rd] and Fd[rd + 256] are filled with 
0. 

A SIMD LDFSW instruction copies a word from memory at the effective address into the 
lower 4 bytes of the 8-byte floating-point destination register, Fd[rd]. It then copies a word 
from memory at the “effective address + 4” into the lower 4 bytes of the 8-byte floating-point 
destination register, Fd[rd + 256]. The upper 4 bytes of Fd[rd] and Fd[rd+256] are filled with 
MSB of the copied data (sign extension). 

A SIMD LDDFDS instruction copies a word-aligned doubleword from memory at the effective 
address into the 8-byte floating-point destination register, Fd[rd] as two word data. It then 
copies a word-aligned doubleword from memory at the “effective address + 8” into the 8-byte 
floating-point destination register, Fd[rd + 256] as two word data. 

For SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS, a misaligned 
accesses causes a mem_address_not_aligned exception.  

Note A SIMD LDDF that accesses data aligned on a 4-byte boundary but 
not an 8-byte boundary does not cause an 
LDDF_mem_address_not_aligned exception.  

SIMD LDF, SIMD LDDF, SIMD LDFUW, SIMD LDFSW, and SIMD LDDFDS can only be used to 
access cacheable address spaces. An attempt to access noncacheable address spaces using 
these SIMD instructions causes a DAE_nc_page exception.  
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Like non-SIMD load instructions, memory access semantics for SIMD load instructions 
adhere to the TSO. A SIMD load simultaneously executes basic and extended loads. 
However,  the ordering between the basic and extended loads conforms to the TSO.  

For SIMD load, a watchpoint can be detected in both the basic and extended loads. 

For SIMD LDF, SIMD LDDF, SIMD LDFUW, and SIMD LDFSW, the endianness of each 
memory access for basic data and extended data is handled separately, even if the two data 
are located on different pages with different endianness. 

For SIMD LDDFDS, the endianness of each memory access for four word data is handled 
separately, even if the data are located on different pages with different endianness. 

 

 

    



   
 

 
40 Ver 20, Oct., 2017 
 

 

Exception Target instruction Detection condition 
illegal_instruction LDF, LDDF, LDFUW, LDFSW, 

LDDFDS 
A reserved is not 0.  

LDQF Always detected.  
For this instruction, exceptions with 
a priority lower than 
illegal_instruction are intended for 
emulation.  

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action LDF If XAR.v = 1 and one of the following 

is true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<0> ≠ 0 
• XAR.urs2<2:1> = 102 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> 

≠ 0 

LDFUW, LDFSW If XAR.v = 1 and one of the following 
is true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<0> ≠ 0 
• XAR.urs2<2:1> = 102 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> 

≠ 0 
LDDF If XAR.v = 1 and one of the following 

is true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<0> ≠ 0 
• XAR.urs2<2> ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2>

≠ 0 
LDDFDS If XAR.v = 1 and one of the following 

is true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<0> ≠ 0 
• XAR.urs2<2> ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2>

≠ 0 
LDQF If XAR.v = 1 and one of the following 

is true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 

fp_exception_other 
(FSR.ftt = 
invalid_fp_register) 

LDQF rd<1> ≠ 0 

LDDF_mem_address_
not_aligned 

LDDF XAR.v = 0 or XAR.simd = 0, 
and the address is 4-byte aligned 
but not 8-byte aligned. 

mem_address_not_ali
gned 

LDF, LDQF, LDFUW, LDFSW, 
LDDFDS 

The address is not 4-byte aligned. 
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Exception Target instruction Detection condition 
LDDF One of the following is true: 

• XAR.v = 0 or XAR.simd = 0, and 
the address is not 4-byte aligned. 

• XAR.v = 1 and XAR.simd = 1,             
and the address is not 8-byte 
aligned.  

VA_watchpoint All Refer to the description and 
12.5.1.62 in the SPARC64™ X/X+ 
specification. 

DAE_privilege_violatio
n 

All Refer to 12.5.1.62 in the SPARC64™ 
X/X+ specification. 

DAE_nc_page LDDFDS Access to noncacheable space is 
attempted. 

LDF, LDDF, LDFUW, LDFSW Access to noncacheable space is 
attempted if XAR.v = 1 and 
XAR.simd = 1. 

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ 
X/X+ specification. 
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 Load Floating-Point from Alternate 7.56.
Space 

Description Refer to 7.56 in the SPARC64™ X/X+ specification. 

 
Exception Target instruction Detection condition 
illegal_instruction LDQFA Always detected.  

For this instruction, exceptions with a 
priority lower than illegal_instruction are 
intended for emulation.  

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action LDFA, LDDFA If XAR.v = 1 and one of the following is 

true: 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 

LDQFA If XAR.v = 1 and one of the following is 
true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 

fp_exception_other 
(FSR.ftt = invalid_fp_register) 

LDQFA rd<1> ≠ 0 

LDDF_mem_address_not_aligned LDDFA XAR.v = 0 or XAR.simd = 0, 
and the address is 4-byte aligned but not 
8-byte aligned. 

mem_address_not_aligned LDFA, LDQFA Address is not 4-byte aligned. 
LDDFA One of the following is true: 

• XAR.v = 0 or XAR.simd = 0, and the 
address is not 4-byte aligned. 

• XAR.v = 1 and XAR.simd = 1, and the 
address is not 8-byte aligned. 

privileged_action All Refer to 12.5.1.49 in the SPARC64™ 
X/X+ specification. 

VA_watchpoint All Refer to 12.5.1.62 in the SPARC™ X/X+ 
specification. 

DAE_invalid_asi All Refer to UA2011 and 12.5.1.5 in the 
SPARC64™ X/X+ specification. 

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+ 
specification. 

DAE_nc_page All Access to noncacheable space is 
attempted if XAR.v = 1 and XAR.simd = 
1. 

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+ 
specification. 

DAE_side_effect_page All Refer to 12.5.1.9 in the SPARC64™ X/X+ 
specification. 

 
  



  
 

 
 7. Instructions 43 
 

 

 

 Prefetch 7.75.
 

Instruction op3 Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

PREFETCH 10 
11012 

Prefetch Data    prefetch [address], prefetch_fcn 

PREFETCHAPASI 11 
11012 

Prefetch Data from 
Alternate Space 

  prefetch [regaddr], imm_asi, prefetch_fcn 
prefetch [reg_plus_imm] %asi, prefetch_fcn 

 

Description Refer to Section 7.104 in UA2011. 

The address specified by the instruction can be arbitorary. As specified by the instruction, 
one cache line (128 bytes) or two cache lines (256 bytes) are copied. A 
mem_address_not_aligned exception is never generated.  

The PREFETCH{A} instruction is treated as a NOP when the specified address is 
noncacheable or in an undefined cacheable space.  

ASIs that can be specified by the PREFETCHA instruction are shown in Table 7-4. If an ASI 
other than those listed below is specified, the PREFETCHA instruction becomes a NOP.  

Table 7-4 ASIs valid for PREFETCHA 

ASI_PRIMARY ASI_PRIMARY_LITTLE 

ASI_SECONDARY ASI_SECONDARY_LITTLE 

ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NO_FAULT_LITTLE 

ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NO_FAULT_LITTLE 

 

The prefetch instruction has no side effects other than bringing a data block into cache.  

The prefetch instruction might not be executed due to a lack of hardware resources 
(prefetch lost). Whether a prefetch instruction has been executed or lost cannot be 
confirmed.  

 

 Prefetch Variants 7.75.1.
Table 7-5 shows the available fcns in SPARC64™ XII and describes their operation.  
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Table 7-5  fcns for PREFETCH and PREFETCHA 

fcn JPS1 and UA2011 Definition Operation in SPARC64™ XII 
0 Frequently used data is 

prefetched for reading.  
128-byte data is copied into the L1 data cache.  

1 Infrequently used data is 
prefetched for reading.  

128-byte data is copied into the LL cache.  

2 Frequently used data is 
prefetched for writing.  

128-byte data is copied into the L1 data cache 
with exclusive ownership.  

3 Infrequently used data is 
prefetched for writing.  

128-byte data is copied into the LL cache with 
exclusive ownership. 

4 Page mapping is performed by 
privileged software.  

NOP 

5 - 15 
(0516 - 
0F16)  

An illegal_instruction exception is 
detected.  

An illegal_instruction exception is detected. 

16 - 19 
(1016 - 
1316)  

Implementation dependent NOP 

20 (1416) Frequently used data is 
prefetched for reading. Strong 
prefetch.  

128-byte data is copied into the L1 data cache. 
Strong prefetch.  

21 (1516) Infrequently used data is 
prefetched for reading. Strong 
prefetch. 

128-byte data is copied into the LL cache. Strong 
prefetch.  

22 (1616) Frequently used data is 
prefetched for writing. Strong 
prefetch. 

128-byte data is copied into the L1 data cache 
with exclusive ownership. Strong prefetch.  

23 (1716) Infrequently used data is 
prefetched for writing. Strong 
prefetch. 

128-byte data is copied into the LL cache with 
exclusive ownership. Strong prefetch.  

24 - 28 
(1816 - 
1C16)  

Implementation dependent NOP 

29 (1D16) 256-byte data aligned on 256-byte boundary is 
copied into the LL cache. Strong prefetch.  

30 (1E16)  NOP 

31 (1F16) 256-byte data aligned on 256-byte boundary is 
copied into the LL cache with exclusive 
ownership. Strong prefetch.  

 

Note In SPARC64™ XII, LL cache (= Last Level cache) means L3 cache. 
 

 Weak versus Strong Prefetches 7.75.2.
 

Programming Note Strong prefetches might block subsequent load 
instructions or store instructions. Therefore, strong prefetches should be 
used only when prefetched data is guaranteed to be accessed.  
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Exception Target instruction Condition 
illegal_instruction All One of the following is true: 

• A reserved field is not 0.  
• fcn = 5 – 15 

illegal_action All If XAR.v = 1 and one of the following is 
true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2, 0> ≠ 0 
• XAR.urd<1> ≠ 0 
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 Sleep 7.89.
 
Instruction Opf Operation HPC-ACE Assembly Language 

Syntax Regs SIMD 
SLEEP 0 1000 00112 VCPU is stopped during the fixed time.    sleep 

 
102  op3 = 11 01102  Opf  

31 30 29 25 24 19 18 14 13 5 4 0 
 

Description The SLEEP instruction stops the VCPU for a fixed period of time, unless there are pending 
interrupts.  

The stopped VCPU restarts execution when either of the following conditions is true.  
• The fixed period of time, which depends on the implementation, has passed.  
• An interrupt is pending or has occured.  

Programming Note Software should not expect the SLEEP instruction to 
always stop the VCPU for a fixed amount of time .  

Compatibility Note In SPARC64 VIIIfx, and earlier processors, execution 
was restarted when an interrupt occurred. In SPARC64™ XII and 
SPARC64™ X/X+, execution is restarted if an interrupt is pending (for 
example, when the processor cannot accept interrupts). That is, execution 
may restart if an interrupt has not occurred.  

 
 
 

Exception Condition 
illegal_instruction A Reserved field is not 0.  
illegal_action XAR.v = 1 
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 Block Initializing Store 7.94.
 

Description UA2011 defines ASI_STBI_*. In SPARC64™ XII, if ASI_STBI_* is specified for the STBA, 
STHA, STWA, STXA, and STTWA instructions, these stores behave as normal store 
instructions. For example, if ASI_STBI_P is specified for STBA, STBA behaves as if ASI_P 
was specified. 

The behavior of the Block Initializing Stores is as follows.  
 

ASI 
number 

ASI name Integer store (STBA, STHA, STWA, STXA, and 
STTWA) operation 

E216 ASI_STBI_P ASI_P 

E316 ASI_STBI_S ASI_S 
EA16 ASI_STBI_PL ASI_PL 
EB16 ASI_STBI_SL ASI_SL  

F216 ASI_STBIMRU_PRIMARY ASI_P 

F316 ASI_STBIMRU_SECONDARY ASI_S 

FA16 ASI_STBIMRU_PRIMARY_LITTLE ASI_PL 

FB16 ASI_STBIMRU_SECONDARY_LITTLE ASI_SL 

 
Only a DAE_invalid_ASI exception and a mem_address_not_aligned exception are generated. 
DAE _* exceptions, except for DAE_invalid_ASI, do not occur. 
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 Store Floating-Point 7.96.
 
Instruction op3 rdii urs2<1> Operation HPC-ACE Assembly Language 

Syntax Regs SIMD 
STF 10 01002 0 − 31 0 Stores single floating-point 

register (XAR.v = 0) 
  st fregrd, [address] 

STF 10 01002 0 – 126, 
256 – 382 

0 Stores the upper 4 bytes of 
double floating-point register 
(XAR.v = 1) 

  st fregrd, [address] 

STDF 10 01112 0 − 126, 
256 – 382 

0 Stores double floating-point 
register  

  std fregrd, [address] 

STQF 10 01102 0 − 126, 
256 – 382 

0 Stores quad floating-point 
register 

  stq fregrd, [address] 

STFUWXII 10 01002 0 − 126, 
256 – 382 

1 Stores the lower 4 bytes of 
double floating-point register 

※  stuw fregrd, [address] 

STDFDSXII 10 01112 0 − 126, 
256 – 382 

1 Stores double floating-point 
register as Two Word Data 

※  stdds fregrd, [address] 

 
112 rd op3 rs1 i = 0 — rs2 

       
112 rd op3 rs1 i = 1 simm13 

31 30 29 25 24 19 18 14 13 12 5 4 0 
 

Description 

Non-SIMD operation  

Refer to Section 7.122 in UA2011. 

STF copies 4 bytes of the floating-point register F[rd] into a word-aligned word to memory at 
the effective address. If XAR.v = 0, STF copies the contents of the 4-byte floating-point 
register Fs[rd] to memory. If XAR.v = 1, STF copies the upper 4 bytes of the 8-byte 
floating-point register Fd[rd] to memory.  

STDF copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned 
doubleword to memory at the effective address.  

STQF copies the contents of the 16-byte floating-point register Fq[rd] into a word-aligned 
quadword to memory at the effective address.  

STFUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address.  

STDFDS copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned 
doubleword as two word data to memory at the effective address.  

For STF, STDF, STQF, STDFUW, and STDFDS, a misaligned accesses causes a 
mem_address_not_aligned exception. 

 

The STQF instruction is defined by SPARC V9 but is not implemented in SPARC64™ XII. If 
STQF is executed, an illegal_instruction exception occurs. 

                                                   
ii Encoding is defined in 5.3.1 “Floating-Point Register Number Encoding” in the SPARC64™ X/X+ specification. 
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STDFDS can only write to cacheable address spaces. An attempt to access noncacheable 
space causes a DAE_nc_page exception. 

Programming Note STFUW and STDFDS can be used only when XAR.v = 1. 
When XAR.v = 0, other XAR fields (XAR.urs1, XAR.urs2, XAR.urs3, 
XAR.urd, and XAR.simd) are treated as all 0. 

For STDFDS, the endianness of each memory access for two words is handled separately, 
even if the two words are located on different pages with different endianness. 

 

SIMD operation  

In SPARC64™ XII, STF, STDF, STFUW, and STDFDS can be executed as a SIMD instruction. 
SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS simultaneously execute basic and 
extended stores. Refer to Section 5.5.15 for details on how to specify the registers. 

SIMD STF copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address and copies the upper 4 bytes of the 
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the 
“effective address + 4”.  

SIMD STDF copies the contents of the 8-byte floating-point register Fd[rd] into a 
doubleword-aligned doubleword to memory at the effective address and copies the contents 
of the 8-byte floating-point register Fd[rd + 256] into a doubleword-aligned doubleword to 
memory at the “effective address + 8”.  

SIMD STFUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address and copies the lower 4 bytes of the 
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the 
“effective address + 4”.  

SIMD STDFDS copies the contents of the 8-byte floating-point register Fd[rd] into a 
word-aligned doubleword to memory at the effective address as two word data and copies 
the contents of the 8-byte floating-point register Fd[rd + 256] into a word-aligned 
doubleword to memory at “the effective address + 8“ as two word data.  

For SIMD STF, SIMD STDF, SIMD STDFUW, and SIMD STDFDS, a misaligned access causes 
a mem_address_not_aligned exception. 

 

Note A SIMD STDF that accesses data aligned on a 4-byte boundary but 
not an 8-byte boundary does not cause an 
STDF_mem_address_not_aligned exception.  

 

SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS can only write to cacheable 
address spaces. An attempt to access noncacheable space causes a DAE_nc_page exception. 

Like non-SIMD store instructions, memory access semantics adhere to the TSO. SIMD STF, 
SIMD STDF, SIMD STFUW, and SIMD STDFDS simultaneously execute basic and extended 
stores. However, the ordering between the basic and extended stores conforms to the TSO.  

A VA_watchpoint exception can be detected in either the basic or extended operation of 
SIMD STF, SIMD STDF, SIMD STFUW, and SIMD STDFDS.  

For SIMD STF, SIMD STDF, and SIMD STFUW, the endianness of each memory access for 
basic data and extend data is handled separately, even if the two data are located on 
different pages with different endianness. 

For SIMD STDFDS, the endianness of each memory access for four word data is handled 
separately, even if the data are located on different pages with different endianness.  
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,  

 
Exception Target instruction Detection condition 
illegal_instruction STF, STDF, STFUW, 

STDFDS 
i = 0 and reserved is not 0. 

STQF Always detected.  
For this instruction, exceptions with a priority 
lower than illegal_instruction are intended for 
emulation.  

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action STF, STDF, STFUW, 

STDFDS 
If XAR.v = 1 and one of the following is true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<2,0> ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 

 STQF If XAR.v = 1 and one of the following is true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 

fp_exception_other 
(FSR.ftt = invalid_fp_r
egister) 

STQF rd<1> ≠ 0 

STDF_mem_address
_not_aligned 

STDF Address is aligned on a 4-byte boundary but not an 
8-byte boundary when XAR.v = 0 or XAR.simd = 0. 

mem_address_not_al
igned 

STF, STQF, STFUW, 
STDFDS 

Address is not aligned on a 4-byte boundary 

STDF One of the following is true: 
• Address is not aligned on a 4-byte boundary 

when XAR.v = 0 or XAR.simd = 0. 
• Address is not aligned on an 8-byte boundary 

when XAR.v = 1 and XAR.simd = 1.  
VA_watchpoint All Refer to the description and to 12.5.1.62 in the 

SPARC64™ X/X+ specification.  
DAE_privilege_violati
on 

All Refer to 12.5.1.8 in the SPARC64™ X/X+ 
specification. 

DAE_nc_page STF, STDF, STFUW An access to noncacheable space is attempted 
when XAR.v = 1 and XAR.simd = 1.  

STDFDS An access to noncacheable space is attempted. 
DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+ 

specification. 
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 Store Floating-Point into Alternate 7.97.
Space 
 

Compatibility Note Only the differences between the specification of 
SPARC64™ XII and SPARC64™ X/SPARC64™ X+ is described. 

 

Desciption Refer to Section 7.97 in the SPARC64™ X/X+ specification. 

SIMD operation 

SIMD STFA copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address and copies the upper 4 bytes of the 
8-byte floating-point register Fd[rd + 256] into a word-aligned word to memory at the 
“effective address + 4”. A misaligned access causes a mem_address_not_aligned exception. 

Programming Note In SPARC64™ X/X+, the address must be 
doubleword-aligned. 

SIMD STDFA copies the contents of the 8-byte floating-point register Fd[rd] into a 
doubleword-aligned doubleword to memory at the effective address and copies the contents 
of the 8-byte floating-point register Fd[rd + 256] into a doubleword-aligned doubleword to 
memory at the “effective address + 8“. A misaligned access causes a 
mem_address_not_aligned exception. 

Programming Note In SPARC64™ X/X+, the address must be 
quadword-aligned. 
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Exception Target instruction Detection condition 
illegal_instruction STQFA Always detected.  

For this instruction, exceptions with a 
priority lower than illegal_instruction are 
intended for emulation.  

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action STFA, STDFA If XAR.v = 1 and one of the following is 

true: 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 

STQFA If XAR.v = 1 and one of the following is 
true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 

fp_exception_other 
(FSR.ftt = invalid_fp_register) 

STQFA rd<1> ≠ 0 

STDF_mem_address_not_aligned STDFA Address is aligned on a 4-byte boundary 
but not an 8-byte boundary when 
XAR.v = 0 or XAR.simd = 0. 

mem_address_not_aligned STFA, STQFA Address is not aligned on a 4-byte 
boundary.  

STDFA One of the following is true: 
• Address is not aligned on a 4-byte 

boundary when XAR.v = 0 or 
XAR.simd = 0.  

• Address is not aligned on an 8-byte 
boundary when XAR.v = 1 and 
XAR.simd = 1.  

privileged_action All Refer to 12.5.1.49 in the SPARC64™ 
X/X+ specification. 

VA_watchpoint All Refer to 7.97 in the the SPARC64™ X/X+ 
specification.  

DAE_invalid_asi All Refer to 7.97 and 12.5.1.5 in the 
SPARC64™ X/X+ specification. 

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+ 
specification. 

DAE_nc_page All An access to noncacheable space is 
attempted when XAR.v = 1 and 
XAR.simd = 1. 

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+ 
specification. 
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 Cache Line Fill with Undetermined 7.114.
Values 
 

 
Instruction ASI op3 Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
XFILLN ASI_XFILL_P 

(ASI = 0xF416) 
ASI_XFILL_S 
(ASI = 0xF516) 
 

01 11102 
01 01002 
01 01102 
01 01112 
01 01012 
11 01002 
11 01112 

Accesses the 
cache at the 
specified 
address and 
fills the cache 
line with 
undetermined 
values. 

✓ 
 
 
 
 
 

 stxa regrd , [reg_plus_imm] %asi 
stxa regrd , [regaddr] imm_asi 
stwa regrd , [reg_plus_imm] %asi 
stwa regrd , [regaddr] imm_asi 
stha regrd , [reg_plus_imm] %asi 
stha regrd , [regaddr] imm_asi 
sttwa regrd , [reg_plus_imm] %asi 
sttwa regrd , [regaddr] imm_asi 
stba regrd , [reg_plus_imm] %asi 
stba regrd , [regaddr] imm_asi 
sta fregrd , [reg_plus_imm] %asi 
sta fregrd , [regaddr] imm_asi 
stda fregrd , [reg_plus_imm] %asi 
stda fregrd , [regaddr] imm_asi 

 
112 rd op3 rs1 i = 0 imm_asi rs2 

31  30 29            25 24               19 18            14 13 12                       5 4              0 
       

112 rd op3 rs1 i = 1 simm13 
31 30 29 25 24 19 18 14 13 12   0 

 

Description If ASI_XFILL_P or ASI_XFILL_S is specified for STXA, STWA, STHA, STTWA, STBA, STFA, or 
STDFA instruction, the cache line for the specified address is ensured for writing and is 
filled with an undefined value. Data is not transferred to the CPU from memory. Any 
address in the cache line can be specified. 

Programming Note In SPARC64™ X/X+, XFILL is implemented as NOP. 

 

Programming Note In SPARC64™ X/X+, XFILL is implemented for only 
8-byte store instructions (STXA, STTWA, and STDFA). In SPARC64™ XII, 
XFILL is implemented for 1-byte store instruction (STBA), 2-byte store 
instruction (STHA), 4-byte store instructions (STFA and STWA), and 8-byte 
store instructions (STXA, STTWA, and STDFA). 

STXA and STTWA cause mem_address_not_aligned exceptions if the effective memory 
address is not doubleword-aligned. 

STFA, STWA, and STDFA cause mem_address_not_aligned exceptions if the effective memory 
address is not word-aligned. 

STHA causes mem_address_not_aligned exceptions if the effective memory address is not 
halfword-aligned. 

STDFA causes STDF_mem_address_not_aligned exceptions if the effective memory address 
is word-aligned but not doubleword-aligned. 
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The ordering between XFILL and the following memory access conforms to the TSO. 

An attempt to access a page for noncacheable address space using XFILL can cause an 
exception, but a cache line fill is not performed. In addition, XFILL for noncacheable 
address space does not cause a DAE_nc_page exception. 

A watchpoint is detected for all 128 bytes in the cache line. 

If a subsequent access to the same cache line occurs while the cache line is being filled, the 
access is delayed until the cache line fill commits. 

Programming Note MEMBAR is not required between XFILL and the 
following access. The performance can be negatively affected because the 
following access is delayed. 

 

Programming Note When performance is required, it is important for the 
compiler or the assembler to issue XFILL well in advance of the actual 
store. The time required to commit XFILL depends on the system. 
Therefore there may be cases where XFILL is executed reasonably early in 
one system, but not in another (such as future versions of the processor). 
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Exception Target instruction Detection condition 
illegal_instruction STTWA Odd-numbered destination register (rd) 
fp_disabled STFA, STDFA PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action STXA, STTWA, 

STWA, STBA, STHA 
If XAR.v = 1 and one of the following is 
true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd ≠ 0 

STFA, STDFA If XAR.v = 1 and one of the following is 
true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 

STDF_mem_address_not_aligneed STDFA Address is aligned on a 4-byte 
boundary but not an 8-byte boundary. 

mem_address_not_aligned STXA, STTWA Address is not aligned on an 8-byte 
boundary. 

STFA, STWA, STDFA Address is not aligned on a 4-byte 
boundary. 

STHA Address is not aligned on a 2-byte 
boundary. 

VA_watchpoint All When the watchpoint address matches 
any address in the cache line. 
Refer to 12.5.1.62 in the SPARC64™ 
X/X+ specification. 

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ 
X/X+ specification. 

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ 
X/X+ specification. 
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 Store Floating-Point Register on 7.137.
Register Condition 
 

 
Instruction op3 rs2, rd i type 

<1:0> 
m Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
STFR 10 11002 0 − 31 02

, 
12 

002 02 Stores single-precision 
floating-point register 
on register condition 
(XAR.v = 0) 

  stfr fregrd, fregrs2, 
[regrs1] 

STFR 10 11002 0 − 126, 
256 − 382 

02
, 
12 

002 02 Stores the upper 4 
bytes of 
double-precision 
floating-point register 
on register condition 
(XAR.v = 1) 

  stfr fregrd, fregrs2, 
[regrs1] 

STDFR 10 11112 0 − 126, 
256 − 382 

02
, 
12 

002 02 Stores double-precision 
floating-point register 
on register condition  

  stdfr fregrd, fregrs2, 
[regrs1] 

STFRUWXII 10 11002 0 − 126, 
256 − 382 

02 012 02 Stores the lower 4 bytes 
of double-precision 
floating-point register 
on register condition  

※  stfruw fregrd, fregrs2, 
[regrs1] 

STDFRDSXII 10 11112 0 − 126, 
256 − 382 

02 012 02 Stores double-precision 
floating-point register 
as two words on 
register condition 

※  stdfrds fregrd, fregrs2, 
[regrs1] 

STDFRDWXII 10 11112 0 − 126, 
256 − 382 

02 012 12 Stores double-precision  
floating-point register 
as two words on 
register condition 

※  stdfrdw fregrd, fregrs2, 
[regrs1] 

 
112 rd op3 rs1 i = 0  type<1:0> m  rs2 

31 30 29            25 24         19 18            14 13 12  11     10  9  8   5 4            0 
 

112 rd op3 rs1 i = 1  rs2 
31 30 29 25 24       19 18           14 13 12             5 4            0 
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Description 

non-SIMD operation  

STFR copies the contents of the 4-byte floating-point register Fs[rd] into a word-aligned 
word to memory at the effective address if XAR.v = 0 and Fs[rs2]<31> = 1, and copies the 
upper 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to 
memory at the effective address if XAR.v = 1 and Fd[rs2]<63> = 1. 

Compatibility Note The behavior of STFR when i = 0 is the same as that 
when i = 1. 

STDFR copies the contents of the 8-byte floating-point register Fd[rd] into a word-aligned 
doubleword to memory at the effective address if Fd[rs2]<63> = 1. 

Compatibility Note The behavior of STDFR when i = 0 is the same as that 
when i = 1.  

STFRUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1. 

STDFRDS copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1, and copies the 
lower 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to memory 
at the “effective address + 4” if Fd[rs2]<31> = 1. 

STDFRDW copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address if Fd[rs2]<63> = 1, and copies the 
lower 4 bytes of the 8-byte floating-point register Fd[rd] into a word-aligned word to memory 
at the “effective address + 4” if Fd[rs2]<62> = 1. 

These floating-point store instructions use implicit ASIs (Refer to 6.3.1.3 in UA2011) to 
access the memory. The effective address is “R[rs1]”. 

For STFR, STDFR, STFRUW, STDFRDS, and STDFRDW, a misaligned access causes a 
mem_address_not_aligned exception. 

When a non-SIMD STDFR is executed, the address needs to be aligned on a word boundary. 
However, if the address is aligned on a word boundary but is not aligned on a doubleword 
boundary, an STDF_mem_address_not_aligned exception will occur. The trap handler must 
emulate the STDFR instruction when this exception occurs. 

STDFRDS and STDFRDW are able to write only to cacheable space. A DAE_nc_page exception 
will occur when writing to noncacheable space. 

STFR does not cause any exceptions other than illegal_instruction, fp_disabled, and 
illegal_action if “XAR.v = 1 and Fd[rs2]<63> = 0” or if “XAR.v = 0 and Fs[rs2]<31> = 0”.  

STDFR does not cause any exceptions other than illegal_instruction, fp_disabled, and 
illegal_action if Fd[rs2]<63> = 0.  

STFRUW does not cause any exceptions other than illegal_instruction, fp_disabled, and 
illegal_action if Fd[rs2]<63> = 0.  

STDFRDS does not cause any exceptions other than illegal_instruction, fp_disabled, and 
illegal_action for Fd[rd]<63:32> if Fd[rs2]<63> = 0, and for Fd[rd]<31:0> if Fd[rs2]<31> = 0. 

STDFRDW does not cause any exceptions other than illegal_instruction, fp_disabled, and 
illegal_action for Fd[rd]<63:32> if Fd[rs2]<63> = 0, and for Fd[rd]<31:0> if Fd[rs2]<62> = 0. 
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Exceptions that are always 
detected 

Exceptions that are detected when the 
corresponding condition for each instructiuon 
is satisfied (Fs[rs2]<31> = 1, Fd[rs2]<63> = 1, 
Fd[rs2]<62> = 1, or Fd[rs2]<31> = 1).  

Illegal_instruction 
fp_disabled 
illegal_action 

mem_address_not_aligned 
STDF_mem_address_not_aligned 
VA_watchpoint 
DAE_privilege_violation 
DAE_nc_page 
DAE_nfo_page 

For STDFRDS and STDFRDW, the endianness of each memory access for two words is handled 
separately, even if the two words are located on different pages with different endianness. 

SIMD operation  

STFR, STDFR, STFRUW, STDFRDS, and STDFRDW support SIMD execution in SPARC64™ XII. 
SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW 
simultaneously execute basic and extended stores. Refer to Section 5.5.15 for details on how 
to specify the registers.  

SIMD STFR copies the upper 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address when Fd[rs2]<63> = 1. It then copies 
the upper 4 bytes of the 8-byte floating-point register Fd[rd + 256] into a word-aligned word 
to memory at the “effective address + 4” when Fd[rs2+256]<63> = 1. A misaligned access 
causes a mem_address_not_aligned exception. 

Compatibility Note The behavior of STFR when i = 0 is the same as that 
when i = 1. 

SIMD STDFR copies the contents of the 8-byte floating-point register Fd[rd] into a 
doubleword-aligned doubleword to memory at the effective address when Fd[rs2]<63> = 1. It 
then copies the contents of the 8-byte floating-point register Fd[rd + 256] into a 
doubleword-aligned doubleword to memory at the “effective address + 8” when Fd[rs2 + 
256]<63> = 1. A misaligned access causes a mem_address_not_aligned exception. 

Compatibility Note The behavior of STDFR when i = 0 is the same as that 
when i = 1. 

SIMD STFRUW copies the lower 4 bytes of the 8-byte floating-point register Fd[rd] into a 
word-aligned word to memory at the effective address when Fd[rs2]<63> = 1. It then copies 
the lower 4 bytes of the 8-byte floating-point register Fd[rd + 256] into a word-aligned word 
to memory at the “effective address + 4” when Fd[rs2 + 256]<63> = 1. A misaligned access 
causes a mem_address_not_aligned exception. 

SIMD STDFRDS copies Fd[rd]<63:32>, Fd[rd]<31:0>, Fd[rd+256]<63:32>, and 
Fd[rd+256]<31:0> into a word-aligend word to memory at the effective address, “effective 
address + 4”, “effective address + 8” , and “effective address + 12” respectively under the 
conditions stated below. If the conditions are not satisfied, the corresponding data is not 
copied. A misaligned access causes a mem_address_not_aligned exception. 

 

Data Condition 

Fd[rd]<63:32> Fd[rs2]<63> = 1 

Fd[rd]<31:0> Fd[rs2]<31> = 1 

Fd[rd+256]<63:32> Fd[rs2+256]<63> = 1 
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Fd[rd+256]<31:0> Fd[rs2+256]<31> = 1 

 

A SIMD STDFRDW copies Fd[rd]<63:32>, Fd[rd]<31:0>, Fd[rd+256]<63:32>, and 
Fd[rd+256]<31:0> into a word-aligned word to memory at the effective address, “effective 
address + 4”, “effective address + 8” , and “effective address + 12” respectively under the 
condition stated below. If the condition is not satisfied, the corresponding data is not copied. 
A misaligned access causes a mem_address_not_aligned exception. 

 

data the condition 

Fd[rd]<63:32> Fd[rs2]<63> = 1 

Fd[rd]<31:0> Fd[rs2]<62> = 1 

Fd[rd+256]<63:32> Fd[rs2+256]<63> = 1 

Fd[rd+256]<31:0> Fd[rs2+256]<62> = 1 

These floating-point store instructions use implicit ASI (Refer to 6.3.1.3 in UA2011) to 
access the memory. 

For SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW, a 
misaligned access causes a mem_address_not_aligned exception. 

Note SIMD STDFR does not cause an STDF_mem_address_not_aligned 
exception when the address is aligned on a word boundary but is not 
aligned on a doubleword boundary. 

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW can only be 
used to access cacheable address spaces. An attempt to access noncacheable address space 
causes a DAE_nc_page exception. 

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW always 
detect illegal_instruction, fp_disabled, and illegal_action exceptions if the detection condition 
is met. Other exceptions can be detected if the detection condition and the condition of 
Fd[rs2] or Fd[rs2+256] are met. 

SIMD STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW cause an 
exception which is found in corresponding basic or extended elements when detection 
conditions for exceptions other than illegal_instruction, fp_disabled, and illegal_action are met 
and either the condition of Fd[rs2] corresponding to basic elements or the condition of Fd[rs2 
+ 256] corresponding to extended elemtns is satisfied. In addition, they cause exceptions in 
both basic and extended elements when both the condition of Fd[rs2] and Fd[rs2 + 256] are 
satisfied.  

 
Exceptions that 
are always 
detected 

Exceptions that are detected when the corresponding conditions for 
each instruction is satisfied (Fd[rs2]<63> = 1, Fd[rs2]<62> = 1, 
Fd[rs2]<31> = 1, Fd[rs2 + 256]<63> = 1, Fd[rs2 + 256]<62> = 1, or 
Fd[rs2 +256]<31> = 1).  

Illegal_instruction 
fp_disabled 
illegal_action 

mem_address_not_aligned 
VA_watchpoint 
DAE_privilege_violation 
DAE_nc_page 
DAE_nfo_page 
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Like non-SIMD store instructions, memory access semantics adhere to the TSO. SIMD 
STFR, SIMD STDFR, SIMD STFRUW, SIMD STDFRDS, and SIMD STDFRDW simultaneously 
execute basic and extended stores. However, the ordering between the basic and extended 
stores conforms to the TSO. 

For SIMD STFR, SIMD STDFR, and SIMD STFUW, the endianness of each memory access for 
basic data and extended data is handled separately, even if the two data are located on 
different pages with different endianness. 

For SIMD STDFRDS and SIMD STDFRDW, the endianness of each memory access for four 
word data is handled separately, even if they are located on different pages with different 
endianness. 
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Exception Target instruction Detection condition 
illegal_instruction STFR, STDFR, 

STFRUW  
• i = 1 and iw<12:5> ≠ 0. 
• If i = 0 and one of the following is 

true: 
・iw<12, 8:5> ≠ 0 
・type<1> = 1 
・m = 1 

STDFRDS, 
STDFRDW 

• i = 1 and iw<12:5> ≠ 0. 
• If i = 0 and one of the following is 

true: 
・iw<12, 8:5> ≠ 0 
・type<1> = 1 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action STFR, STDFR If XAR.v = 1 and one of the following is 

true: 
• XAR.urs1 ≠ 0 
• XAR.urs2<1> ≠ 0 
• XAR.urs3<2,0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 

STFRUW, 
STDFRDS, 
STDFRDW 

• XAR.v = 0 
• If XAR.v = 1 and one of the following 

is true: 
・XAR.urs1 ≠ 0 
・XAR.urs2<1> ≠ 0 
・XAR.urs3<2,0> ≠ 0 
・XAR.urd<1> ≠ 0  
・XAR.simd = 1 and XAR.urs2<2> ≠ 0 
・XAR.simd = 1 and XAR.urd<2> ≠ 0 

STDF_mem_address_not_aligned STDFR MSB of Fd[rs2] is 1 and the address is 
aligned on a word bounrary but not on a 
doubleword boundary when XAR.v = 1 
and XAR.simd = 0, or XAR.v = 0. 

mem_address_not_aligned STFR One of the following is true: 
• Address is not aligned on a word 

boundary when XAR.v = 0 and the 
MSB of (bit 31) of Fs[rs2] is 1. 

• Address is not aligned on a word 
boundary when XAR.v = 1, 
XAR.simd = 0, and the MSB (bit 63) of 
Fd[rs2] is 1. 

• Address is not aligned on a word 
boundary when the MSB (bit 63) of 
Fd[rs2] or Fd[rs2+256] is 1,  
XAR.v = 1, and XAR.simd = 1. 

STDFR One of the following is true: 
• Address is not aligned on a 

doubleword boundary when the MSB 
(bit 63) of Fd[rs2] is 1 and XAR.v = 0. 

• Address is not aligned on a 
doubleword boundary when the MSB 
(bit 63) of Fd[rs2] is 1, XAR.v = 1, and 
XAR.simd = 0. 

• Address is not aligned on a 
doubleword boundary when the MSB 
(bit 63) of Fd[rs2] or Fd[rs2+256] is 1, 
XAR.v = 1, and XAR.simd = 1. 
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STFRUW One of the following is true: 
• Address is not aligned on a word 

boundary when the MSB (bit 63) of 
Fd[rs2] is 1, XAR.v = 1, and 
XAR.simd = 0. 

• Address is not aligned on a word 
boundary when the MSB (bit 63) of 
Fd[rs2] or Fd[rs2 + 256] is 1, 
XAR.v = 1, and XAR.simd = 1. 

STDFRDS One of the following is true: 
• Address is not aligned on a word 

boundary when Fd[rs2]<63, 31> ≠  0, 
XAR.v = 1, and XAR.simd = 0. 

• Address is not aligned on a word 
boundary when Fd[rs2]<63, 31> ≠  0, 
Fd[rs2+256]<63, 31> ≠  0, XAR.v = 1, 
and XAR.simd = 1. 

STDFRDW One of the following is true: 
• Address is not aligned on a word 

boundary when Fd[rs2]<63> or 
Fd[rs2]<62> is 1, XAR.v = 1, and 
XAR.simd = 0. 

• Address is not aligned on a word 
boundary when Fd[rs2]<63>, 
Fd[rs2]<62>, Fd[rs2+256]<63>, or 
Fd[rs2+256]<62> is 1, XAR.v = 1, and 
XAR.simd = 1. 

VA_watchpoint All Refer to 7.137 and to 12.5.1.62 in the 
SPARC64™ X/X+ specification. 

DAE_privilege_violation All Refer to 12.5.1.8 in the SPARC64™ X/X+ 
specification. 

DAE_nc_page STFR, STDFR, 
STFRUW 

An access to noncacheable space is 
attempted when XAR.v = 1, 
XAR.simd = 1, and MSB of  Fd[rs2] is 1. 

STDFRDS, 
STDFRDW 

An access to noncacheable space is 
attemped. 

DAE_nfo_page All Refer to 12.5.1.7 in the SPARC64™ X/X+ 
specification. 
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 SIMD Compare (type A) 7.139.
Instruction opf urs3

<1:0> 
Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FPCMPLE16X 0 1100 

00002 
002 Compares four 16-bit 

signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmple16x fregrs1, 
freg_or_fsimm, fregrd 
(fcmple16x)† 

FPCMPULE16X 0 1100 
00012 

002 Compares four 16-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmpule16x fregrs1, 
freg_or_fsimm, fregrd 
(fucmple16x)† 

FPCMPLE4XXII 0 1100 
00102 

002 Compares sixteen 4-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmple4x   fregrs1, 
freg_or_fsimm, fregrd 
 

FPCMPUNE16X 0 1100 
00112 

002 Compares four 16-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

  fpcmpune16x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpne16x)† 

FPCMPLE32X 0 1100 
01002 

002 Compares two 32-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmple32x  fregrs1, 
freg_or_fsimm, fregrd 
(fcmple32x)† 

FPCMPULE32X 0 1100 
01012 

002 Compares two 32-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmpule32x fregrs1, 
freg_or_fsimm, fregrd 
(fucmple32x)† 

FPCMPULE4XXII 0 1100 
01102 

002 Compares sixteen 4-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmpule4x fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE32X 0 1100 
01112 

002 Compares two 32-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

  fpcmpune32x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpne32x)† 

FPCMPGT16X 0 1100 
10002 

002 Compares four 16-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpgt16x fregrs1, 
freg_or_fsimm, fregrd 
(fcmpgt16x)† 

FPCMPUGT16X 0 1100 
10012 

002 Compares four 16-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpugt16x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpgt16x)† 

FPCMPUEQ16X 0 1100 
10112 

002 Compares four 16-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

  fpcmpueq16x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpeq16x)† 

FPCMPGT32X 0 1100 
11002 

002 Compares two 32-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpgt32x fregrs1, 
freg_or_fsimm, fregrd 
(fcmpgt32x)† 

FPCMPUGT32X 0 1100 
11012 

002 Compares two 32-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpugt32x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpgt32x)† 
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Instruction opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPCMPUNE4XXII 0 1100 
11102 

002 Compares sixteen 4-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

  fpcmpune4x fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ32X 0 1100 
11112 

002 Compares two 32-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

  fpcmpueq32x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpeq32x)† 

FPCMPLE8X 0 1101 
00002 

002 Compares eight 8-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmple8x  fregrs1, 
freg_or_fsimm, fregrd 
(fcmple8x)† 

FPCMPULE8X 0 1101 
00012 

002 Compares eight 8-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmpule8x fregrs1, 
freg_or_fsimm, fregrd 
(fucmple8x)† 

FPCMPGT4XXII 0 1101 
00102 

002 Compares sixteen 4-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpgt4x  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE8X 0 1101 
00112 

002 Compares eight 8-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

  fpcmpune8x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpne8x)† 

FPCMPLE64X 0 1101 
01002 

002 Compares 64-bit signed 
integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmple64x fregrs1, 
freg_or_fsimm, fregrd 
(fcmplex)† 

FPCMPULE64X 0 1101 
01012 

002 Compares 64-bit unsigned 
integers 
If src1 ≤ src2, the 
corresponding result is 1. 

  fpcmpule64x fregrs1, 
freg_or_fsimm, fregrd 
(fucmplex)† 

FPCMPUGT4XXII 0 1101 
01102 

002 Compares sixteen 4-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpugt4x fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE64X 0 1101 
01112 

002 Compares 64-bit unsigned 
integers 
If src1 ≠ src2, the 
corresponding result is 1. 

  fpcmpune64x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpnex)† 

FPCMPGT8X 0 1101 
10002 

002 Compares eight 8-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpgt8x  fregrs1, 
freg_or_fsimm, fregrd 
(fcmpgt8x)† 

FPCMPUGT8X 0 1101 
10012 

002 Compares eight 8-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpugt8x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpgt8x)† 

FPCMPUEQ8X 0 1101 
10112 

002 Compares eight 8-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

  fpcmpueq8x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpeq8x)† 

FPCMPGT64X 0 1101 
11002 

002 Compares 64-bit signed 
integers 
If src1 > src2, the 
corresponding result is 1. 

  fpcmpgt64x fregrs1, 
freg_or_fsimm, fregrd 
(fcmpgtx)† 

FPCMPUGT64X 0 1101 
11012 

002 Compares 64-bit unsigned 
integers 

  fpcmpugt64x fregrs1, 
freg_or_fsimm, fregrd 
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Instruction opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

If src1 > src2, the 
corresponding result is 1. 

(fucmpgtx)† 

FPCMPUEQ4XXII 0 1101 
11102 

002 Compares sixteen 4-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

  fpcmpueq4x fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ64X 0 1101 
11112 

002 Compares 64-bit unsigned 
integers 
If src1 = src2, the 
corresponding result is 1. 

  fpcmpueq64x fregrs1, 
freg_or_fsimm, fregrd 
(fucmpeqx)† 

†former mnemonic for this instruction (still recognized by the assembler) 
 

102 rd op3 = 11 01102 rs1 opf rs2 
31 30 29 25 24 19 18 14 13 5 4 0 

 

Description These instructions compare several elements (partitions) in the two floating-point registers 
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point 
register Fd[rd]. The comparison results for these elements are written to Fd[rd] from the 
MSB, and 0s are written to the other bits. 

A 64-bit input register includes elements corresponding to the data type. The number of 
elements and bit range of the elements corresponding to the data type are shown in Table 
7-6 and Table 7-7. 

 

Table 7-6 Number of elements and their bit range for each data type (4-bit) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

4-bit signed 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

4-bit unsigned 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

 
Data type Element9 Element 

10 
Element 
11 

Element 
12 

Element 
13 

Element 
14 

Element 
15 

Element 
16 

4-bit signed 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 

4-bit unsigned 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 
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Table 7-7 Number of elements and their bit range for each data type (8-bit, 16-bit, 32-bit, 
and 64-bit) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

8-bit signed 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

8-bit unsigned 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

16-bit signed 
integer 

4 63:48 47:32 31:16 15:0     

16-bit 
unsigned 
integer 

4 63:48 47:32 31:16 15:0     

32-bit signed 
integer 

2 63:32 31:0       

32-bit 
unsigned 
integer 

2 63:32 31:0       

64-bit signed 
integer 

1 63:0        

64-bit 
unsigned 
integer 

1 63:0        

 

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same 
position, are compared. The results are then written to the corresponding bits of Fd[rd]. The 
bits corresponding to each element of Fd[rd] are shown in Table 7-8 and Table 7-9. 

Note The results are written to Fd[rd] from the MSB. In this 
specification, these instructions are called “SIMD compare type A”. See 
also “SIMD compare type B (page 84)”. 

Table 7-8 Element and their corresponding bit positions in Fd[rd] (4-bit data)  

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
Fd[rd]  63 62 61 60 59 58 57 56 

 

 Element 9 Element 
10 

Element 
11 

Element 
12 

Element 
13 

Element 
14 

Element 
15 

Element 
16 

Fd[rd]  55 54 53 52 51 50 49 48 

 

Table 7-9 Elements and their corresponding bit positions in Fd[rd] (8-bit, 16-bit, 32-bit, 
and 64-bit data) 

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
Fd[rd]  63 62 61 60 59 58 57 56 

 

If xar_i = 0, FPCMPLE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of 
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0. If 
xar_i = 1, FPCMPLE{4|8|16|32|64}X compares the elements of Fd[rs1] and 
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Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1, 
otherwise they are all set to 0. 

If xar_i = 0, FPCMPGT{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of 
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0. If 
xar_i = 1, FPCMPGT{4|8|16|32|64}X compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1, 
otherwise they are all set to 0. 

If xar_i = 0, FPCMPULE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤ 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. If xar_i = 1, FPCMPULE{4|8|16|32|64}X compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUNE{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]”  ≠ 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. If xar_i = 1, FPCMPUNE{4|8|16|32|64}X compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]”  ≠ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUGT{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” > 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. If xar_i = 1, FPCMPUGT{4|8|16|32|64}X compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}X compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” = 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. If xar_i = 1, FPCMPUEQ{4|8|16|32|64}X compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. 

 

Note Instructions that compare whether signed integers are equal or 
not are not defined. These comparisons are equivalent to the instructions 
FPCMPUEQ{4|8|16|32|64}X and FPCMPUNE{4|8|16|32|64}X, which 
compare whether unsigned integers are equal or not, respectively. 

 

These instructions will not update any fields in the FSR. 

 

Note To use these instructions, “XAR.v must be 0” or “XAR.v must be 1 
and XAR.urs3<1:0> must be 002”. If XAR.v is 1 and XAR.urs3<1:0> is 102, 
FPCMP*{4|8|16|32|64}FX will be executed (page 84). If XAR.v is 1 and 
XAR.urs3<1:0> is 112, FPCMP*{4|8|16|32|64}XACC will be 
executed(page 89). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action 
will occur. 
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Exception Target 
instruction 

Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> = 012 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Partitioned Shift 7.143.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FSLL32XII 0 0010 01012 32-bit partitioned shift left   fsll32  fregrs1, 
freg_or_fsimm, fregrd 

FSRL32XII 0 0010 01112 32-bit partitioned shift right 
logical 

  fsrl32  fregrs1, 
freg_or_fsimm, fregrd 

FSRA32XII 0 0010 11112 32-bit partitioned shift right 
arithmetic 

  fsra32  fregrs1, 
freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description These instructions shift right or left the upper 32 bits and the lower 32 bits of Fd[rs1], and 
store the result into Fd[rd]. The shift count is specified by Fd[rs2] if xar_i = 0 and by Fsimm8 
if xar_i = 1. 

If xar_i = 0, the shift count of the upper 32 bits and the lower 32 bits of Fd[rs1] is specified by 
Fd[rs2]<36:32> and Fd[rs2]<4:0> respectively. If xar_i = 1, the shift count of the upper 32 bits 
and the lower 32 bits of Fd[rs1] is specified by Fsimm8_32x2<36:32> and Fsimm8_32x2<4:0> 
respectively (in case of these instructions, Fsimm8_32x2<63:37, 31:5> is ignored). The 
operation is illustrated in Figure 7-6. 

 

 

Figure 7-6 The behavior of F{SLL|SRL|SRA}32 

FSLL32 shifts the upper and the lower 32 bits of Fd[rs1] left (toward the higher-order), 
replacing the right (low-order) vacated positions with 0 and stores the result into Fd[rd]. 

FSRL32 shifts the upper and the lower 32 bits of Fd[rs1] right (toward the lower-order), 
replacing the left (high-order) vacated positions with 0 and stores the result into Fd[rd]. 

FSRA32 shifts the upper and the lower 32 bits of Fd[rs1] right (toward the lower-order), 
replacing the left (high-order) vacated positions with the value of Fd[rs1]<63> and 
Fd[rs1]<31> respectively and stores the result into Fd[rd]. 

F{SLL|SRL|SRA}32 will not update any fields in the FSR. 

 



   
 

 
70 Ver 20, Oct., 2017 
 

 

Exception Target 
instruction 

Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Partitioned Multiply 7.144.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPMUL32XII 0 0100 11112 32-bit partitioned multiply   fpmul32  fregrs1, 
freg_or_fsimm, fregrd 

FPMUL64XII 0 0100 11102 64-bit partitioned multilpy   fpmul64  fregrs1, 
freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description Multiplication for 32-bit integers or 64-bit integers stored in floating-point registers. 

If xar_i = 0, FPMUL32 multiplies the two 32-bit integers in the same position of Fd[rs1] and 
Fd[rs2]. The lower 32 bits of the results will be stored in the same position of Fd[rd]. If 
xar_i = 1, FPMUL32 multiplies the two 32-bit integers in the same position of Fd[rs1] and 
Fsimm8_32x2. The lower 32 bits of the results will be stored in the same position of Fd[rd]. 
The operation is illustrated in Figure 7-7. 

 

Figure 7-7 The behavior of FPMUL32 

If xar_i = 0, FPMUL64 multiplies the 64-bit integers of Fd[rs1] and Fd[rs2]. The lower 64 bits 
of the result will be stored in Fd[rd]. If xar_i = 1, FPMUL64 multiplies the 64-bit integers of 
Fd[rs1] and Fsimm8_64x1. The lower 64 bits of the result will be stored in Fd[rd]. 

  FPMUL32 and FPMUL64 will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Integer Sign/Zero Extension 7.145.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FSEXTWXII 1 0000 00002 Sign extension for 32-bit 
integers in double floating-point 
registers 

  fsextw freg_or_fsimm, fregrd 

FZEXTWXII 1 0000 00012 Zero extension for 32-bit 
integers in double floating-point 
registers 

  fzextw freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102  opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description FSEXTW extends the lower 32 bits of the input integer to the sign-extended 64-bit integer 
and stores the result in Fd[rd]. If xar_i = 0, Fd[rs2]<31:0> is copied into Fd[rd]<31:0> and 
Fd[rd]<63:32> is filled with Fd[rs2]<31>. If xar_i = 1, Fsimm8_64x1 is copied to Fd[rd]<63:0>. 

FZEXTW extends the lower 32 bits of the input integer to the zero-extended 64-bit integer 
and stores the result in Fd[rd]. If xar_i = 0, Fd[rs2]<31:0> is copied into Fd[rd]<31:0> and 
Fd[rd]<63:32> is zero-filled. If xar_i = 1, Fsimm8_64x1<31:0> is copied to Fd[rd]<31:0> and 
Fd[rd]<63:32> is zero-filled.  

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_instruction All iw<18:14> ≠ 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1 ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 

 
  



  
 

 
 7. Instructions 73 
 

 

 

 Fixed-Point Partitioned Add (8-bit) 7.146.
 
Opcode opf Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FPADD8XII 1 0010 01002 Eight 8-bit adds   fpadd8 fregrs1, freg_or_fsimm, 

fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description Addition for 8-bit integers stored in a floating-point register. 

If xar_i = 0, FPADD8 adds each element in the same 8-bit integer position of Fd[rs1] to Fd[rs2]. 
The results are stored in the same position in Fd[rd]. 

If xar_i = 1, FPADD8 adds each element in the same 8-bit integer position of Fd[rs1] to 
Fsimm8_8x8. The results are stored in the same position in Fd[rd]. 

FPADD8 will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Fixed-Point Partitioned Subtract (8-bit) 7.147.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPSUB8XII 1 0101 01002 Eight 8-bit subtracts   fpsub8 fregrs1, freg_or_fsimm, 
fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description Subtraction for 8-bit integers stored in a floating-point register. 

If xar_i = 0, FPSUB8 subtracts each element in the same 8-bit integer position of Fd[rs2] from 
Fd[rs1]. The results are stored in the same position in Fd[rd]. 

If xar_i = 1, FPSUB8 subtracts each element in the same 8-bit integer position of 
Fsimm8_8x8 from Fd[rs1]. The results are stored in the same position in Fd[rd]. 

FPSUB8 will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Full Element Permutation 7.148.
 
Opcode opf Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FEPERM32XXII 1 1000 01002 Sorts 32-bit data among double 

floating-point registers 
  feperm32x fregrs1, 

freg_or_fsimm, fregrd 
FEPERM64XXII 1 1000 01012 Sorts 64-bit data among double 

floating-point registers 
  feperm64x fregrs1, 

freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description 

non-SIMD operation 

FEPERM32X and FEPERM64X are mainly used to permutate or mask the SIMD data. These 
instructions can be used in non-SIMD operations but the purpose is different from SIMD 
operations. 

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) – (3) as stated below) to 
Fd[rd]<63:32> according to Fd[rs2]<63, 32>, and to Fd[rd]<31:0> according to Fd[rs2]<31, 0>. 

(1) data in Fd[rs1]<63:32> 

(2) data in Fd[rs1]<31:0> 

(3) all 0 

The behavior of FEPERM32X is described in Figure 7-8, Table 7-10, and Table 7-11. The 
value of Fd[rs2]<62:33, 30:1> is ignored. 

 

Figure 7-8 Behavior of FEPERM32X (xar_i = 0) 
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Table 7-10 Results of FEPERM32X (Fd[rd]<63:32>, xar_i = 0)  

Fd[rs2]<63> Fd[rs2]<32> Fd[rd]<63:32> 

0 0 Fd[rs1]<63:32> 

1 Fd[rs1]<31:0> 

1 − all 0 

Table 7-11 Results of FEPERM32X (Fd[rd]<31:0>, xar_i = 0) 

Fd[rs2]<31> Fd[rs2]<0> Fd[rd]<31:0> 

0 0 Fd[rs1]<63:32> 

1 Fd[rs1]<31:0> 

1 − all 0 

 

If xar_i = 1, FEPERM32X broadcasts one of the 32-bit data ((1) – (3) as stated below) to 
Fd[rd]<63:32> and Fd[rd]<31:0> according to Fsimm8<7, 0>. 

(1) data in Fd[rs1]<63:32> 

(2) data in Fd[rs1]<31:0> 

(3) all 0 

The behavior of FEPERM32X is described in Figure 7-9 and Table 7-12. The value of 
Fsimm8<6:1> is ignored. 

 

Figure 7-9 Behavior of FEPERM32X (xar_i = 1) 

Table 7-12 Results of FEPERM32X (xar_i = 1) 

Fsimm8<7> Fsimm8<0> Fd[rd]<63:32>, Fd[rd]<31:0> 

0 0 Fd[rs1]<63:32> 

1 Fd[rs1]<31:0> 

1 − all 0 
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If xar_i = 0, FEPERM64X copies one of the 64-bit data ((1) or (2) as stated below) to 
Fd[rd]<63:0> according to Fd[rs2]<63>. 

(1) data in Fd[rs1]<63:0> 

(2) all 0 

The behavior of FEPERM64X is described in Figure 7-10 and Table 7-13. The value of 
Fd[rs2]<62:0> is ignored. 

 

 

Figure 7-10 Behavior of FEPERM64X (xar_i = 0) 

Table 7-13 Results of FEPERM64X (xar_i = 0) 

Fd[rs2]<63> Fd[rd]<63:0> 

0 Fd[rs1]<63:0> 

1 all 0 

   

If xar_i = 1 and Fsimm8<7> = 0, FEPERM64X copies Fd[rs1] to Fd[rd]. If if xar_i = 1 and 
Fsimm8<7> = 1, Fd[rd] is filled with 0. 

These instructions will not update any fields in the FSR. 

 

SIMD operation 

In this section 7.148, Fd[rs1][BASIC] and Fd[rs1][EXTEND] mean Fd[rs1] and Fd[rs1 + 256] 
respectively. The same applies to Fd[rs2] and Fd[rd]. 

If xar_i = 0, FEPERM32X copies one of the 32-bit data ((1) – (5) as stated below) to 
Fd[rd]<63:32>[BASIC] according to Fd[rs2]<63, 33:32>[BASIC], and to Fd[rd]<31:0>[BASIC] 
according to Fd[rs2]<31, 1:0>[BASIC]. 

(1) data in Fd[rs1][BASIC]<63:32> 

(2) data in Fd[rs1][BASIC]<31:0> 

(3) data in Fd[rs1][EXTEND]<63:32> 

(4) data in Fd[rs1][EXTEND]<31:0> 

(5) all 0 
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The behavior of FEPERM32X is described in Figure 7-11, Table 7-14, and Table 7-15. The 
value of Fd[rs2]<62:34, 30:2>[BASIC] is ignored. 

The same applies to Fd[rs1][EXTEND], Fd[rs2][EXTEND], and Fd[rd][EXTEND]. 

 

Figure 7-11 Behavior of FEPERM32X (xar_i = 0) 

Table 7-14 Results of FEPERM32X (Fd[rd]<63:32>[BASIC], xar_i = 0) 

Fd[rs2]<63>[BASIC] Fd[rs2]<33:32>[BASIC] Fd[rd]<63:32>[BASIC] 

0 0 Fd[rs1][BASIC]<63:32> 

1 Fd[rs1][BASIC]<31:0> 

2 Fd[rs1][EXTEND]<63:32> 

3 Fd[rs1][EXTEND]<31:0> 

1 − all 0 

 

Table 7-15 Results of FEPERM32X (Fd[rd]<31:0>[BASIC], xar_i = 0) 

Fd[rs2]<31>[BASIC] Fd[rs2]<1:0>[BASIC] Fd[rd]<31:0>[BASIC] 

0 0 Fd[rs1][BASIC]<63:32> 

1 Fd[rs1][BASIC]<31:0> 

2 Fd[rs1][EXTEND]<63:32> 

3 Fd[rs1][EXTEND]<31:0> 

1 − all 0 
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 If xar_i = 1, FEPERM32X broadcasts one of the 32-bit data ((1) – (5) as stated below) to 
Fd[rd]<63:32>[BASIC] and Fd[rd]<31:0>[BASIC] according to Fsimm8<7, 1:0>. 

(1) data in Fd[rs1][BASIC]<63:32> 

(2) data in Fd[rs1][BASIC]<31:0> 

(3) data in Fd[rs1][EXTEND]<63:32> 

(4) data in Fd[rs1][EXTEND]<31:0> 

all 0 

The behavior of FEPERM32X is described in Figure 7-12 and Table 7-16. The value of 
Fsimm8<6:2> is ignored. 

The same applies to Fd[rs1][EXTEND] and Fd[rd][EXTEND]. 

 

Figure 7-12 Behavior of FEPERM32X (xar_i = 1) 

Table 7-16 Results of FEPERM32X (Fd[rd]<63:32, 31:0>[BASIC], xar_i = 1) 

Fsimm8<7> Fsimm8<1:0> Fd[rd]<63:32>[BASIC], 
Fd[rd]<31:0>[BASIC] 

0 0 Fd[rs1][BASIC]<63:32> 

1 Fd[rs1][BASIC]<31:0> 

2 Fd[rs1][EXTEND]<63:32> 

3 Fd[rs1][EXTEND]<31:0> 

1 − all 0 

 

 If xar_i = 0, FEPERM64X copies one of the 64-bit data ((1) – (3) as stated below) to 
Fd[rd]<63:0>[BASIC] according to Fd[rs2]<63, 0>[BASIC]. 
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(1) data in Fd[rs1][BASIC]<63:0> 

(2) data in Fd[rs1][EXTEND]<63:0> 

(3) all 0 

The behavior of FEPERM64X is described in Figure 7-13 and Table 7-17. The value of 
Fd[rs2]<62:1>[BASIC] is ignored. 

The same applies to Fd[rs1][EXTEND], Fd[rs2][EXTEND], and Fd[rd][EXTEND]. 

 

Figure 7-13 Behavior of FEPERM64X (xar_i = 0) 

Table 7-17 Results of FEPERM64X (Fd[rd]<63:0>[BASIC], xar_i = 0) 

Fd[rs2]<63>[BASIC] Fd[rs2]<0>[BASIC] Fd[rd]<63:0>[BASIC] 

0 0 Fd[rs1][BASIC]<63:0> 

1 Fd[rs1][EXTEND]<63:0> 

1 − all 0 

 

If xar_i = 1, FEPERM64X broadcasts one of the 64-bit data ((1) – (3) as stated below) to 
Fd[rd]<63:0>[BASIC] according to Fsimm8<7, 0>. 

(1) data in Fd[rs1][BASIC]<63:0> 

(2) data in Fd[rs1][EXTEND]<63:0> 

(3) all 0 

The behavior of FEPERM64X is described in Figure 7-14 and Table 7-18. The value of 
Fsimm8<6:1> is ignored. 

The same applies to Fd[rs1][EXTEND] and Fd[rd][EXTEND]. 
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Figure 7-14 Behavior of FEPERM64X (xar_i = 1) 

Table 7-18 Results of FEPERM64X (Fd[rd]<63:0>[BASIC], xar_i = 1) 

Fsimm8<7> Fsimm8<0> Fd[rd]<63:0>[BASIC] 

0 0 Fd[rs1][BASIC]<63:0> 

1 Fd[rs1][EXTEND]<63:0> 

1 − all 0 

 

These instructions will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Partition Concatenate Shift Left 7.149.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPCSL8XXII 0 1001 11102 Concatenates two registers and 
shifts left 

  fpcsl8x  fregrs1, 
freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description FPCSL8X concatenates the lower bits of Fd[rd] and the upper bits of Fd[rs1] to form a 64-bit 
value and stores it in Fd[rd]. 

 

Non-SIMD operation 

If xar_i = 0, “shift_amount” is specified by “Fd[rs2]<2:0> × 8” bits and if xar_i = 1, 
“shift_amount” is specified by “Fsimm8<2:0> × 8” bits. Fd[rs2]<63:3> and Fsimm8<63:3> 
are ignored. 

If shift_amount is not 0, FPCSL8X concatenates Fd[rd]<63 – shift_amount:0> and 
Fd[rs1]<63:63 – shift_amount + 1>, and stores it in Fd[rd]<63:0>. If shift_amount is 0, the 
value of Fd[rd] remains unchanged. 

The operation is illustrated in Figure 7-15. 

 

 

Figure 7-15 Behavior of FPCSL8X (non-SIMD) 

 

SIMD operation  

 In this section 7.149, Fd[rs1][BASIC] and Fd[rs1][EXTEND] mean Fd[rs1] and Fd[rs1 + 256] 
respectively. The same applies to Fd[rs2] and Fd[rd]. 

For the basic side, if xar_i = 0, “shift_amount” is specified by “Fd[rs2][BASIC]<2:0> × 8” bits 
and if xar_i = 1, “shift_amount” is specified by “Fsimm8<2:0> × 8” bits. 
Fd[rs2][BASIC]<63:3> and Fsimm8<63:3> are ignored. 
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If shift_amount is not 0, FPCSL8X concatenates Fd[rd][BASIC]<63 – shift_amount:0> and 
Fd[rs1][BASIC]<63:63 – shift_amount + 1>, and stores it in Fd[rd][BASIC]<63:0>. If 
shift_amount is 0, the value of Fd[rd][BASIC] remains unchanged. 

For the extended side, if xar_i = 0, “shift_amount” is specified by 
“Fd[rs2][EXTEND]<2:0> × 8” and if xar_i = 1, “shift_amount” is specified by 
“Fsimm8<2:0> × 8”. Fd[rs2][EXTEND]<63:3> and Fsimm8<63:3> are ignored.  

The behavior of the extended side is the same as that of basic side. 

 The operation is illustrated in Figure 7-16. 

 

Figure 7-16 Behavior of FPCSL8X (SIMD) 

 

FPCSL8X will not update any fields in the FSR. 

Programming Note FPCSL8X is mainly used to support unaligned loads. 
Refer to the pseudo-code below. 

 

/* pseudo-code */ 
 
   x = addr & ~(8-1) 
   y = addr & (8-1) 
   ldd,s data0, [x] 
   ldd,s data1, [x+8] 
   fpcsl8x,s data0, data1, y 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 SIMD Compare (type B) 7.150.
Opcode opf urs3

<1:0> 
Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FPCMPLE16FXXII 0 1100 00002 102 Compares four 16-bit 

signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE16FXXII 0 1100 00012 102 Compares four 16-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE4FXXII 0 1100 00102 102 Compares sixteen 4-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE16FXXII 0 1100 00112 102 Compares four 16-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE32FXXII 0 1100 01002 102 Compares two 32-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple32fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE32FXXII 0 1100 01012 102 Compares two 32-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule32fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE4FXXII 0 1100 01102 102 Compares sixteen 4-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE32FXXII 0 1100 01112 102 Compares two 32-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune32fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT16FXXII 0 1100 10002 102 Compares four 16-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT16FXXII 0 1100 10012 102 Compares four 16-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ16FXXII 0 1100 10112 102 Compares four 16-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT32FXXII 0 1100 11002 102 Compares two 32-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt32fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT32FXXII 0 1100 11012 102 Compares two 32-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt32fx  fregrs1, 
freg_or_fsimm, fregrd 
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Opcode opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPCMPUNE4FXXII 0 1100 11102 102 Compares sixteen 4-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ32FXXII 0 1100 11112 102 Compares two 32-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq32fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE8FXXII 0 1101 00002 102 Compares eight 8-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE8FXXII 0 1101 00012 102 Compares eight 8-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT4FXXII 0 1101 00102 102 Compares sixteen 4-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE8FXXII 0 1101 00112 102 Compares eight 8-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE64FXXII 0 1101 01002 102 Compares 64-bit signed 
integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple64fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE64FXXII 0 1101 01012 102 Compares 64-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule64fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT4FXXII 0 1101 01102 102 Compares sixteen 4-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE64FXXII 0 1101 01112 102 Compares 64-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune64fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT8FXXII 0 1101 10002 102 Compares eight 8-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT8FXXII 0 1101 10012 102 Compares eight 8-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ8FXXII 0 1101 10112 102 Compares eight 8-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT64FXXII 0 1101 11002 102 Compares 64-bit signed 
integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt64fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT64FXXII 0 1101 11012 102 Compares 64-bit 
unsigned integers 

※  fpcmpugt64fx  fregrs1, 
freg_or_fsimm, fregrd 
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Opcode opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

If src1 > src2, the 
corresponding result is 1. 

FPCMPUEQ4FXXII 0 1101 11102 102 Compares sixteen 4-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq4fx  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ64FXXII 0 1101 11112 102 Compares 64-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq64fx  fregrs1, 
freg_or_fsimm, fregrd 

 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description These instructions compare several elements (partitions) in the two floating-point registers 
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point 
register Fd[rd].  

A 64-bit input register includes elements corresponding to the data type. The number of 
elements and bit positions of the elements corresponding to the data type are shown in 
Table 7-19 and Table 7-20. 

Table 7-19 Number of elements and the bit position of the elements (4-bit data) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

4-bit signed 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

4-bit unsigned 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

 

Data type Element9 Element 
10 

Element 
11 

Element 
12 

Element 
13 

Element 
14 

Element 
15 

Element 
16 

4-bit signed 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 

4-bit unsigned 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 
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Table 7-20 Number of elements and the bit position of the elements corresponding to the 
data type (8-bit, 16-bit, 32-bit, and 64-bit) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

8-bit signed 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

8-bit unsigned 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

16-bit signed 
integer 

4 63:48 47:32 31:16 15:0     

16-bit 
unsigned 
integer 

4 63:48 47:32 31:16 15:0     

32-bit signed 
integer 

2 63:32 31:0       

32-bit 
unsigned 
integer 

2 63:32 31:0       

64-bit signed 
integer 

1 63:0        

64-bit 
unsigned 
integer 

1 63:0        

 
 

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same 
position, are compared. The results are then written to the corresponding elements of Fd[rd]. 
The bits corresponding to the element of Fd[rd] are set to all 0 or all 1. For example, with 
32-bit unsigned integers, 0x00000000 or 0xffffffff is set to Fd[rd]<63:32> and Fd[rd]<31:0> 
according to the compared results of each element.  

Note The results (all 0 or all 1) are written to the corresponding 
elements of Fd[rd]. In this specification, these instructions are called 
“SIMD compare type B”. See also “SIMD compare type A (page 63)”. 

 

If xar_i = 0, FPCMPLE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of 
Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they are all set to 0. 
If xar_i = 1, FPCMPLE{4|8|16|32|64}FX compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding elements of Fd[rd] are all 
set to 1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of 
Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they are all set to 0. 
If xar_i = 1, FPCMPGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding elements of Fd[rd] are all 
set to 1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPULE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤ 
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they 
are all set to 0. If xar_i = 1, FPCMPULE{4|8|16|32|64}FX compares the elements of Fd[rs1] 
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned 
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integers. If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding elements of 
Fd[rd] are all set to 1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUNE{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]”  ≠ 
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they 
are all set to 0. If xar_i = 1, FPCMPUNE{4|8|16|32|64}FX compares the elements of Fd[rs1] 
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned 
integers. If “elements of Fd[rs1]” ≠ “elements of Fsimm8”, the corresponding elements of 
Fd[rd] are all set to 1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUGT{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” > 
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they 
are all set to 0. If xar_i = 1, FPCMPUGT{4|8|16|32|64}FX compares the elements of Fd[rs1] 
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned 
integers. If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding elements of 
Fd[rd] are all set to 1, otherwise they are all set to 0. 

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}FX compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” = 
“elements of Fd[rs2]”, the corresponding elements of Fd[rd] are all set to 1, otherwise they 
are all set to 0. If xar_i = 1, FPCMPUEQ{4|8|16|32|64}FX compares the elements of Fd[rs1] 
and Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned 
integers. If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding elements of 
Fd[rd] are all set to 1, otherwise they are all set to 0. 

  These instructions will not update any field in the FSR. 

 

Note To use these instructions, XAR.v must be 1 and XAR.urs3<1:0> 
must be 102. If “XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1:0> is 002”, 
FPCMP*{4|8|16|32|64}X will be executed (page 63). If XAR.v is 1 and 
XAR.urs3<1:0> is 112, FPCMP*{4|8|16|32|64}XACC will be executed 
(page 89). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action will occur. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> = 012 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 SIMD Compare and Accumulate Results 7.151.
Opcode opf urs3

<1:0> 
Operation HPC-ACE Assembly Language Syntax 

Regs SIMD 
FPCMPLE16XACCXII 0 1100 

00002 
112 Compares four 16-bit 

signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple16xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE16XACCXII 0 1100 
00012 

112 Compares four 16-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule16xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE4XACCXII 0 1100 
00102 

112 Compares sixteen 4-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple4xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE16XACCXII 0 1100 
00112 

112 Compares four 16-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune16xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE32XACCXII 0 1100 
01002 

112 Compares two 32-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple32xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE32XACCXII 0 1100 
01012 

112 Compares two 32-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule32xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE4XACCXII 0 1100 
01102 

112 Compares sixteen 4-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule4xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE32XACCXII 0 1100 
01112 

112 Compares two 32-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune32xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT16XACCXII 0 1100 
10002 

112 Compares four 16-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt16xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT16XACCXII 0 1100 
10012 

112 Compares four 16-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt16xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ16XACCXII 0 1100 
10112 

112 Compares four 16-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq16xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT32XACCXII 0 1100 
11002 

112 Compares two 32-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt32xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT32XACCXII 0 1100 
11012 

112 Compares two 32-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt32xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE4XACCXII 0 1100 
11102 

112 Compares sixteen 4-bit 
unsigned integers 
If src1 ≠ src2, the 

※  fpcmpune4xacc fregrs1, 
freg_or_fsimm, fregrd 
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Opcode opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

corresponding result is 1. 
FPCMPUEQ32XACCXII 0 1100 

11112 
112 Compares two 32-bit 

unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq32xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE8XACCXII 0 1101 
00002 

112 Compares eight 8-bit 
signed integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE8XACCXII 0 1101 
00012 

112 Compares eight 8-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT4XACCXII 0 1101 
00102 

112 Compares sixteen 4-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt4xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE8XACCXII 0 1101 
00112 

112 Compares eight 8-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPLE64XACCXII 0 1101 
01002 

112 Compares 64-bit signed 
integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmple64xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPULE64XACCXII 0 1101 
01012 

112 Compares 64-bit 
unsigned integers 
If src1 ≤ src2, the 
corresponding result is 1. 

※  fpcmpule64xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT4XACCXII 0 1101 
01102 

112 Compares sixteen 4-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt4xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUNE64XACCXII 0 1101 
01112 

112 Compares 64-bit 
unsigned integers 
If src1 ≠ src2, the 
corresponding result is 1. 

※  fpcmpune64xacc fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT8XACCXII 0 1101 
10002 

112 Compares eight 8-bit 
signed integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT8XACCXII 0 1101 
10012 

112 Compares eight 8-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ8XACCXII 0 1101 
10112 

112 Compares eight 8-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq8xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPGT64XACCXII 0 1101 
11002 

112 Compares 64-bit signed 
integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpgt64xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUGT64XACCXII 0 1101 
11012 

112 Compares 64-bit 
unsigned integers 
If src1 > src2, the 
corresponding result is 1. 

※  fpcmpugt64xacc fregrs1, 
freg_or_fsimm, fregrd 
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Opcode opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPCMPUEQ4XACCXII 0 1101 
11102 

112 Compares sixteen 4-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq4xacc  fregrs1, 
freg_or_fsimm, fregrd 

FPCMPUEQ64XACCXII 0 1101 
11112 

112 Compares 64-bit 
unsigned integers 
If src1 = src2, the 
corresponding result is 1. 

※  fpcmpueq64xacc fregrs1, 
freg_or_fsimm, fregrd 

 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description These instructions compare several elements (partitions) in the two floating-point registers 
“Fd[rs1] and Fd[rs2]” or “Fd[rs1] and Fsimm8”. The results are written to the floating-point 
register Fd[rd]. The comparison results for these elements are written to Fd[rd] from the 
MSB. Before new results are written, the previous results are shifted to the right, that is, 
the previous results are accumulated.  

A 64-bit input register includes elements corresponding to the data type. The number of 
elements and bit range of the elements corresponding to the data type are shown in Table 
7-21 and Table 7-22. 

Table 7-21 Number of elements and their bit range for each data type (4-bit data) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

4-bit signed 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

4-bit unsigned 
integer 

16 63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

 

Data type Element9 Element 
10 

Element 
11 

Element 
12 

Element 
13 

Element 
14 

Element 
15 

Element 
16 

4-bit signed 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 

4-bit unsigned 
integer 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 
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Table 7-22 Number of elements and their bit range for each data type (8-bit, 16-bit, 32-bit, 
and 64-bit) 

Data type Number 
of 
elements 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

Element 
7 

Element 
8 

8-bit signed 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

8-bit unsigned 
integer 

8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0 

16-bit signed 
integer 

4 63:48 47:32 31:16 15:0     

16-bit 
unsigned 
integer 

4 63:48 47:32 31:16 15:0     

32-bit signed 
integer 

2 63:32 31:0       

32-bit 
unsigned 
integer 

2 63:32 31:0       

64-bit signed 
integer 

1 63:0        

64-bit 
unsigned 
integer 

1 63:0        

 

The elements of “Fd[rs1] and Fd[rs2]” (or “Fd[rs1] and Fsimm8”), which are in the same 
position, are compared. The results are then written to the corresponding bits of Fd[rd]. The 
bits corresponding to each element of Fd[rd] are shown in Table 7-23 and Table 7-24. 

 

Table 7-23 Elements and their corresponding bit positions in Fd[rd] (4-bit data) 

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
Fd[rd]  63 62 61 60 59 58 57 56 

 
 Element 9 Element 

10 
Element 
11 

Element 
12 

Element 
13 

Element 
14 

Element 
15 

Element 
16 

Fd[rd]  55 54 53 52 51 50 49 48 

 

Table 7-24 Elements and their corresponding bit positions in Fd[rd] (8-bit, 16-bit, 32-bit, 
and 64-bit data) 

 Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
Fd[rd]  63 62 61 60 59 58 57 56 

 

Before new results are written to Fd[rd], previous results are shifted to the right as shown 
in Figure 7-17. 
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Figure 7-17 shift amount for each data 

If xar_i = 0, FPCMPLE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” ≤ “elements of 
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0.  
Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPLE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1, 
otherwise they are all set to 0. Before new results are written, previous results are shifted 
to the right. 

If xar_i = 0, FPCMPGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the signed integers. If “elements of Fd[rs1]” > “elements of 
Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all set to 0. 
Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the signed integers. If 
“elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 1, 
otherwise they are all set to 0. Before new results are written, previous results are shifted 
to the right. 

If xar_i = 0, FPCMPULE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≤ 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPULE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” ≤ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
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1, otherwise they are all set to 0. Before new results are written, previous results are 
shifted to the right. 

If xar_i = 0, FPCMPUNE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” ≠ 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPUNE{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” ≠ “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set 
to 1, otherwise they are all set to 0. Before new results are written, previous results are 
shifted to the right. 

If xar_i = 0, FPCMPUGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” > 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPUGT{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” > “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. Before new results are written, previous results are 
shifted to the right. 

If xar_i = 0, FPCMPUEQ{4|8|16|32|64}XACC compares the elements of Fd[rs1] and Fd[rs2], 
which are in the same position, as the unsigned integers. If “elements of Fd[rs1]” = 
“elements of Fd[rs2]”, the corresponding bits of Fd[rd] are all set to 1, otherwise they are all 
set to 0. Before new results are written, previous results are shifted to the right. If xar_i = 1, 
FPCMPUEQ{4|8|16|32|64}XACC compares the elements of Fd[rs1] and 
Fsimm8_{8x8|8x8|16x4|32x2|64x1}, which are in the same position, as the unsigned integers. 
If “elements of Fd[rs1]” = “elements of Fsimm8”, the corresponding bits of Fd[rd] are all set to 
1, otherwise they are all set to 0. Before new results are written, previous results are 
shifted to the right. 

These instructions will not update any fields in the FSR. 

 

Note To use these instructions, XAR.v must be 1 and XAR.urs3<1:0> 
must be 112. If “XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1:0> is 002”, 
FPCMP*{4|8|16|32|64}X will be executed (page 63). If XAR.v is 1 and 
XAR.urs3<1:0> is 102, FPCMP*{4|8|16|32|64}FX will be executed (page 
84). If XAR.v is 1 and XAR.urs3<1:0> is 012, illegal_action will occur. 

 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<1:0> = 012 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Partitioned Move for Selected 7.152.
Floating-Point Register on 
Floating-Point Register’s Condition 
(extended for SPARC64™ XII) 
 

Opcode opf urs3
<1> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FPSELMOV8FXXII 0 1001 01012 1 Select eight 8-bit 
data from the 
registers 

※  fpselmov8fx  fregrs1, 
freg_or_fsimm, fregrd 

FPSELMOV16FXXII 0 1001 01102 1 Select four 16-bit 
data from the 
registers 

※  fpselmov16fx  fregrs1, 
freg_or_fsimm, fregrd 

FPSELMOV32FXXII 0 1001 01112 1 Select two 32-bit 
data from the 
registers 

※  fpselmov32fx  fregrs1, 
freg_or_fsimm, fregrd 

 
102 rd op3 = 11 01102 rs1 opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description For FPSELMOV8FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into eight 8-bit data. 
According to the value of Fd[rs1] (corresponding to each data), each divided 8-bit data in 
Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, the 
data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected.  

 If xar_i = 1, the data in Fsimm8_8x8 and Fd[rd] are divided into eight 8-bit data. According to 
the value of Fd[rs1] (corresponding to each data), each divided 8-bit data in Fsimm8_8x8 or 
Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, the data in 
Fsimm8_8x8 is selected. If it is 0, the data in Fd[rd] is selected. 

 For FPSELMOV16FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into four 16-bit 
data. According to the value of Fd[rs1] (corresponding to each data), each divided 16-bit data 
in Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, 
the data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected. 

If xar_i = 1, the data in Fsimm8_16x4 and Fd[rd] are divided into four 16-bit data. According 
to the value of Fd[rs1] (corresponding to each data), each divided 16-bit data in 
Fsimm8_16x4 or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 
1, the data in Fsimm8_16x4 is selected. If it is 0, the data in Fd[rd] is selected. 

For FPSELMOV32FX, if xar_i = 0, the data in Fd[rs2] and Fd[rd] are divided into two 32-bit 
data. According to the value of Fd[rs1] (corresponding to each data), each divided 32-bit data 
in Fd[rs2] or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 1, 
the data in Fd[rs2] is selected. If it is 0, the data in Fd[rd] is selected. 

If xar_i = 1, the data in Fsimm8_32x2 and Fd[rd] are divided into two 32-bit data. According 
to the value of Fd[rs1] (corresponding to each data), each divided 32-bit data in 
Fsimm8_32x2 or Fd[rd] is selected and stored in Fd[rd]. If the corresponding bit for Fd[rs1] is 
1, the data in Fsimm8_32x2 is selected. If it is 0, the data in Fd[rd] is selected. 

  The bit ranges of Fd[rs2] and Fd[rd] that are selected by Fd[rs1] are shown below. 
  



   
 

 
96 Ver 20, Oct., 2017 
 

 

 

 

 Fd[rs1] 

bit 63 

Fd[rs1] 

bit 55 

Fd[rs1] 

bit 47 

Fd[rs1] 

bit 39 

Fd[rs1] 

bit 31 

Fd[rs1] 

bit 23 

Fd[rs1] 

bit 15 

Fd[rs1] 

bit 7 

Corresponding 
bits of Fd[rs2], 
Fsimm8, and 
Fd[rd] for 
FPSELMOV8FX 

<63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0> 

Corresponding 
bits of Fd[rs2], 
Fsimm8, and 
Fd[rd] for 
FPSELMOV16FX 

<63:48>  <47:32>  <31:16>  <15:0>  

Corresponding 
bits of Fd[rs2], 
Fsimm8, and 
Fd[rd] for 
FPSELMOV32FX 

<63:32>    <31:0>    

 

 

Figure 7-18 Behavior of FPSELMOV8FX (example) 

 

 

Figure 7-19 Behavior of FPSELMOV16FX (example) 
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Figure 7-20 Behavior of FPSELMOV32FX (example) 

 

These instructions will not update any fields in the FSR. 

 

Note The field of Fd[rs1]<62:56, 54:48, 46:40, 38:32, 30:24, 22:16, 14:8, 
6:0> for FPSELMOV8FX, Fd[rs1]<62:48, 46:32, 30:16, 14:0> for 
FPSELMOV16FX, and Fd[rs1]<62:32, 30:0> for FPSELMOV32FX are ignored 
and have no effect. 

 

Note XAR.v must be 1 and XAR.urs3<1> must be 1 to use these 
instructions. If ”XAR.v is 0” or “XAR.v is 1 and XAR.urs3<1> is 0”, 
FPSELMOV{8|16|32}X will be executed (refer to 7.134 in the SPARC64™ 
X/X+ specification). 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.urs1<1> ≠ 0 
• XAR.urs2<1> ≠ 0 and XAR.urs3<2> = 0 
• XAR.urs3<0> ≠ 0 
• XAR.urd<1> ≠ 0 
• XAR.simd = 1 and XAR.urs1<2> ≠ 0 
• XAR.simd = 1 and XAR.urs2<2> ≠ 0 and 

XAR.urs3<2> = 0 
• XAR.simd = 1 and XAR.urd<2> ≠ 0 
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 Move Floating-Point Register to Integer 7.153.
Register 
 

Opcode opf urs3
<0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

MOVdTOxXII 1 0001 00002  Copies 64 bits of a double 
floating-point register to an 
integer register 

  movdtox fregrs2, regrd 

MOVsTOuwXII 1 0001 0001 0 Copies 32 bits of a floating-point 
register to an integer register 
(without sign-extension) 

  movstouw fregrs2, regrd 

MOVsTOswXII 1 0001 0011 0 Copies 32 bits of a floating-point 
register to an integer register 
(with sign-extension) 

  movstosw fregrs2, regrd 

MOVfwTOuwXII 1 0001 0001 1 Copies 32 bits of a double 
floationg-point register to an 
integer register (without 
sign-extension) 

※  movfwtouw fregrs2, regrd 

MOVfwTOswXII 1 0001 0011 1 Copies 32 bits of a double 
floatint-point register to an 
integer register (with 
sign-extension) 

※  movfwtosw fregrs2, regrd 

 
102 rd op3 = 11 01102  opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 
 

Description MOVdTOx copies 64 bits of a double floating-point register Fd[rs2] to a general-purpose 
register R[rd]. No conversion is performed on the copied 64 bits. 

If XAR.v = 0, MOVsTOuw copies 32 bits of a single floating-point register Fs[rs2] to the lower 
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of R[rd] is set to 0 (without sign-extension).  

If XAR.v = 1 and XAR.urs3<0> = 0, MOVsTOuw copies the upper 32 bits of a double 
floating-point register Fd[rs2] to the lower 32 bits of a general-purpose register R[rd]. No 
conversion is performed on the copied 32 bits. The upper 32 bits of R[rd] is set to 0 (without 
sign-extension). 

If XAR.v = 0, MOVsTOsw copies 32 bits of a single floating-point register Fs[rs2] to the lower 
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of R[rd] is set to Fs[rs2]<31> (with sign-extension).  

If XAR.v = 1 and XAR.urs3<0> = 0, MOVsTOsw copies the upper 32 bits of a double 
floating-point register Fd[rs2] to the lower 32 bits of a general-purpose register R[rd]. No 
conversion is performed on the copied 32 bits. The upper 32 bits of R[rd] is set to Fd[rs2]<63> 
(with sign-extension). 

MOVfwTOuw copies the lower 32 bits of a double floating-point register Fd[rs2] to the lower 
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of R[rd] is set to 0 (without sign-extension).  
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MOVfwTOsw copies the lower 32 bits of a double floating-point register Fd[rs2] to the lower 
32 bits of a general-purpose register R[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of R[rd] is set to Fd[rs2]<31> (with sign-extension).  

These instructions will not update any fields in the FSR. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_instruction All iw<18:14> ≠ 0 
illegal_action MOVdTOx If XAR.v = 1 and one of the following is true: 

• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2<1> ≠ 0 
• XAR.urs3 ≠ 0 
• XAR.urd ≠ 0 

MOVsTOuw, 
MOVsTOsw, 
MOVfwTOuw, 
MOVfwTOsw 

If XAR.v = 1 and one of the following is true: 
• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2<1> ≠ 0 
• XAR.urs3<2:1> ≠ 0 
• XAR.urd ≠ 0 
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 Move Integer Register to Floating-Point 7.154.
Register 

Opcode opf urs3
<1:0> 

Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

MOVwTOfuwXII 1 0001 10012 012 Copies the lower 32 bits 
of an integer register to a 
double floating-point 
register (without 
sign-extension) 

※  movwtofuw regrs2, fregrd 

MOVwTOfswXII 1 0001 10012 112 Copies the lower 32 bits 
of an integer register to a 
double floating-point 
register (with 
sign-extension) 

※  movwtofsw regrs2, fregrd 

 
102 rd op3 = 11 01102  opf rs2 

31 30 29 25 24 19 18 14 13 5 4 0 

 

Description MOVwTOfuw copies the lower 32 bits of a general-purpose register R[rs2] to the lower 32 bits 
of a double floating-point register Fd[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of Fd[rd] is set to 0 (without sign-extension).  

 MOVwTOfsw copies the lower 32 bits of a general-purpose register R[rs2] to the lower 32 bits 
of a double floating-point register Fd[rd]. No conversion is performed on the copied 32 bits. 
The upper 32 bits of Fd[rd] is set to R[rs2]<31> (with sign-extension).  

  These instructions will not update any fields in the FSR. 

Note To use these instructions, XAR.v must be 1. In addition,  
XAR.urs3<1:0> must be 012 for MOVwTOfuw and must be 112 for 
MOVwTOfsw. In other cases, an another instruction will be executed or an 
exception will occur as follows.  
 
- XAR.v = 0: MOVwTOs will be executed (refer to 7.142 in the SPARC64™ 
X/X+ specification). 
- XAR.v = 1 and XAR.urs3<1:0> = 002: MOVwTOs will be executed (refer to 
7.142 in the SPARC64™ X/X+ specification). 
- XAR.v = 1 and XAR.urs3<1:0> = 102: illegal_action will occur. 

 
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_instruction All iw<18:14> ≠ 0 
illegal_action All If XAR.v = 1 and one of the following is true: 

• XAR.simd = 1 
• XAR.urs1 ≠ 0 
• XAR.urs2 ≠ 0 
• XAR.urs3<2> ≠ 0 
• XAR.urs3<1:0> = 102 
• XAR.urd<1> ≠ 0 
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 Montgomery Multiplication 7.155.
 

Opcode opf Operation HPC-ACE Assembly Language Syntax 
Regs SIMD 

FMONTMULXII 0 1000 11102 Montgomery 
Multiplication 

iii iv fmontmul fregrs1, length, 
fregrd 

FMONTSQRXII 0 1000 11102 Montgomery 
Multiplication (squared) 

iii iv fmontmul fregrs1, length, 
fregrd 

 
102 rd op3 = 11 01102 rs1 opf length 

31 30 29 25 24         19 18           14  13                5 4 0 

 

Description FMONTMUL and FMONTSQR performs a calculation shown below (as pseudo-code) with length 
equal to ”length + 1” (the value of “length” is specified in the instruction field). The data size 
for data A, B, and N used in the calculation is “length × 64” bits. The maximum length is 
32. If the length of FMONTMUL and FMONTSQR is less than 32, the remaining operand 
locations are not used and the remaining result locations are unchanged. The combinations 
of basic and extended double precision floating-point registers are used as input data and 
output data.  

 For FMONTMUL and FMONTSQR, data A, B, N, and N’ are used as input data and data A is 
overwritten as the output data. For FMONTSQR, data B is the same as data A. Refer to 
Figure 7-21 and Figure 7-24. 

 The first number of registers used for data A, B, N, and N’ are fixed. The rd field is used for 
specfy the first number of registers for data A. The value of 0x00 (that means “%f0”) must 
be specified to this field. In addition the rs1 field is used for specify the first number of 
registers for data B. The value of 0x01 (that means “%f32”) must be specified to this field for 
FMONTMUL and the value of 0x00 (that means “%f0”) for FMONTSQR. The first number of 
registers for N and N’ is fixed to “%f64” and “%f352” respectively.  

The pseudo-code of FMONTMUL and FMONTSQR is shown below. 

 

/* Pseudo-code of FMONTMUL and               */ 
/* Pseudo-code of FMONTSQR (in case A = B) */ 
 
input  : A, B, N, n’0 
output : Y 
 
/* multi-precision integers                                        */ 
/* Each element of A, B, N, X, Y, and N’ is 64-bit integer. */ 
/* C and tmp : 64-bit integer                                    */ 
 
A = (ak-1, … , a0) 
B = (bk-1, … , b0) 
N = (nk-1, … , n0) 
X = (xk+1, … , x0) 
Y = (Yk, …, Y0) 
N’ = (n’k-1, … , n’0) 
 
/* Algorithm */ 

                                                   
iii The registers cannot be extended, but XAR.v must be set to 1 in order to execute these instructions. 
iv XAR.simd must be set to 1 in order to execute these instructions. 
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r = 264 
Y = (0, 0, … , 0) 
 
for j = 0 to k-1 
 
    C = 0 
    for i = 0 to k-1 
        (C, xi) = yi + C + ai × bj  ! A × bj 
    next i 
    (xk+1, xk) = C + yk 
 
    m = x0 × n’0 (mod r) 
    (C, tmp) = x0 + n0 × m  ! tmp is not used 
 
    for i = 1 to k-1 
        (C, yi-1) = xi + C + ni × m  ! N × m 
    next i 
    (C, yk-1) = C + xk 
    yk = C + xk+1  
 
next j 
 
if Y >= N then Y = Y – N 
return Y 

 

If A, B, N, and N’ satisfy the all of the following conditions, the result of FMONTMUL and 
FMONTSQR is the same as the result of the Montgomery multiplication. 

・N is an odd number. 

・NN’ mod R = −1 (R = 2k > N, k = 64 × length) 

・A < N, B < N 

 

The Montgomery multiplication is calculated with the following formula. 

Y = A ⊗ B = A × B × R-1 mod N (⊗ : Montogomery Multiplication) 

(A, B: input, R = 2k > N, k = 64 × length, RR-1 = 1 mod N)   

Programming Note RSA encryption requires to use a lot of 
multiplications and modular arithmetics (A^D mod N), and it requires a 
lot of clock cycles. The calculations can be accelerated using FMONTMUL 
and FMONTSQR. 

  

 ・FMONTMUL 

The input data A, B, N, and N’ are stated in Table 7-25. 

Table 7-25  Data A, B, N, and N’ for FMONTMUL (the length is 32) 

Data Corresponding Registers 

A %f30::%f286::%f28::%f284:: … ::%f0::%f256 

B %f62::%f318::%f60::%f316:: … ::%f32::%f288 
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N %f94::%f350::%f92::%f348:: … ::%f64::%f320 

N’ %f352 

  

 The registers corresponding to data A, B, N, and N’ must be set before FMONTMUL is 
executed. The result of FMONTMUL is overwritten to the registers corresponding to data A. 

 The register assignments used for FMONTMUL are shown in Figure 7-21. 

 

 

Figure 7-21 Register Assignments for FMONTMUL 

 

 Data A, B, and N are composed of the corresponding basic and extended registers. For 
example, the register corresponding to data A is shown in Figure 7-22. 

 

Figure 7-22  Combinations of basic and extended registers for data A 

 The number of registers used for FMONTMUL (as data A, B, and N) is specified by the length. 
Therefore each number of registers in use can be specified with a range of 1 – 32. 

For example, if the length is 30 (that means the field of length is set to “0x1D”), 30 registers 
from LSB are used for data A, B, and N but not the two registers from MSB as shown in 
Figure 7-23. In addition, 30 registers from LSB that correspond to data A are updated as a 
result of the calculation, but not the two registers from MSB (%f30, %f286). 
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Figure 7-23 Example of registers specified for FMONTMUL 

 

If A, B, N, and N’ satisfy all the conditions stated in Table 7-26, the result of FMONTMUL is 
the same as the value calculated by the following formula (Montgomery multiplication). 

A × B × R-1 mod N (NN’ mod R = -1) 

Table 7-26  The conditions for the Montgomery Multiplication 

data The condition 

A A is a number that satisfies “A < N”. 

B B is a number that satisfies “B < N”. 

N N is an odd number. 

N’ 
N’ is a number that satisfies “NN’ mod R= −1”. (R is a number that satisfies 
“R = 2k > N, k = 64 × length”.) 

(Only the lower 64 bits of N’ is used for calculations) 

 

 

・FMONTSQR 

 The input data A, N, and N’ are stated in Table 7-27. 

Table 7-27  Data A, N, and N’ for FMONTSQR (the length is 32) 

Data Corresponding Registers 

A %f30::%f286::%f28::%f284:: … ::%f0::%f256 
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N %f94::%f350::%f92::%f348:: … ::%f64::%f320 

N’ %f352 

 

 The registers corresponding to data A, N, and N’ must be set before FMONTSQR is 
executed. The result of FMONTSQR is overwritten to the registers corresponding to data A. 

 The register assignments used for FMONTSQR are shown in Figure 7-24. 

 

 

Figure 7-24 Register Assignments for FMONTSQR 

 

 Data A and N are composed of the corresponding basic and extended registers. 

The number of registers used for FMONTSQR (as data A and N) is specified by the length. 
Therefore each number of registers in use can be specified with a range of 1 – 32. 

For example, if the length is 30 (that means the field of length is set to “0x1D”), 30 registers 
from LSB are used for data A and N but not the two registers from MSB as shown in Figure 
7-25. In addition, 30 registers from LSB that correspond to data A are updated as a result of 
the calculation, but not the two registers from MSB (%f30, %f286). 
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Figure 7-25 Example of registers specified for FMONTSQR 

 
 

If A, N, and N’ satisfy all the conditions stated in Table 7-28, the result of FMONTSQR is the 
same as the value calculated by the following formula (Montgomery multiplication). 

A × A × R-1 mod N (NN’ mod R = -1) 

 

Table 7-28  The conditions for the Montgomery Multiplication 

data the condition 

A A is a number that satisfies “A < N”. 

N N is an odd number. 

N’ 

N’ is a number that satisfies “NN’ mod R= −1”. (R is a number that satisfies 
“R = 2k > N, k = 64 × length”.) 

(Only the lower 64 bits of N’ is used for calculations) 
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・Pseudo-code example used with FMONTMUL and FMONTSQR 

  

 A pseudo-code example used with FMONTMUL and FMONTSQR in multiplication and modular 
arithmetic (A^D mod N) for RSA encryption is shown below. 

  

/* (A^D mod N) for RSA encryption */ 
/* MONTMUL: (OP1) × (OP2) × R-1 mod N → OP1 (overwritten) */ 
/* MONTSQR: (OP1) × (OP1) × R-1 mod N → OP1 (overwritten) */ 
/* D = (1, dk-2, … , d1, d0): binary notation（k bit） */ 
/* ⊗ : Montgomery Multiplication */ 
 
load A to OP1                    ! OP1 = A 
load (R2 mod N) to OP2          ! OP2 = R2 mod N 
load N to OP3                    ! OP3 = N 
load n’0 to OP4                  ! OP4 = n’0 
fmontmul                          ! A × R2 × R-1 mod N 
         ! = A × R mod N = FR(A) 
copy OP1 to OP2                  ! OP1, OP2 = FR(A) 
 
for (i = k-2; i >= 0; i --) {  ! OP1 = FR(X) 
 fmontsqr                    ! FR(X) ⊗ FR(X) = FR(X2) → OP1 
 if (di == 1) { 
  fmontmul                  ! FR(X2) ⊗ FR(A) = FR(X2 × A) → OP1 
 } 
} 
         ! OP1 = FR(A^D) (temporary result) 
load 1 to OP2                    ! OP2 = 1 
fmontmul                          ! FR(A^D) × 1 × R-1 mod N = A^D mod N 
         ! (This result is written to OP1.) 

 

 

  
Exception Target 

instruction 
Detection condition 

fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0 
illegal_instruction All One of the following is true: 

• rs1 ≠ 0 and rs1 ≠ 32 
• rd ≠ 0 

illegal_action All • XAR.v = 0 
• If XAR.v = 1 and one of the following is true: 

・XAR.simd = 0 
・XAR.urs1 ≠ 0 
・XAR.urs2 ≠ 0 
・XAR.urs3 ≠ 0 
・XAR.urd ≠ 0 
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8. IEEE Std. 754-1985 
Requirements for SPARC-V9 

   Behavior when FSR.ns = 1 8.1.2.
 

Compatibility Note In section 8.4 in UA2011, the behavior of some 
instructions (for example, FADD, FDIV, and FMUL) is required to follow 
IEEE Std. 754 at all times regardless of the value of FSR.ns. However, in 
SPARC64™ XII, the behavior of all floating-point instructions is changed 
according to the value of FSR.ns. 
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9. Memory Models 

Refer to the SPARC64 X/X+ specification. 
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10. Address Space Identifiers 

   ASI Assignment 10.3.

   Supported ASIs 10.3.1.
ASIs supported in SPARC64™ XII are listed in Table 10-2. The notation for the Type and 
Sharing columns in Table 10-2 are described in Table 10-1. 

 

Table 10-1  Notation used in Table 10-2 

Column Symbol Meaning 
Type Trans. The translation mode is determined by the privilege level and the 

MMU settings. 
Real The address is treated as a real address (RA). 
non-T Not translated by the MMU. VA watchpoint is not detected. 

Sharing(non-T 
only) 

Chip The register is shared by the entire CPU. 
Core The register is shared by VCPUs in the same core. 
VCPU Each VCPU has its own copy of the register. 

 

Table 10-2 ASI list 

ASI VA ASI name Access Type Sharing Pag
e 

8016  ASI_PRIMARY 
(ASI_P) 

RW Trans.   

8116  ASI_SECONDARY 
(ASI_S) 

RW Trans.   

8216  ASI_PRIMARY_NO_FAULT 
(ASI_PNF) 

RO Trans.   

8316  ASI_SECONDARY_NO_FAULT 
(ASI_SNF) 

RO Trans.   

8416 – 8716       
8816  ASI_PRIMARY_LITTLE 

(ASI_PL) 
RW Trans.   

8916  ASI_SECONDARY_LITTLE 
(ASI_SL) 

RW Trans.   

8A16  ASI_PRIMARY_NO_FAULT_LITTLE 
(ASI_PNFL) 

RO Trans.   

8B16  ASI_SECONDARY_NO_FAULT_LITTLE 
(ASI_SNFL) 

RO Trans.   

8C16 – BF16       
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ASI VA ASI name Access Type Sharing Pag
e 

C016  ASI_PST8_PRIMARY 
(ASI_PST8_P) 

WO Trans.   

C116  ASI_PST8_SECONDARY 
(ASI_PST8_S) 

WO Trans.   

C216  ASI_PST16_PRIMARY 
(ASI_PST16_P) 

WO Trans.   

C316  ASI_PST16_SECONDARY 
(ASI_PST16_S) 

WO Trans.   

C416  ASI_PST32_PRIMARY 
(ASI_PST32_P) 

WO Trans.   

C516  ASI_PST32_SECONDARY 
(ASI_PST32_S) 

WO Trans.   

C616 – C716       
C816  ASI_PST8_PRIMARY_LITTLE 

(ASI_PST8_PL) 
WO Trans.   

C916  ASI_PST8_SECONDARY_LITTLE 
(ASI_PST8_SL) 

WO Trans.   

CA16  ASI_PST16_PRIMARY_LITTLE 
(ASI_PST16_PL) 

WO Trans.   

CB16  ASI_PST16_SECONDARY_LITTLE 
(ASI_PST16_SL) 

WO Trans.   

CC16  ASI_PST32_PRIMARY_LITTLE 
(ASI_PST32_PL) 

WO Trans.   

CD16  ASI_PST32_SECONDARY_LITTLE 
(ASI_PST32_SL) 

WO Trans.   

CE16 – CF16       
D016  ASI_FL8_PRIMARY 

(ASI_FL8_P) 
RW Trans.   

D116  ASI_FL8_SECONDARY 
(ASI_FL8_S) 

RW Trans.   

D216  ASI_FL16_PRIMARY 
(ASI_FL16_P) 

RW Trans.   

D316  ASI_FL16_SECONDARY 
(ASI_FL16_S) 

RW Trans.   

D416 – D716       
D816  ASI_FL8_PRIMARY_LITTLE 

(ASI_FL8_PL) 
RW Trans.   

D916  ASI_FL8_SECONDARY_LITTLE 
(ASI_FL8_SL) 

RW Trans.   

DA16  ASI_FL16_PRIMARY_LITTLE 
(ASI_FL16_PL) 

RW Trans.   

DB16  ASI_FL16_SECONDARY_LITTLE 
(ASI_FL16_SL) 

RW Trans.   

DC16 – DF16       
E016  ASI_BLOCK_COMMIT_PRIMARY 

(ASI_BLK_COMMIT_P) 
WO Trans.   

E116  ASI_BLOCK_COMMIT_SECONDARY 
(ASI_BLK_COMMIT_S) 

WO Trans.   

E216  ASI_TWINX_P/ASI_STBI_P RW Trans.   
E316  ASI_TWINX_S/ASI_STBI_S RW Trans.   
E616       
E716 21016 ASI_RANDOM_NUMBER RO  non-T Chip 113 
EA16  ASI_TWINX_PL/ASI_STBI_PL RW Trans.   
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ASI VA ASI name Access Type Sharing Pag
e 

EB16  ASI_TWINX_SL/ASI_STBI_SL RW Trans.   
EC16 – EF16       
F016  ASI_BLOCK_PRIMARY 

(ASI_BLK_P) 
RW Trans.   

F116  ASI_BLOCK_SECONDARY 
(ASI_BLK_S) 

RW Trans.   

F216 any ASI_STBI_MRU_P WO Trans.   
F316 any ASI_STBI_MRU_S WO Trans.   
F416  ASI_XFILL_P WO Trans.   
F516  ASI_XFILL_S WO Trans.   
F616 – F716       
F816  ASI_BLOCK_PRIMARY_LITTLE 

(ASI_BLK_PL) 
RW Trans.   

F916  ASI_BLOCK_SECONDARY_LITTLE 
(ASI_BLK_SL) 

RW Trans.   

FA16 any ASI_STBI_MRU_P_LITTLE WO Trans.   
FB16 any ASI_STBI_MRU_S_LITTLE WO Trans.   
FC16 – FF16       

 

 ASI-Accessible Registers 10.5.
    

    ASI_RANDOM_NUMBER 10.5.5.
 

Register name ASI_RANDOM_NUMBER 

ASI number E716 
VA 21016 
Range of sharing Chip 
Access  read write 

user OK DAE_invalid_asi 
 

 
random_number 

63     0 

 
Bit Field Access Description 
63:0 random_number RO The value (64-bit) generated by Onchip Random 

Number Generator 

 

The value (64-bit) generated by Onchip Random Number Generator can be read from the 
random_number field in ASI_RANDOM_NUMBER. LDXA, LDDFA, and LDTWA can be used to 
access this ASI (LDTWA is deprecated). 

When the value read from ASI_RANDOM_NUMBER is valid, XASR.rng_stat is set to 1. If 
invalid, XASR.rng_stat is set to 0. If XAR.rng_stat is 0, the value of R[rd] or F[rd] is updated 
by an undefined value and must not be used. 
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The factors for the invalid value are stated below. 
a) the temporary read value does not have sufficient precision 
b) read failure based on the continuous hardware error 

In case of a), the value can become valid with a retry, but in case of b), the value will remain 
invalid even with a retry. Therefore a retry process and a retry timeout process (after 
several retry processes) must be implemented in the software. 

 

/* pseudo asm code */ 
init_rnd_num: 
  wr    0xe7, %asi 
  orcc  %g0, 0x8, %l7 /* set retry counter */ 
rd_rnd_num:  
  bne    rd_rnd_fail /* retry out */ 
  nop 
  ldda   [%g0+0x210] %asi, %f0 
  membar #Sync 
  rd     %xasr, %l0 
  srlx   %l0, 40, %l0 
  xorcc  %l0, 1, %l0 
  bne,a   rd_rnd_num 
  subcc  %l7,1,%l7 
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11. Performance Instrumentation 

11.1   Overview 
Performance counters are comprised of one “Performance Control Register (PCR) (ASR 16)” 
and multiple instances of “Performance Instrumentation Counter Register (PIC) (ASR 17)”. 

SPARC64™ XII implements 4 PIC registers, which are selected by PCR.SC, and are 
accessed via ASR 17. Each PIC register contains two counters. 

 
Performance Control Register (PCR) (ASR 16) 

 toe  ovf ovro ulro  nc su sl  sc ht ut st priv 
63  56 55  48 47  40 39  32 31 30 29  27 26  24 23  16 15  8 7 6 4 3 2 1 0 

 
Bits Field Access Description 
55:48 toe<7:0> RW Controls whether an overflow exception is generated 

for the performance counters.  
A write updates the field and a read returns the 
current settings.  
If toe<i> is 1 and the counter corresponding to ovf<i> 
overflows, ovf<i> = 1 and a pic_overflow exception is 
generated.  
If toe<i> is 0 and the counter corresponding to ovf<i> 
overflows, ovf<i> = 1 but a pic_overflow exception is 
not generated.  
When ovf<i> = 1 and the value of toe<i> is changed to 
1, a pic_overflow exception is not generated. 

39:32 ovf<7:0> RW Overflow Clear/Set/Status. A read by RDPCR returns 
the overflow status of the counters, and a write by 
WRPCR clears or sets the overflow status bits. 
The following figure shows the PIC counters 
corresponding to the OVF bits.  
A write of 0 to an OVF bit clears the overflow status of 
the corresponding counter. 
 

U3 L3 U2 L2 U1 L1 U0 L0 
7 6 5 4 3 2 1 0 

 

31 ovro  RW Overflow Read-Only. A write to the PCR register with 
write data containing a value of ovro = 0 updates the 
PCR.ovf field with the OVF write data.  
If the write data contains a value of ovro = 1, the OVF 
write data is ignored and the PCR.ovf field is not 
updated. A read of the PCR.ovro field returns 0. 
The PCR.ovro field allows PCR to be updated without 
changing the overflow status.  
The hardware maintains the most recent state of 
PCR.ovf so that a subsequent read of the PCR returns 
the current overflow status. 

30 ulro  RW su/sl Read-Only. A write to the PCR register with 
write data containing a value of ulro = 0 updates the 
PCR.su and PCR.sl fields with the su/sl write data. 
If the write data contains a value of ulro = 1, the su/sl 
write data is ignored and the PCR.su and PCR.sl 
fields are not updated. A read of the PCR.ulro field 
returns 0. 
The PCR.ulro field allows the PIC pair selection field 
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to be updated without changing the PCR.su and 
PCR.sl settings. 

26:24 nc RO This read-only field indicates the number of PIC 
counter pairs. 

23:16 su RW This field selects the event counted by PIC<63:32>.  
A write updates the setting, and a read returns the 
current setting. 

15:8 sl RW This field selects the event counted by PIC<31:0>.  
A write updates the setting, and a read returns the 
current setting. 

6:4 sc RW PIC Pair Selection.  
A write updates the PIC counter pair that is selected, 
and a read returns the current selection. 
When a “1” is written to bit<6>, no counter pair is 
selected and a subsequent read returns “0”. 

3 ht RW 
 

Hyperprivileged mode. 
If PCR.ht = 1, events that occur while in 
hyperprivileged mode are counted. 
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are 
counted. 
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is 
disabled. 
PCR.ht is a global field and applies to all PICs. 

2 ut RW User mode. 
If PCR.ut = 1, events that occur while in 
non-provileged mode are counted. 
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are 
counted. 
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is 
disabled. 
PCR.ut is a global field and applies to all PICs. 

1 st RW System mode. 
If PCR.st = 1, events that occur while in privileged 
mode are counted. 
If PCR.ut, PCR.st, and PCR.ht are all 1, all events are 
counted. 
If PCR.ut, PCR.st, and PCR.ht are all 0, counting is 
disabled. 
PCR.st is a global field and applies to all PICs. 

0 priv RW Privileged. 
If PCR.priv = 1, executing an RDPCR, WRPCR, RDPIC, or 
WRPIC instruction in non-privileged mode causes a 
privileged_action exception. 
If PCR.priv = 0, an attempt to update PCR.priv 
(writing a value of 1) in non-privileged mode via a 
WRPCR instruction causes a privileged_action 
exception. 
PCR.priv is a global field and applies to all PICs. 

 
Performance Instrumentation Counter (PIC) Register (ASR 17) 

picu picl 
63 32 31 0 

 
 

Bits Field Access Description 
63:32 picu RW 32bits counter selected by PCR.su for the event 
31:0 picl RW 32bits counter selected by PCR.sl for the event 
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11.1.1   Pseudo-code Examples 

11.1.1.1 Counter Clear/Set 
 

The counter fields in the PIC registers are read/write fields. Writing zero clears a counter 
and writing any other value sets the counter to that value. The following pseudo-code clears 
all PIC registers (privileged access is assumed). 

 

/* Clear PICs without updating SL/SU values */ 
pic_init = 0x0; 
pcr = rd_pcr(); 
pcr.ulro = 0x1;   /* don’t update SU/SL on write */ 
pcr.ovf = 0x0;   /* clear overflow bits   */ 
pcr.ut = 0x0; 
pcr.st = 0x0;  /* disable counts   */ 
pcr.ht = 0x0;   /* non-hypervisor mode  */ 
pcr.priv = 0x0;  /* privileged access   */ 
for (i=0; i<=pcr.nc; i++) { 
/* select the PIC to be written */ 
pcr.sc = i; 
wr_pcr(pcr); 
wr_pic(pic_init); /* clear PIC[i]    */ 
} 

 

11.1.1.2  Counter Event Selection and Start 
 

Counter events are selected using the PCR.sc and PCR.su/PCR.sl fields. The following 
pseudo-code selects events and enables the counters (privileged access is assumed). 

 

pcr.ut = 0x0;  /* Disable user counts   */ 
pcr.st = 0x0;   /* Disable system counts also  */ 
pcr.ht = 0x0;   /* non-hypervisor mode  */ 
pcr.priv = 0x0;  /* privileged access   */ 
pcr.ulro = 0x0;   /* Make SU/SL writeable   */ 
pcr.ovro = 0x1;   /* Overflow is read-only   */ 
/* Select events without enabling counters */ 
for(i=0; i<=pcr.nc; i++) { 
pcr.sc = i; 
pcr.sl = select an event; 
pcr.su = select an event; 
wr_pcr(pcr); 
 
} 
/* Start counting */ 
pcr.ut = 0x1; 
pcr.st = 0x1; 
pcr.ulro = 0x1;   /* SU/SL is read-only   */ 
/* Clear overflow bits here if needed */ 
wr_pcr(pcr); 
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11.1.1.3 Stop Counter and Read 
 

The following pseudo-code disables the counters and reads the value (privileged access is 
assumed). 

 

pcr.ut = 0x0;   /* Disable user counts   */ 
pcr.st = 0x0;   /* Disable system counts, too  */ 
pcr.ht = 0x0;   /* non-hypervisor mode  */ 
pcr.priv = 0x0;  /* privileged access   */ 
pcr.ulro = 0x1;   /* Make SU/SL read-only   */ 
pcr.ovro = 0x1;   /* Overflow is read-only   */ 
for(i=0; i<=pcr.nc; i++) { 
 pcr.sc = i; 
 wr_pcr(pcr); 
 pic = rd_pic(); 
 picl[i] = pic.picl; 
 picu[i] = pic.picu; 
} 

 

11.2   Description of PA Events 
 

The performance counter (PA) events can be divided into the following groups: 

1. Instruction and trap statistics 

2. MMU and L1 cache events 

3. L2 cache events 

4. LL cache events 

5. Bus transaction events 

There are 2 types of PA events, standard and supplemental, that can be measured in 
SPARC64™ XII. 

Standard events in SPARC64™ XII have been verified for correct behavior. They are 
guaranteed to be compatible with future processors. 

Supplemental events are primarily intended for debugging the hardware. 

a. The behavior of supplemental events may not be fully verified. There is a possibility that 
some of these events may not behave as specified in this document. 

b. The definition of these events may be changed without notice. Compatibility with future 
processors is not guaranteed. 

 

Table 11-1 shows the PA events defined in SPARC64™ XII. 

Shaded events are supplemental events.  

For details on each event, refer to the descriptions in the following sections. Unless 
otherwise indicated, speculative instructions are also counted by the PA events. 
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Table 11-1 PA Events and Encodings 

Encoding 
(bin) 

Counter 
pic u0 pic l0 pic u1 pic l1 pic u2 pic l2 pic u3 pic l3 

0000_0000 cycle_counts 
0000_0001 instruction_counts 
0000_0010 instruction_ 

flow_counts 
only_this_ 
thread_active 

single_mode_ 
cycle_counts 

single_mode_ 
instruction_counts 

instruction_ 
flow_counts d_move_wait cse_priority_wait xma_inst 

0000_0011 iwr_empty w_cse_window_ 
empty w_eu_comp_wait w_branch_comp 

_wait iwr_empty w_op_stv_wait w_d_move w_0endop 

0000_0100 Reserved w_op_stv_wait_ 
nc_pend 

w_op_stv_ 
wait_ｌｌ_miss 

w_op_stv_wait_ 
ｌｌ_miss_ex Reserved w_fl_comp_wait w_cse_window_ 

empty_sp_full 
w_op_stv_ 
wait_ex 

0000_0101 op_stv_wait 
0000_0110 effective_instruction_counts 
0000_0111 SIMD_load_sto

re_instructions 
SIMD_floating_ 
instructions 

SIMD_fma_ 
instructions 

sxar1_ 
instructions 

sxar2_ 
instructions unpack_sxar1 unpack_sxar2 Reserved 

0000_1000 load_store_instructions 
0000_1001 branch_instructions 
0000_1010 floating_instructions 
0000_1011 fma_instructions 
0000_1100 prefetch_instructions 

0000_1101 fixed_point_ins
tructions 

ex_load_ 
instructions 

ex_store_ 
instructions 

fl_load_ 
instructions 

fl_store_ 
instructions 

SIMD_fl_load_ 
instructions 

SIMD_fl_store_ 
instructions 

SIMD_fixed_point_instr
uctions 

0000_1110 op_stv_wait_l2
_miss 

op_stv_wait_l2_
miss_ex 

w_op_stv_wait_l2
_miss 

w_op_stv_wait_l2_mi
ss_ex 

op_stv_wait_l1d_
miss 

op_stv_wait_l1d_m
iss_ex 

w_op_stv_wait_l1d
_miss 

w_op_stv_wait_l1d_mis
s_ex 

0000_1111 x_move_instruc
tions 

w_op_stv_wait_p
fp_busy 

w_op_stv_wait_pf
p_busy_ex 

w_op_stv_wait_pfp_b
usy_swpf 

load_DSP_instruc
tions 

SIMD_load_DSP_i
nstructions 

store_DSP_instruci
tons 

SIMD_store_DSP_instr
uctions 

0001_0000 Reserved 
0001_0001 Reserved 
0001_0010 rs1 flush_rs Reserved 
0001_0011 1iid_use 2iid_use 3iid_use 4iid_use Reserved sync_intlk regwin_intlk Reserved 
0001_0100 Reserved 
0001_0101 Reserved toq_rsbr_phanto

m Reserved flush_rs Reserved rs1 Reserved 
0001_0110 trap_all  trap_int_level trap_spill trap_fill trap_trap_inst   
0001_0111 Reserved  Reserved other_thread_com

mit w_strand_id_not_empty 

0001_1000 only_this_ 
thread _active 

both_ 
threads _active 

both_ 
threads _empty Reserved op_stv_wait_ 

pfp_busy_swpf 
op_stv_ 
wait_ｌｌ_miss 

0001_1001 Reserved 
0001_1010 Reserved  single_sxar_comm

it Reserved suspend_cycle 

0001_1011 rsf_pmmi Reserved op_stv_wait_ 
nc_pend 0iid_use flush_rs Reserved decode_all_intlk 
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0001_1100 Reserved      

0001_1101 op_stv_wait_ 
pfp_busy_ex Reserved op_stv_wait_ 

ll_miss_ex 
op_stv_wait_ 
nc_pend 

cse_window_ 
empty_sp_full 

op_stv_wait_ 
pfp_busy 

both_ threads _ 
suspended Reserved 

0001_1110 cse_window_ 
empty eu_comp_wait branch_comp_ 

wait 0endop op_stv_wait_ex fl_comp_wait 1endop 2endop 

0001_1111 single_uop_com
mit Reserved 3endop Reserved sleep_cycle op_stv_wait_swpf 

0010_0000 ITLB_write DTLB_write uITLB_miss uDTLB_miss L1I_miss L1D_miss L1I_wait_all L1D_wait_all 
0010_0001 Reserved 
0010_0010 Reserved 
0010_0011 L1I_thrashing L1D_thrashing Reserved 

0010_0100 
swpf_success_a
ll swpf_fail_all Reserved swpf_lbs_hit Reserved 

0010_0101 Reserved 
0010_0110 Reserved 
0010_0111 Reserved 
0010_1000 Reserved 
0010_1001 Reserved 
0010_1010 Reserved 
0010_1011 Reserved 
0010_1100 Reserved 
0010_1101 Reserved 
0010_1110 Reserved 
0010_1111 Reserved 
0011_0000 Reserved LL_miss_dm LL_miss_pf LL_read_dm LL_read_pf LL_wb_dm LL_wb_pf 

0011_0001 bi_counts cpi_counts cpb_counts cpd_counts cpu_mem_ 
read_counts 

cpu_mem_ 
write_counts 

IO_mem_ 
read_counts 

IO_mem_ 
write_counts 

0011_0010 
LL_miss_wait_ 
dm_bank0 

LL_miss_wait_ 
pf_bank0 

LL_miss_counts_ 
dm_bank0 

LL_miss_counts_ 
pf_bank0 

LL_miss_wait_ 
dm_bank1 

LL_miss_wait_ 
pf_bank1 

LL_miss_counts_ 
dm_bank1 

LL_miss_counts_ 
pf_bank1 

0011_0011 
LL_miss_counts_ 
dm_bank2 

LL_miss_counts_ 
pf_bank2 

LL_miss_wait_ 
dm_bank2 

LL_miss_wait_ 
pf_bank2 

LL_miss_counts_ 
dm_bank3 

LL_miss_counts_ 
pf_bank3 

LL_miss_wait_ 
dm_bank3 

LL_miss_wait_ 
pf_bank3 

0011_0100 lost_pf_pfp_full lost_pf_by_abort IO_pst_counts Reserved 
0011_0101 Reserved 
0011_0110 Reserved 
0011_0111 Reserved 
0011_1000 Reserved 
0011_1001 Reserved 
0011_1010 Reserved 
0011_1011 Reserved 
0011_1100 Reserved 
0011_1101 

   
     

0011_1110 Reserved 
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0011_1111 Reserved 

0101_0000 l2_sy_miss_dm l2_sy_read_dm Reserved l2_wb_dm Reserved l2_sy_miss_wait_
dm_part1 Reserved l2_sy_miss_wait_dm_part

2 
0101_0001 Reserved l2_bi_counts l2_cpi_counts l2_cpb_counts l2_cpd_counts 
0101_0010 Reserved 
0101_0011 Reserved 
0101_0100 Reserved 
0101_0101 Reserved 
0101_0110 Reserved 
0101_0111 Reserved 
0101_1000 Reserved 
0101_1001 Reserved 
0101_1010 Reserved 
0101_1011 Reserved 
0101_1100 Reserved 
0101_1101 Reserved 
0101_1110 Reserved 
0101_1111 Reserved 
1111_1111 Disabled(No PIC is counted up) 

 
※Encodings not shown are Reserved. 
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11.2.1   Instruction and Trap Statistics 
 

Standard PA Events 

1 cycle_counts 
Counts the number of cycles when the performance counter is enabled. Based on the 
settings of PCR.ut and PCR.st, this counter which is similar to the TICK register can 
count user cycles and system cycles separately. 

 

2 instruction_counts (Non-Speculative) 
Counts the number of committed instructions, including SXAR1 and SXAR2. 
SPARC64™ XII commits up to 4 non-SXAR instructions per cycle and up to 2 SXAR 
instructions. Thus, instruction_counts /cycle_counts can be greater than 4. 

 

3 effective_instruction_counts (Non-Speculative) 
Counts the number of committed non-SXAR instructions. Instructions per cycle (IPC) 
can be derived from this event with cycle_counts. 

IPC = effective_instruction_counts / cycle_counts 

If effective_Instruction_counts and cycle_counts are collected for the user or the 
system modes, the IPC can be calculated in either user or system mode. 

 

4 load_store_instructions (Non-Speculative) 
Counts the number of committed non-SIMD load/store instructions. Also counts the 
number of atomic load-store instructions.  

 

5 branch_instructions (Non-Speculative) 
Counts the number of committed branch instructions. Also counts the number of CALL, 
JMPL, and RETURN instructions. 

 

6 floating_instructions (Non-Speculative) 
Counts the number of committed non-SIMD floating-point instructions. The counted 
instructions are FPop1, FPop2, FSELMOV{s|d}, and IMPDEP1 with opf<8:4> = 0A16, 
0B16, 1616, or 1716. 

 

7 fma_instructions (Non-Speculative) 
Counts the number of committed non-SIMD floating-point multiply and add 
instructions. The counted instructions are FM{ADD|SUB}{s|d}, FNM{ADD|SUB}{s|d}, 
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and FTRIMADDd. Two operations are executed per instruction and the number of 
operations is obtained by multiplying by 2. 

 

8 prefetch_instructions (Non-Speculative) 
Counts the number of committed prefetch instructions. 

 

9 SIMD_load_store_instructions (Non-Speculative) 
Counts the number of committed SIMD load/store instructions. 

 

10 SIMD_floating_instructions (Non-Speculative) 
Counts the number of committed SIMD floating-point instructions. The counted 
instructions are the same as floating_instructions. Two operations are executed per 
instruction and the number of operations is obtained by multiplying by 2. 

 

11 SIMD_fma_instructions (Non-Speculative) 
Counts the number of committed SIMD floating-point multiply and add instructions. 
The counted instructions are the same as fma_instructions. Four operations are 
executed per instruction and the number of operations is obtained by multiplying by 4. 

 

12 sxar1_instructions (Non-Speculative) 
Counts the number of committed SXAR1 instructions. 

 

13 sxar2_instructions (Non-Speculative) 
Counts the number of committed SXAR2 instructions. 

 

14 trap_all (Non-Speculative) 
Counts the number of all trap event occurrences. The number of counted occurrences 
equals the sum of the occurrences that are counted by all trap PA events. 

 

16 trap_int_level (Non-Speculative) 
Counts the number of interrupt_level_n occurrences. 

 

17 trap_spill (Non-Speculative) 
Counts the number of spill_n_normal and spill_n_other occurrences. 

 

18 trap_fill (Non-Speculative) 
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Counts the number of fill_n_normal and fill_n_other occurrences. 

 

19 trap_trap_inst (Non-Speculative) 
Counts the number of trap_instruction occurrences. 

 
Supplemental PA Events 

23 xma_inst (Non-Speculative) 
Counts the number of committed FPMADDX and FPMADDXHI instructions. 

 

24 unpack_sxar1 (Non-Speculative) 
Counts the number of unpacked SXAR1 instructions that are committed. 

 

25 unpack_sxar2 (Non-Speculative) 
Counts the number of unpacked SXAR2 instructions that are committed. 

 

26 instruction_flow_counts (Non-Speculative) 
Counts the number of committed instruction flows. In SPARC64™ XII, some 
instructions are processed internally as several separate instructions and are called as 
instruction flows. This event does not count packed SXAR1 and SXAR2 instructions. 

  

27 single_uop_commit (Non-Speculative) 
Counts the number of committed instruction flows except for the last flow. 

 

28 ex_load_instructions (Non-Speculative) 
Counts the number of committed integer-load instructions. Counts the LD{S|U}B{A}, 
LD{S|U)H{A}, LD{S|U)W{A}, LDD{A}, and LDX{A} instructions. 

 

29 ex_store_instructions (Non-Speculative) 
Counts the number of committed integer-store and atomic instructions. Counts the 
STB{A}, STH{A}, STW{A}, STD{A}, STX{A}, LDSTUB{A}, SWAP{A}, and CAS{X}A 
instructions. 

 

30 fl_load_instructions (Non-Speculative) 
Counts the number of committed non-SIMD floating-point load instructions. Counts 
the LDF{A}, LDDF{A}, and LD{X}FSR instructions. This event does not count 
LDQF{A}. 
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31 fl_store_instructions (Non-Speculative) 
Counts the number of committed non-SIMD floating-point store instructions. Counts 
the STF{A}, STDF{A}, STFR, STDFR, and ST{X}FSR instructions. This event does not 
count STQF{A}. 

 

32 SIMD_fl_load_instructions (Non-Speculative) 
Counts the number of committed SIMD floating-point load instructions. Counts the 
LDF{A} and LDDF{A} instructions. 

 

33 SIMD_fl_store_instructions (Non-Speculative) 
Counts the number of committed SIMD floating-point store instructions. Counts the 
STF{A}, STDF{A}, STFR, and STDFR instructions. 

 

34 x_move_instructions (Non-Speculative) 
Counts the number of commited move instructions. Counts the MOVdTOx, MOVsTOuw, 
MOVfwTOuw, MOVsTOsw, MOVfwTOsw, MOVxTOd, MOVwTOs, MOVwTOfuw, and MOVwTOfsw 
instructions. 

 

35 fixed_point_instructions (Non-Speculative) 
Counts the number of commited integer instructions. Counts the FSLL32, FSRL32, FSRA32, 
FPSLL64x, FPSRL64x, FPSRA64x, FPADD{8|64}, FPSUB{8|64}, FPMUL64, FPMUL32, 
FPADD128XHI, FPADD{16|32}{|S}, FPSUB{16|32}{|S}, FZERO{|S}, FNOR{|S}, 
FANDNOT{1|2}{|S}, FNOT{1|2}{|S}, FXOR{|S}, FNAND{|S}, FAND{|S}, FXNOR{|S}, 
FSRC{1|2}{|S}, FORNOT{1|2}{|S}, FOR{|S}, FONE{|S}, FPMADDX, and FPMADDXHI 
instructions. 

 

36 SIMD_fixed_point_instructions (Non-Speculative) 
Counts the number of commited SIMD integer instructions. Counts the SIMD version of the 
FSLL32, FSRL32, FSRA32, FPSLL64x, FPSRL64x, FPSRA64x, FPADD{8|64}, FPSUB{8|64}, 
FPMUL64, FPMUL32, FPADD128XHI, FPADD{16|32}{|S}, FPSUB{16|32}{|S}, 
FZERO{|S}, FNOR{|S}, FANDNOT{1|2}{|S}, FNOT{1|2}{|S}, FXOR{|S}, FNAND{|S}, 
FAND{|S}, FXNOR{|S}, FSRC{1|2}{|S}, FORNOT{1|2}{|S}, FOR{|S}, FONE{|S}, 
FPMADDX, and FPMADDXHI instructions. 

 

37 load_DSP_instructions (Non-Speculative) 
Counts the number of commited load_DSP instructions. Counts the LDDFDS instructions. 

 

38 store_DSP_instructions (Non-Speculative) 
Counts the number of commited store_DSP instructions. Counts the STDFDS, STDFRDS, and 
STDFRDW instructions. 
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39 SIMD_load_DSP_instructions (Non-Speculative) 
Counts the number of commited SIMD load_DSP instructions. Counts the SIMD version of 
the LDDFDS instructions. 

 

40 SIMD_store_DSP_instructions (Non-Speculative) 
Counts the number of commited SIMD store_DSP instructions. Counts the SIMD version of 
the STDFDS, STDFRDS, and STDFRDW instructions. 

 

41 iwr_empty 
Counts the number of cycles when the Issue Word Register (IWR) is empty. The IWR is a 
four entry register that holds instructions during a decoding and the IWR may be empty if 
an instruction cache miss prevents an instruction fetch. 

 

42 rs1 (Non-Speculative) 
Counts the number of cycles in which a normal execution is halted due to one of the 
following: 

■ a trap or interrupt 

■ update of privileged registers 

■ guarantee of memory ordering 

■ RAS-initiated hardware retry 

 

43 flush_rs (Non-Speculative) 
Counts the number of pipeline flushes due to a branch misprediction. Since SPARC64™ XII 
supports speculative execution, instructions that should not have been executed may be 
in-flight. When it is determined that the predicted path is incorrect, these instructions are 
cancelled. A pipeline flush occurs at this time. 

misprediction rate = flush_rs / branch_instructions 

 

44 0iid_use 
Counts the number of cycles when no instruction is issued. SPARC64™ XII issues up to 
four non-SXAR instructions per cycle. When no instruction is issued, 0iid_use is 
incremented. In SPARC64™ XII, some instructions are processed internally as several 
separate instructions and are called as instruction flows. Each of these instruction flows is 
counted. SXAR instructions are also counted. 

 

45 1iid_use 
Counts the number of cycles when one instruction is issued. 

 

46 2iid_use 
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Counts the number of cycles when two instructions are issued. 

 

47 3iid_use 
Counts the number of cycles when three instructions are issued. 

 

48 4iid_use 
Counts the number of cycles when four instructions are issued. 

 

49 sync_intlk 
Counts the number of cycles when the instructions that are issued are blocked by a pipeline 
sync. 

 

50 regwin_intlk 
Counts the number of cycles when the instructions that are issued are blocked by a register 
window switch. 

 

51 decode_all_intlk 
Counts the number of cycles when the instructions that are issued are blocked by a static 
interlock condition during the decode stage. decode_all_intlk includes sync_intlk and 
regwin_intlk. Stall cycles due to dynamic conditions (such as reservation station full) are 
not counted. 

 

52 rsf_pmmi (Non-Speculative) 
Counts the number of cycles when mixing single-precision and double-precision 
floating-point operations prevents instructions from being issued. 

 

53 toq_rsbr_phantom 
Counts the number of instructions that are not branch instructions but are predicted as 
branch instructions to be taken. Branch prediction in SPARC64™ XII is done prior to 
instruction decode. In other words, branch prediction occurs regardless of whether the 
instruction is actually a branch instruction. Instructions that are not branch instructions 
may be incorrectly predicted as branch instructions to be taken. 

 

54 op_stv_wait (Non-Speculative) 
Counts the number of cycles when no instructions are committed because the oldest, 
uncommitted instruction is a memory access waiting for data. op_stv_wait does not count 
cycles when a store instruction is waiting for data (atomic instructions are counted). 

Note that op_stv_wait does not measure the cache-miss latency, since any cycles prior to 
becoming the oldest, uncommitted instruction are not counted. 
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55 op_stv_wait_nc_pend (Non-Speculative) 
Counts the number of op_stv_wait for noncacheable accesses. 

 

56 op_stv_wait_ex (Non-Speculative) 
Counts the number of op_stv_wait for integer memory access instructions. Does not 
distinguish between L1 cache and L2 cache misses. 

 

57 op_stv_wait_ll_miss (Non-Speculative) 
Counts the number of op_stv_wait caused by a Last Level cache (LL cache) miss. Does not 
distinguish between integer and floating-point loads. 

 

58 op_stv_wait_ll_miss_ex (Non-Speculative) 
Counts the number of op_stv_wait caused by an integer-load Last Level cache (LL cache) 
miss. 

 

59 op_stv_wait_pfp_busy (Non-Speculative) 
Counts the number of op_stv_wait caused by a memory access instruction that cannot be 
executed due to the lack of an available prefetch port. 

 

60 op_stv_wait_pfp_busy_ex (Non-Speculative) 
Counts the number of op_stv_wait caused by an integer memory access instruction that 
cannot be executed due to the lack of an available prefetch port. 

 

61 op_stv_wait_swpf (Non-Speculative) 
Counts the number of op_stv_wait caused by a prefetch instruction. 

 

62 op_stv_wait_pfp_busy_swpf (Non-Speculative) 
Counts the number of op_stv_wait caused by a prefetch instruction that cannot be executed 
due to the lack of an available prefetch port. 

 

63 op_stv_wait_l2_miss (Non-Speculative) 
Counts the number of op_stv_wait caused by an L2 cache miss. Does not distinguish 
between integer and floating-point loads. 

  

64 op_stv_wait_l2_miss_ex (Non-Speculative) 
Counts the number of op_stv_wait caused by an integer-load L2 cache miss. 
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65 op_stv_wait_l1d_miss (Non-Speculative) 
Counts the number of op_stv_wait caused by an L1D cache miss. Does not distinguish 
between integer and floating-point loads. 
 

66 op_stv_wait_l1d_miss_ex (Non-Speculative) 
Counts the number of op_stv_wait caused by an integer-load L1D cache miss. 

 

67 cse_window_empty_sp_full (Non-Speculative) 
Counts the number of cycles when no instructions are committed because the CSE is empty 
and the store ports are full. 

 

68 cse_window_empty (Non-Speculative) 
Counts the number of cycles when no instructions are committed because the CSE is empty. 

 

69 branch_comp_wait (Non-Speculative) 
Counts the number of cycles when no instructions are committed and the oldest, 
uncommitted instruction is a branch instruction. Measuring branch_comp_wait has a lower 
priority than measuring eu_comp_wait. 

 

70 eu_comp_wait (Non-Speculative) 
Counts the number of cycles when no instructions are committed and the oldest, 
uncommitted instruction is an integer or floating-point instruction. Measuring 
eu_comp_wait has a higher priority than measuring branch_comp_wait. 

 

71 fl_comp_wait (Non-Speculative) 
Counts the number of cycles when no instructions are committed and the oldest, 
uncommitted instruction is a floating-point instruction. 

 

72 0endop (Non-Speculative) 
Counts the number of cycles when no instructions are committed. 0endop also counts cycles 
where the only instruction committed is an SXAR instruction. 

 

73 1endop (Non-Speculative) 
Counts the number of cycles when one instruction is committed. 

 

74 2endop (Non-Speculative) 
Counts the number of cycles when two instructions are committed. 
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75 3endop (Non-Speculative) 
Counts the number of cycles when three instructions are committed. 

 

77 sleep_cycle (Non-Speculative) 
Counts the number of cycles when the instruction unit is halted by a SLEEP instruction. 

 

78 single_sxar_commit (Non-Speculative) 
Counts the number of cycles when the only instruction committed is an unpacked SXAR 
instruction. These cycles are also counted by 0endop. 

 

79 d_move_wait (non-speculative) 
Counts the number of cycles when no instructions are committed while waiting for the 
register window to be updated. 

 

80 cse_priority_wait 
Counts the number of cycles when no instructions are committed because the SMT thread 
is waiting for the commit priority. In SPARC64™ XII, only one thread can commit 
instructions in a given cycle, and the priority is switched every cycle as long as the other 
thread is active. The event is counted only when there is an instruction ready to be 
committed for the thread. 

 

81 w_cse_window_empty (non-speculative) 
Counts the number of cycles when cse_window_empty is observed for the thread that has 
the commit priority. 

 

82 w_eu_comp_wait (non-speculative) 
Counts the number of cycles when eu_comp_wait is observed for the thread that has the 
commit priority. 

 

83 w_branch_comp_wait (non-speculative) 
Counts the number of cycles when branch_comp_wait is observed for the thread that has 
the commit priority. 

 

84 w_op_stv_wait (non-speculative) 
Counts the number of cycles when op_stv_wait is observed for the thread that has the 
commit priority. 
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85 w_d_move_wait 
Counts the number of cycles when d_move_wait is observed for the thread that has the 
commit priority. 

 

86 w_0endop (non-speculative) 
Counts the number of cycles when 0endop is observed for the thread that has the commit 
priority. 

 

87 w_op_stv_wait_nc_pend (non-speculative) 
Counts the number of cycles when op_stv_wait_nc_pend is observed for the thread that has 
the commit priority. 

 

88 w_op_stv_wait_ll_miss (non-speculative) 
Counts the number of cycles when op_stv_wait_ll_miss is observed for the thread that has 
the commit priority. 

 

89 w_op_stv_wait_ll_miss_ex (non-speculative) 
Counts the number of cycles when op_stv_wait_ll_miss_ex is observed for the thread that 
has the commit priority. 

 

90 w_fl_comp_wait (non-speculative) 
Counts the number of cycles when fl_comp_wait is observed for the thread that has the 
commit priority. 

 

91 w_cse_window_empty_sp_full (non-speculative) 
Counts the number of cycles when cse_window_empty_sp_full is observed for the thread 
that has the commit priority. 

 

92 w_op_stv_wait_ex (non-speculative) 
Counts the number of cycles when op_stv_wait_ex is observed for the thread that has the 
commit priority. 

  

93 w_op_stv_wait_pfp_busy (Non-Speculative) 
Counts the number of cycles when op_stv_wait_pfp_busy is observed for the thread that has 
the commit priority. 

 

94 w_op_stv_wait_pfp_busy_ex (Non-Speculative) 
Counts the number of cycles when op_stv_wait_pfp_busy_ex is observed for the thread that 
has the commit priority. 
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95 w_op_stv_wait_pfp_busy_swpf (Non-Speculative) 
Counts the number of cycles when op_stv_wait_pfp_busy_swpf is observed for the thread 
that has the commit priority. 

 

96 w_op_stv_wait_l2_miss (Non-Speculative) 
Counts the number of cycles when op_stv_wait_l2_miss is observed for the thread that has 
the commit priority. 

 

97 w_op_stv_wait_l2_miss_ex (Non-Speculative) 
Counts the number of cycles when op_stv_wait_l2_miss_ex is observed for the thread that 
has the commit priority. 

 

98 w_op_stv_wait_l1d_miss (Non-Speculative) 
Counts the number of cycles when op_stv_wait_l1d_miss is observed for the thread that has 
the commit priority. 

 

99 w_op_stv_wait_l1d_miss_ex (Non-Speculative) 
Counts the number of cycles when op_stv_wait_l1d_miss_ex is observed for the thread that 
has the commit priority. 

 

100 only_this_thread_active 
Counts the number of cycles when SMT is enabled, the CSE of this thread is not empty, and 
the CSEs of the other threads are empty. 

 

101 single_mode_cycle_counts 
Counts the number of cycles when the thread is active in the single-threaded mode (SMT 
disabled). 

 

102 single_mode_instructions 
Counts the number of committed instructions in the single-threaded mode (SMT disabled). 

 

103 both_threads_active 
Counts the number of cycles when SMT is enabled and the CSEs of all threads are active. 

 

104 both_threads_empty 
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Counts the number of cycles when SMT is enabled and the CSEs of all threads are empty. 

 

105 both_threads_suspended 
Counts the number of cycles when all threads in a core are in the suspended state. 

 

106 other_thread_commit 
Counts the number of cycles when no instructions are committed because the instructions 
in the other threads are commited. 

 

107 w_strand_id_not_empty 
Counts the number of cycles when CSE is not empty for the thread that has the commit 
priority. 

 

11.2.2   MMU and L1 cache Events 
 

Standard PA Events 

1 uITLB_miss 
Counts the number of instruction uTLB misses. 

 

2 uDTLB_miss 
Counts the number of data uTLB misses. 

 

3 L1I_miss 
Counts the number of L1 instruction cache misses. 

 

4 L1D_miss 
Counts the number of L1 data cache misses. 

 

5 L1I_wait_all 
Counts the total time spent on processing L1 instruction cache misses (that is, the 
total miss latency). In SPARC64™ XII, the L1 cache is a non-blocking cache that can 
process multiple cache misses simultaneously. L1I_wait_all only counts the miss 
latency for one of these misses. That is, the overlapped miss latencies are not counted. 

 

6 L1D_wait_all 
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Counts the total time spent on processing L1 data cache misses (that is, the total miss 
latency). In SPARC64™ XII, the L1 cache is a non-blocking cache that can process 
multiple cache misses simultaneously. L1D_wait_all only counts the miss latency for 
one of these misses. That is, the overlapped miss latencies are not counted. 

 
Supplemental PA Events 

7 ITLB_write 
Counts the number of ITLB writes caused by an instruction fetch ITLB miss. 

 

8 DTLB_write 
Counts the number of DTLB writes caused by a data access DTLB miss. 

 

9 swpf_success_all 
Counts the number of prefetch instructions that are not lost in the L1 cache and are 
sent to the LL cache . 

 

10 swpf_fail_all 
Counts the number of prefetch instructions that are lost in the L1 cache. 

 

11 swpf_lbs_hit 
Counts the number of prefetch instructions that hit in the L1 cache. 

Prefetch instructions sent to the L1 cache 

= swpf_success_all + swpf_fail_all + swpf_lbs_hit 

 

12 L1I_thrashing 
Counts the number of L2 read requests being issued twice during the period between 
acquiring and releasing a store port. When an instruction fetch causes an L1 
instruction cache miss, the requested data is updated in L1I cache. This counter is 
incremented if the updated data is evicted before it can be read. 

 

13 L1D_thrashing 
Counts the number of L2 read requests being issued twice during the period between 
acquiring and releasing a store port. When a memory access instruction causes an L1 
data cache miss, the requested data is updated in L1D cache. This counter is 
incremented if the updated data is evicted before it can be read. 

 

14 L1D_miss_dm 
Counts the number of L1 data cache misses for the load/store instructions. 
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15 L1D_miss_pf 
Counts the number of L1 data cache misses for the prefetch instructions. 

 

16 L1D_miss_qpf 
Counts the number of L1 data cache misses for the hardware prefetch requests. 

 

11.2.3   L2 cache Events 
 

L2 cache events may be due to the actions of VCPUs, I/Os or external requests. Events 
caused by VCPUs are counted separately for each VCPU. Those caused by I/Os or 
external requests are counted for all VCPUs. 

In the L2 cache, the demand (dm) events are counted, but the prefetch (pf) events are 
not checked. The prefetch (pf) events are counted in the LL cache. For more 
information about prefetch (pf) events, refer to 11.2.4. 

 
Standard PA Events 

1 l2_sy_read_dm 
Counts the number of L2 cache references in the demand requests. References in the 
external requests are not counted. 

 

2 l2_sy_miss_dm 
Counts the number of L2 cache misses caused by demand requests. 

 

3 l2_sy_miss_wait_dm_part{1,2} 
Counts the total time spent on processing L2 cache misses caused by demand requests, 
that is, the total miss latency. The latency of each memory access request is counted. 
The total time is the sum of L2_sy_miss_wait_dm_part{1,2}. 

 

4 l2_wb_dm 
Counts the number of writebacks to the memory caused by L2 cache misses for the 
demand requests. 

 

5 l2_bi_counts 
Counts the number of external cache-invalidate requests. Cache-invalidate requests 
caused by IO-FST/PST requests are also counted as this event. These requests do not 
check the cache data before invalidating. 
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6 l2_cpi_counts 
Counts the number of external cache-copy-and-invalidate requests received. These 
requests copy the updated cache data to memory before invalidating for inter 
CPU-chip copies. Cache data that is consistent with the memory does not need to be 
copied and is invalidated. 

 

7 l2_cpb_counts 
Counts the number of external cache-copyback requests received. These requests copy 
updated cache data to memory. 

 

8 l2_cpd_counts 
Counts the number of internal or external IO cache-read requests (DMA read 
requests). 

11.2.4   LL cache Events 
 

LL cache events may be due to the actions of VCPUs, I/Os or external requests. Events 
caused by VCPUs are counted separately for each VCPU. Those caused by I/Os or external 
requests are counted for all VCPUs. 

Most LL cache events are categorized as either demand (dm) or prefetch (pf) events. 

LL demand requests are basically due to an instruction fetch, a load/store instruction, or an 
L1 prefetch (by software and hardware) instruction that misses the L1 cache and the L2 
cache. 

LL prefetch requests are basically due to a LL prefetch (by software and hardware) that 
misses the L1 cache. LL prefetch requests are directly sent from the L1 cache to the LL 
cache without referencing the L2 cache. 

Due to lack of CPU resources to access the L2 cache, however, an instruction fetch, a 
load/store instruction, and an L1 prefetch instruction (that misses the L1 cache and the L2 
cache) can be processed as LL prefetch requests at first, and then processed as LL demand 
requests. In this case, these requests are double counted as LL prefetch requests and LL 
demand requests. 

For example, when a load/store instruction cannot be executed due to lack of resources 
needed to move data into the L1 cache, the data is first moved into the LL cache by the 
prefetch request generated by hardware. Once the L1 cache resources become available, the 
load/store instruction is executed by the demand request. 

 
 

Standard PA Events 

1 LL_read_dm 
Counts the number of LL cache references in the demand requests. References by 
external requests are not counted. 
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Compatibility Note For compatibility with previous versions of the CPU, 
L2_read_dm can be specified but is handled as LL_read_dm by the 
software in SPARC64™ XII (such as cpustat).  

 

2 LL_read_pf 
Counts the number of LL cache references in the prefetch requests.  

Compatibility Note For compatibility with previous versions of the CPU, 
L2_read_pf can be specified but is handled as LL_read_pf by the software 
in SPARC64™ XII (such as cpustat).  

 

3 LL_miss_dm 
Counts the number of LL cache misses caused by demand requests. This counter is the 
sum of LL_miss_counts_dm_bank{0,1,2,3}. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_dm can be specified but is handled as LL_miss_dm by the 
software in SPARC64™ XII (such as cpustat).  

 

4 LL_miss_pf 
Counts the number of LL cache misses caused by prefetch requests. This counter is the 
sum of LL_miss_counts_pf_bank {0, 1, 2, 3}. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_pf can be specified but is handled as LL_miss_pf by the software 
in SPARC64™ XII (such as cpustat).  

 

5 LL_miss_counts_dm_bank {0, 1, 2, 3} 
Counts the number of LL cache misses for each bank caused by demand requests.  

When an LL cache miss causes a prefetch request for an address to be issued and then 
a demand request for the same address is issued before the data is returned from the 
memory, an external LCU, or an external CPU, the demand request is not counted in 
LL_miss_counts_dm_bank{0,1,2,3}. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_counts_dm_bank{0, 1, 2, 3} can be specified but is handled as 
LL_miss_counts_dm_bank{0, 1, 2, 3} by the software in SPARC64™ XII 
(such as cpustat).  

 

6 LL_miss_counts_pf_bank {0, 1, 2, 3} 
Counts the number of LL cache misses for each bank caused by prefetch requests. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_count_pf_bank{0, 1, 2, 3} can be specified but is handled as 
LL_miss_count_pf_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such 
as cpustat).  

 

7 LL_miss_wait_dm_bank {0, 1, 2, 3} 
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Counts the total time spent on processing LL cache misses for each bank caused by 
demand requests (that is, the total miss latency for each bank). The latency of each 
memory access request is counted.  

When an LL cache miss causes a prefetch request for an address to be issued and then 
a demand request for the same address is issued before the data is returned from the 
memory, an external LCU, or an external CPU, the cycles are counted in 
LL_miss_wait_dm_bank{0,1,2,3} after the demand request but before the data is 
received. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_wait_dm_bank{0, 1, 2, 3} can be specified but is handled as 
LL_miss_wait_dm_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such 
as cpustat).  

 

8 LL_miss_wait_pf_bank {0, 1, 2, 3} 
Counts the total time spent on processing LL cache misses for each bank caused by 
prefetch requests, (that is, the total miss latency for each bank). The latency of each 
memory access request is counted. 

The LL cache miss latencies can be derived by summing LL_miss_wait_* and then 
dividing by the sum of LL_miss_counts_*. 

If individual LL cache-miss latencies are calculated for pf/dm requests, the value 
obtained for the miss latency of dm requests may be higher than expected. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_miss_wait_pf_bank{0, 1, 2, 3} can be specified but is handled as 
LL_miss_wait_pf_bank{0, 1, 2, 3} by the software in SPARC64™ XII (such 
as cpustat).  

 

9 LL_wb_dm 
Counts the number of writebacks to memory caused by LL cache misses for the 
demand requests.  

Compatibility Note For compatibility with previous versions of the CPU, 
L2_wb_dm can be specified but is handled as LL_wb_dm by the software in 
SPARC64™ XII (such as cpustat).  

 

10 LL_wb_pf 
Counts the number of writebacks to memory caused by LL cache misses for the 
prefetch requests. 

Compatibility Note For compatibility with previous versions of the CPU, 
L2_wb_pf can be specified but is handled as LL_wb_pf by the software in 
SPARC64™ XII (such as cpustat).  

 
Supplemental PA Events 

11 lost_pf_pfp_full 
Counts the number of weak prefetch requests that are lost due to LL-PF port full. 
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12 lost_pf_by_abort 
Counts the number of weak prefetch requests that are lost due to LL-pipe abort. 

 

11.2.5   Bus Transaction Events 
 

Standard PA Events 

1 cpu_mem_read_counts 
Counts the number of memory read requests issued by the CPU. For this event, the 
same value is counted by all VCPUs. 

 

2 cpu_mem_write_counts 
Counts the number of memory write requests issued by the CPU. For this event, the 
same value is counted by all VCPUs. 

 

3 IO_mem_read_counts 
Counts the number of memory read requests issued by I/O. For this event, the same 
value is counted by all VCPUs. 

 

4 IO_mem_write_counts 
Counts the number of memory write requests issued by I/O. For this event, the same 
value is counted by all VCPUs. 

 

5 bi_counts 
Counts the number of external cache-invalidate requests received by the LCU. 
Cache-invalidate requests caused by internal IO-FST/PST requests are also counted 
by this event. These requests do not check the cache data before invalidating. For this 
event, the same value is counted by all VCPUs in the LCU. 

 

6 cpi_counts 
Counts the number of external cache-copy-and-invalidate requests received by the 
LCU. These requests copy updated cache data to the memory before invalidating for 
inter CPU-chip copies. Cache data that is consistent with the memory does not need to 
be copied and is invalidated. For this event, the same value is counted by all VCPUs in 
the LCU. 

 

7 cpb_counts 
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Counts the number of external cache-copyback requests received by the LCU. These 
requests copy updated cache data to the memory for inter CPU-chip copies. For this 
event, the same value is counted by all VCPUs in the LCU. 

 

8 cpd_counts 
Counts the number of internal or external IO cache-read requests (DMA read requests) 
received by the CPU chip. For this event, the same value is counted by all VCPUs in 
the LCU. 

 
Supplemental PA Events 

 
9 IO_pst_counts 
Counts the number of memory write requests (IO-PST) issued by I/Os. 

 

11.3   Cycle Accounting 
 

Cycle accounting is a method used for analyzing performance bottlenecks. The total time 
(number of CPU cycles) required to execute an instruction sequence can be divided into 
time spent in various CPU execution states (such as executing instructions, waiting for 
memory access, and waiting for an execution to be completed). 

SPARC64™ XII defines a large number of PA events that record detailed information about 
CPU execution states, enable efficient analysis of bottlenecks, and are useful for 
performance tuning. 

In this document, cycle accounting is specifically defined as the analysis of instructions as 
they are committed in order. SPARC64™ XII executes instructions out-of-order and has 
multiple execution units. The CPU is generally in a mixed state where instructions are 
being executed or waiting. One instruction may be waiting for data from memory, another 
executing a floating-point multiplication, and yet another waiting for confirmation of the 
branch direction. Simply analyzing the reasons why individual instructions are waiting is 
not useful. Instead, cycle accounting classifies cycles by the number of instructions 
committed. When a cycle commits no instructions, the conditions that prevented 
instructions from committing are analyzed. 

SPARC64™ XII commits up to 4 instructions per cycle. The more cycles that commit the 
maximum number of instructions, the better the execution efficiency. Cycles that do not 
commit any instructions have an extremely negative effect on performance, so it is 
important to perform a detailed analysis of these cycles. The main causes are: 

■ Waiting for a memory access to return data. 

■ Waiting for an instruction execution to be completed. 

■ An instruction fetch is unable to supply the pipeline with instructions. 

Table 11-2 highlights some useful PA events and descibes how they can be used to analyze 
the execution efficiency. 

Figure 11-1 shows the relationship between the various op_stv_wait_* events. The PA 
events marked with a † in the figure are synthetic events calculated from other PA events. 
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Figure 11-1 Breakdown of op_stv_wait 

 
 

Table 11-2 Useful Performance Events for Cycle Accounting 

Instructions 
Committed 
per Cycle 

Cycles Remarks 

4 cycle_counts 
- 3endop - 2endop 
- 1endop - 0endop 

N/A (maximum number of instructions are 
committed) 

3 3endop  
2 2endop 
1 1endop  
0 Execution: 

eu_comp_wait 
+ branch_comp_wait 
+ d_move_wait 
 

eu_comp_wait 
= ex_comp_wait†+ fl_comp_wait 
 

Instruction Fetch: 
cse_window_empy 
 

 

L1D cache miss: 
op_stv_wait 
-op_stv_wait_l2_miss 
-op_stv_wait_ll_miss 

 

L2 cache miss: 
op_stv_wait_l2_miss 

 

LL cache miss: 
op_stv_wait_ll_miss 

 
Waiting Other Thread: 
other_thread_commit 

 

Others: 
0endop 
- op_stv_wait 
- cse_window_empy 
- eu_comp_wait 
- branch_comp_wait 
- d_move_wait 
- other_thread_commit 
-(instruction_flow_counts 
- instruction_counts) 
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12. Traps 

   Trap list and priorities 12.5.
 
 

Symbol Description 
-x- Traps will not occur in this mode.  
P Change to privileged mode.  
P(ie) Change to privileged mode if PSTATE.ie = 1.  
H Change to hyperprivileged mode.  

 

Table 12-1 Trap list, by TT value 

TT Trap name Type Priority Privil
ege 
level 
after 
the 
traps 
occur 

Definitio
n 

00016 reserved     

00616 reserved     

00716 reserved     

00816 IAE_privilege_violation precise 3.1 H  

00B16 IAE_unauth_access precise 2.7 H  

00C16 IAE_nfo_page precise 3.3 H  

00D16 reserved     

00E16 reserved     

00F16 reserved     

01016 illegal_instruction precise 6.2 H  

01116 privileged_opcode precise 7 P  

01216 reserved     

01316 reserved     

01416 DAE_invalid_asi precise 12.1 H  

01516 DAE_privilege_violation precise 12.5 H  

01616 DAE_nc_page precise 12.6 H  

01716 DAE_nfo_page precise 12.7 H  

01816-01F16 reserved     
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TT Trap name Type Priority Privil
ege 
level 
after 
the 
traps 
occur 

Definitio
n 

02016 fp_disabled precise 8 P  

02116 fp_exception_ieee_754 precise 11.1 P  

02216 fp_exception_other precise 11.1 P  

02316 tag_overflow precise 14 P  

02416 clean_window precise 10.1 P  

02516-02716 reserved     

02816 division_by_zero precise 15 P  

02916 reserved     

02C16 reserved     

02D16 reserved     

02E16 reserved     

02F16 reserved     

03016 DAE_side_effect_page precise 12.7 H  

03316 reserved     

03416 mem_address_not_aligned precise 10.2 H  

03516 LDDF_mem_address_not_aligned precise 10.1 H  

03616 STDF_mem_address_not_aligned precise 10.1 H  

03716 privileged_action precise 11.1 H  

03816 reserved     

03916 reserved     

03C16 reserved     

03D16 reserved     

04116-04F16 interrupt_level_n (n = 1 – 15) 
(Interrupt_level_15 is written as 
pic_overflow. ) 

disrupting 32-ni P(ie)  

05016-05D16 reserved     

06116 PA_watchpoint (RA_watchpoint) precise 12.9 H  

06216 VA_watchpoint precise 11.2 H  

06516-06716 reserved     

06916-06B16 reserved     

06D16-07016 reserved     

07316 illegal_action precise 8.5 H  

07416 control_transfer_instruction precise 11.1 P  

07516 reserved     

                                                   
i In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. In SPARC64™ XII, both have a priority of 
17. 
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TT Trap name Type Priority Privil
ege 
level 
after 
the 
traps 
occur 

Definitio
n 

07816-07B16 reserved     

07C16 cpu_mondo disrupting 16.8 P(ie)  

07D16 dev_mondo disrupting 16.11 P(ie)  

07E16 resumable_error disrupting 33.3 P(ie)  

07F16 nonresumable_error (not by hardware)     

08016-09C16 spill_n_normal (n = 0 – 7) precise 9 P  

0A016-0BC16 spill_n_other (n = 0 – 7) precise 9 P  

0C016-0DC16 fill_n_normal (n = 0 – 7) precise 9 P  

0E016- 
0FC16 

fill_n_other (n = 0 – 7) precise 9 P  

10016-17F16 trap_instruction precise 16.2 P  

 

Table 12-2 Trap list, by priority 

TT Trap name Type Priority Privil
ege 
level 
after 
the 
trap 
occur 

Definiti
on 

00B16 IAE_unauth_access precise 2.7 H  

00816 IAE_privilege_violation precise 3.1 H  

00C16 IAE_nfo_page precise 3.3 H  

01016 illegal_instruction precise 6.2 H  

01116 privileged_opcode precise 7 P  

02016 fp_disabled precise 8 P  

07316 illegal_action precise 8.5 H  

08016-09C16 spill_n_normal (n = 0 – 7) precise 9 P  

0A016-0BC16 spill_n_other (n = 0 – 7) precise 9 P  

0C016-0DC16 fill_n_normal (n = 0 – 7) precise 9 P  

0E016- 
0FC16 

fill_n_other (n = 0 – 7) precise 9 P  

02416 clean_window precise 10.1 P  

03516 LDDF_mem_address_not_aligned precise 10.1 H  

03616 STDF_mem_address_not_aligned precise 10.1 H  

03416 mem_address_not_aligned precise 10.2 H  

02116 fp_exception_ieee_754 precise 11.1 P  

02216 fp_exception_other precise 11.1 P  
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TT Trap name Type Priority Privil
ege 
level 
after 
the 
trap 
occur 

Definiti
on 

03716 privileged_action precise 11.1 H  

07416 control_transfer_instruction precise 11.1 P  

06216 VA_watchpoint precise 11.2 H  

01416 DAE_invalid_asi precise 12.1 H  

01516 DAE_privilege_violation precise 12.5 H  

01616 DAE_nc_page precise 12.6 H  

01716 DAE_nfo_page precise 12.7 H  

03016 DAE_side_effect_page precise 12.7 H  

06116 PA_watchpoint (RA_watchpoint) precise 12.9 H  

02316 tag_overflow precise 14 P  

02816 division_by_zero precise 15 P  

10016-17F16 trap_instruction precise 16.2 P  

07C16 cpu_mondo disrupting 16.8 P(ie)  

07D16 dev_mondo disrupting 16.11 P(ie)  

04116-04F16 interrupt_level_n (n = 1 – 15) 
(Interrupt_level_15 is written as 
pic_overflow. ) 

disrupting 32-nii P(ie)  

07E16 resumable_error disrupting 33.3 P(ie)  

07F16 nonresumable_error (not by hardware)     

 

                                                   
ii In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. In SPARC64™ XII, both have a priority of 
17. 



  
 

 
 13. Memory Management Unit 147 
 

 

13. Memory Management Unit 

This chapter provides information about the SPARC64™ XII Memory Management Unit. It 
describes the internal architecture of the MMU and how to program it. 

 Address types 13.1.
The SPARC64™ XII MMUs support a 64-bit virtual address (VA) space (no VA hole) and a 
48-bit real address (RA) space.  

• VA(Virtual Address): Access to a virtual address is protected at the granularity of a 
page. A VA is 64 bits, and all 64 bits are available in SPARC64™ XII (no VA hole). It is 
identified by a context number. 

• RA(Real Address): All 64 bits of an RA are valid for software, but only 48 bits are valid 
for hardware. 

Refer to Section 14.1 in UA2011 for information on Virtual-to-Real Translation. 

Table 13-1 the SPARC64™ XII address width 

 VA RA 
Address width  64 bits 64 bits 
Legal address width 64 bits (No VA hole) 48 bits 

 TSB Translation Table (TTE) 13.4.
A TSB TTE contains the VA to RA translation for a single page mapping.  

 

TTE Tag 
context_id  va<63:22> 

63 48 47 42 41 0 

 

TTE Data 
v nfo soft2 taddr<55:13> ie e cp cv p ep w soft size 
63 62 61 56 55 13 12 11 10 9 8 7 6 5 4 3 0 

 

Table 13-2  TSB TTE 

Bit Field Description 
Tag 63:48 context_id  
Tag 41:0 va<63:22>  
Data 63 v  
Data 62 nfo  
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Data 61:56 soft2  
Data 55:13 taddr<55:13> Target address (RA).  

In SPARC64™ XII, if the bits taadr<55:48> are not zero, an  
invalid_TSB_entry exception is generated.  

Data 12 ie This ie bit in the IMMU is ignored.  
Data 11 e  
Data 10 cp This cp bit is ignored in SPARC64™ XII.  
Data 9 cv This cv bit is ignored in SPARC64™ XII. 
Data 8 p  
Data 7 ep  
Data 6 w  
Data 5:4 soft  
Data 3:0 size The page size of this entry is encoded as shown in the table below.  

Size<3:0> Page size 

0000 8KB 

0001 64KB 

0010 reserved 

0011 4MB 

0100 reserved 

0101 256MB 

0110 2GB 

0111 16GB 

1000-1111 reserved 
 

 

 

 Page sizes 13.8.
SPARC64™ XII supports six page sizes : 8 KB, 64 KB, 4 MB, 256 MB, 2GB, and 16GB. The 
TLBs can hold translations of all six sizes concurrently.  

Table 13-3  Page types supported by SPARC64™ XII 

Page type Virtual page number Page offset Encode 
8KB page 51 bits 13 bits 0002 
64KB page 48 bits 16 bits 0012 
4MB page 42 bits 22 bits 0112 
256MB page 36 bits 28 bits 1012 
2GB page 33 bits 31 bits 1102 
16GB 30 bits 34 bits 1112 
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14. Opcode Maps 

This chapter contains the opcode maps for the SPARC64™ XII instructions. 

Opcodes marked with an em dash ‘’ are reserved. An attempt to execute a reserved opcode 
causes an exception (Illegal_instruction). 

In this chapter, certain opcodes are marked with mnemonic superscripts. These 
superscripts and their meanings are defined in Table 7-1 (page 26). 

 

Table 14-1 op<1:0> 

op<1:0> 
0 1 2 3 
Branch instruction and SETHI 
Refer to Table 14-2. 

CALL Arithmetic & 
Miscellaneous  
Refer to Table 14-3. 

Memory access 
instructions 
Refer to Table 14-4. 

 

Table 14-2 Branches, SETHI, and SXAR (op<1:0> = 0) 

op2<2:0> 
0 1 2 3 4 5 6 7 
ILLTRAP BPcc 

Refer to 
Table 14-8. 

BiccD 
Refer to 
Table 14-8. 

BPr 
Refer to 
Table 14-9. 

SETHI, 
NOP 

FBPfcc 
Refer to Table 
14-8. 

FBfccD 
Refer to 
Table 14-8. 

SXAR1, 
SXAR2 
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Table 14-3 Arithmetic & Miscellaneous (op<1:0> = 2) 

op3<3:0> op3<5:4> 
0 1 2 3 

0 ADD ADDcc TADDcc WRYD (rd = 0) 
WRCCR (rd = 2) 
WRASI (rd = 3) 
WRFPRS (rd = 6) 
WRPCRPPCR (rd = 16) 
WRPICPPIC (rd = 17) 
WRGSR (rd = 19) 
WRPAUSE (rd = 27)  
WRXAR (rd = 29) 
WRXASR (rd = 30) 

1 AND ANDcc TSUBcc  
2 OR Orcc TADDccTVD  

3 XOR XORcc TSUBccTVD  

4 SUB SUBcc MULSccD FPop1 (Refer to Table 14-5 and 
Table 14-6) 

5 ANDN ANDNcc SLL (x = 0, r = 0), SLLX (x = 1, r = 0), ROLX 
(x = 1, r = 1) 

FPop2  (Refer to Table 14-7) 

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (Refer to Table 14-13) 
7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2 (Refer to Table 14-16) 
8 ADDC ADDCcc RDYD (rs1 = 0, i = 0) 

RDCCR (rs1 = 2, i = 0) 
RDASI (rs1 = 3, i = 0) 
RDTICKPNPT (rs1 = 4, i = 0) 
RDPC (rs1 = 5, i = 0) 
RDFPRS (rs1 = 6, i = 0) 
MEMBAR (rs1 = 15, rd = 0,   
i = 1) 
RDPCRPPCR (rs1 = 16, i = 0) 
RDPICPPIC (rs1 = 17, i = 0) 
RDGSR (rs1 = 19, i = 0) 
RDSTICKPNPT (rs1 = 24, i = 0) 
RDXASR (rs1 = 30, i = 0) 

JMPL 

9 MULX   RETURN 
A16 UMULD UMULccD  Tcc 

B16 SMULD SMULccD FLUSHW FLUSH 

C16 SUBC SUBCcc MOVcc SAVE 
D16 UDIVX  SDIVX RESTORE 
E16 UDIVD UDIVccD POPC (rs1 = 0)  

F16 SDIVD SDIVccD MOVR (rs1 = 0)  
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Table 14-4 Memory access instruction (op<1:0> = 3) 

op3<3:0> op3<5:4> 
0 1 2 3 

0 LDUW LDUWAPASI LDF      (urs2<2:1> = 002) 
LDFUWXII (urs2<2:1> = 012) 
LDFSWXII (urs2<2:1> = 112) 

LDFAPASI 

1 LDUB LDUBAPASI LDFSRD (rd = 0) 
LDXFSR (rd = 1)  
LDXEFSR (rd = 3) 

 

2 LDUH LDUHAPASI LDQF LDQFAPASI 

3 LDTWD 
(rd even) 

LDTWAD,PASI (rd even) 
LDTXA (rd even) 

LDDF      (urs2<1> = 0) 
LDDFDSXII (urs2<1> = 1) 

LDDFAPASI 

LDBLOCKF 
LDSHORTF 

4 STW STWAPASI STF      (urs2<1> = 0) 
STFUWXII (urs2<1> = 1) 

STFAPASI 

5 STB STBAPASI STFSRD (rd = 0) 
STXFSR (rd = 1) 

 

6 STH STHAPASI STQF STQFAPASI 

7 STTWD 
(rd even) 

STTWAD,PASI (rd even) 
STBIN 

XFILLN 

STDF      (urs2<1> = 0) 
STDFDSXII (urs2<1> = 1) 

STDFAPASI 

STBLOCKF 
STPARTIALF 
STSHORTF 

XFILLN 
8 LDSW LDSWAPASI   

9 LDSB LDSBAPASI   

A16 LDSH LDSHAPASI   

B16 LDX LDXAPASI   

C16   STFR      (type = 0 or i = 1) 
STFRUWXII (type = 1) 

CASAPASI 

D16 LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI 

E16 STX STXAPASI  

STBIN 

XFILLN 

 CASXAPASI 

F16 SWAPD SWAPAD,PASI STDFR    (type = 0 or i = 1) 
STDFRDSXII(type = 1 and 
m = 0) 
STDFRDWXII(type = 1 and 
m = 1) 

 

 



   
 

 
152 Ver 20, Oct., 2017 
 

 

Table 14-5 FPop1 (op<1:0> = 2, op3 = 3416) (1/2) 

opf<8:4> opf<3:0> 
0 1 2 3 4 5 6 7 

0016  FMOVs FMOVd FMOVq  FNEGs FNEGd FNEGq 
0116         
0216         
0316         
0416  FADDs FADDd FADDq  FSUBs FSUBd FSUBq 
0516  FNADDs FNADDd      
0616         
0716         
0816  FsTOx FdTOx FqTOx FxTOs    
0916         
0A16         
0B16         
0C16     FiTOs  FdTOs FqTOs 
0D16  FsTOi FdTOi FqTOi     
0E16 – 1F16         

 

Table 14-6 FPop1 (op<1:0> = 2, op3 = 3416) (2/2) 

opf<8:4> opf<3:0> 
8 9 A16 B16 C16 D16 E16 F16 

0016  FABSs FABSd FABSq     
0116         
0216  FSQRTs FSQRTd FSQRTq     
0316         
0416  FMULs FMULd FMULq  FDIVs FDIVd FDIVq 
0516  FNMULs FNMULd      
0616  FsMULd     FdMULq  
0716  FNsMULd       
0816 FxTOd    FxTOq    
0916         
0A16         
0B16         
0C16 FiTOd FsTOd  FqTOd FiTOq FsTOq FdTOq  
0D16         
0E16 – 1F16         
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Table 14-7 FPop2 (op<1:0> = 2, op3 = 3516) 

opf<8:4> opf<3:0> 
0 1 2 3 4 5 6 7 8-F16 

0016  FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0)  (Reserve for FMOVR enhance)  

0116          
0216      FMOVRsZiii FMOVRdZiii FMOVRqZiii  

0316          
0416  FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1)  FMOVRsLEZiii FMOVRdLEZiii FMOVRqLEZiii  
0516  FCMPs FCMPd FCMPq  FCMPEsiii FCMPEdiii FCMPEqiii  
0616      FMOVRsLZiii FMOVRdLZiii FMOVRqLZiii  
0716          
0816  FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2)  (Reserve for FMOVR enhance)  
0916          
0A16      FMOVRsNZiii FMOVRdNZiii FMOVRqNZiii  
0B16          
0C16  FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3)  FMOVRsGZiii FMOVRdGZiii FMOVRqGZiii  
0D16          
0E16      FMOVRsGEZiii FMOVRdGEZiii FMOVRqGEZiii  
0F16          
1016  FMOVs (icc) FMOVd (icc) FMOVq (icc)      
1116-1716          
1816  FMOVs (xcc) FMOVd (xcc) FMOVq (xcc)      
1916-1F16          

 

                                                   
iii iw<13> = 0 
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Table 14-8 cond<3:0> 

cond<3:0> BPcc 
op = 0 
op2 = 1 

Bicc 
op = 0 
op2 = 2 

FBPfcc 
op = 0 
op2 = 5 

FBfcc 
op = 0 
op2 = 6 

Tcc 
op = 2 
op3 = 3A16 

016 BPN BND FBPN FBND TN 

116 BPE BED FBPNE FBNED TE 

216 BPLE BLED FBPLG FBLGD TLE 

316 BPL BLD FBPUL FBULD TL 

416 BPLEU BLEUD FBPL FBLD TLEU 

516 BPCS BCSD FBPUG FBUGD TCS 

616 BPNEG BNEGD FBPG FBGD TNEG 

716 BPVS BVSD FBPU FBUD TVS 

816 BPA BAD FBPA FBAD TA 

916 BPNE BNED FBPE FBED TNE 

A16 BPG BGD FBPUG FBUGD TG 

B16 BPGE BGED FBPGE FBGED TGE 

C16 BPGU BGUD FBPUGE FBUGED TGU 

D16 BPCC BCCD FBPLE FBLED TCC 

E16 BPPOS BPOSD FBPULE FBULED TPOS 

F16 BPVC BVCD FBPO FBOD TVC 

 

Table 14-9 rcond<2:0> 

rcond<2:0> BPr 
op = 0 
op2 = 3 
iw<28> = 0 

Cbcond 
op = 0 
op2 = 3 
iw<28> = 1 

MOVr 
op = 2 
op2 = 2F16 

FMOVr 
op = 2 
op2 = 3516 

0     
1 BRZ C{W|X}B{NE|E} MOVRZ FMOVR{s|d|q}Z 
2 BRLEZ C{W|X}B{G|LE} MOVRLEZ FMOVR{s|d|q}LEZ 
3 BRLZ C{W|X}B{GE|L} MOVRLZ FMOVR{s|d|q}LZ 
4  C{W|X}B{GU|LEU}   
5 BRNZ C{W|X}B{CC|CS} MOVRNZ FMOVR{s|d|q}NZ 
6 BRGZ C{W|X}B{POS|NEG} MOVRGZ FMOVR{s|d|q}GZ 
7 BRGEZ C{W|X}B{VC|VS} MOVRGEZ FMOVR{s|d|q}GEZ 
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Table 14-10 cc, opf_cc (MOVcc, FMOVcc) 

cc2 cc1 cc0 Condition code used 
0 0 0 fcc0 

0 0 1 fcc1 

0 1 0 fcc2 

0 1 1 fcc3 

1 0 0 icc 

1 0 1  
1 1 0 xcc 

1 1 1  

 

Table 14-11 cc fields (FBPfcc, FCMP, FCMPE, FLCMP and FPCMP) 

cc1 cc0 Condition code used 
0 0 fcc0 
0 1 fcc1 
1 0 fcc2 
1 1 fcc3 

 

Table 14-12 cc fields (BPcc and Tcc) 

cc1 cc0 Condition code used 
0 0 icc 
0 1  
1 0 xcc 
1 1  

 

Table 14-13 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (1/3) 

opf<3:0
> 

opf<8:4> 
0016 0116 0216 0316 0416 0516 0616 0716 

016 EDGE8 ARRAY8 FCMPLE16   FPADD16 FZERO FAND 

116 EDGE8N   FMUL8x16  FPADD16S FZEROS FANDS 

216 EDGE8L ARRAY16 FCMPNE16  FPADD64 FPADD32 FNOR FXNOR 

316 EDGE8LN   FMUL8x16AU  FPADD32S FNORS FXNORS 

416 EDGE16 ARRAY32 FCMPLE32   FPSUB16 FANDNOT2 FSRC1 

516 EDGE16N  FSLL32XII FMUL8x16AL  FPSUB16S FANDNOT2S FSRC1S 

616 EDGE16L  FCMPNE32 FMUL8sUx16 FPSUB64 FPSUB32 FNOT2 FORNOT2 

716 EDGE16LN LZD FSRL32XII FMUL8uLx16  FPSUB32S FNOT2S FORNOT2S 

816 EDGE32 ALIGNAD
DRES 

FCMPGT16 FMULD8sUx16 FALIGNDAT
A 

 FANDNOT1 FSRC2 

916 EDGE32N BMASK  FMULD8uLx16   FANDNOT1S FSRC2S 

A16 EDGE32L ALIGNAD
DRES 
_LITTLE 

FCMPEQ16 FPACK32   FNOT1 FORNOT1 

B16 EDGE32LN   FPACK16 FPMERGEXII 
 

 FNOT1S FORNOT1S 

C16   FCMPGT32  BSHUFFLE  FXOR FOR 

D16    FPACKFIX FEXPAND  FXORS FORS 
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opf<3:0
 

opf<8:4> 
E16   FCMPEQ32 PDIST FPMUL64XII  FNAND FONE 

F16   FSRA32XII  FPMUL32XII  FNANDS FONES 

 

Table 14-14 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (2/3) 

opf 
<3:0> 

opf<8:4> 
0816 0916 0A16 0B16 0C16 0D16 0E16 0F16 

016 SHUTDOW
N 

FAESENCX  FADDtd FADDo
d 

FCMPLE16X 
(urs3<1:0> = 002) 
FPCMPLE16X 
(urs3<1:0> = 002) 

FPCMPLE16FXXII 
(urs3<1:0> = 102) 
FPCMPLE16XACCXII 
(urs3<1:0> = 112) 

FCMPLE8X 
(urs3<1:0> = 002) 
FPCMPLE8X 
(urs3<1:0> = 002) 

FPCMPLE8FXXII 
(urs3<1:0> = 102) 
FPCMPLE8XACCXII 
(urs3<1:0> = 112) 

  

116 SIAM FAESDECX FSUBtd FSUBo
d 

FUCMPLE16X 
(urs3<1:0> = 002) 
FPCMPULE16X 
(urs3<1:0> = 002) 

FPCMPULE16FX XII 
(urs3<1:0> = 102) 
FPCMPULE16XACCXII 
(urs3<1:0> = 112) 

FUCMPLE8X 
(urs3<1:0> = 002) 
FPCMPULE8X 
(urs3<1:0> = 002) 

FPCMPULE8FXXII 
(urs3<1:0> = 102) 
FPCMPULE8XACCXII 
(urs3<1:0> = 112) 

 

 

  

216  FAESENCLX FMULtd FMULo
d FPCMPLE4XXII 

(urs3<1:0> = 002) 
FPCMPLE4FXXII 
(urs3<1:0> = 102) 
FPCMPLE4XACCXII 
(urs3<1:0> = 112) 

FPCMPGT4XXII 
(urs3<1:0> = 002) 
FPCMPGT4FXXII 
(urs3<1:0> = 102) 
FPCMPGT4XACCXII 
(urs3<1:0> = 112) 

  

316 SLEEP FAESDECLX  FDIVtd FDIVo
d 

FUCMPNE16X 
(urs3<1:0> = 002) 
FPCMPUNE16X 
(urs3<1:0> = 002) 

FPCMPUNE16FXXII 
(urs3<1:0> = 102) 
FPCMPUNE16XACCXII 
(urs3<1:0> = 112) 

FUCMPNE8X 
(urs3<1:0> = 002) 
FPCMPUNE8X 
(urs3<1:0> = 002) 

FPCMPUNE8FXXII 
(urs3<1:0> = 102) 
FPCMPUNE8XACCXII 
(urs3<1:0> = 112) 

  
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416  FAESKEYX FCMPtd FCMPo
d 

FCMPLE32X 
(urs3<1:0> = 002) 
FPCMPLE32X 
(urs3<1:0> = 002) 

FPCMPLE32FXXII 
(urs3<1:0> = 102) 
FPCMPLE32XACCXII 
(urs3<1:0> = 112) 

FCMPLE64X 
(urs3<1:0> = 002) 
FPCMPLE64X 
(urs3<1:0> = 002) 

FPCMPLE64FXXII 
(urs3<1:0> = 102) 
FPCMPLE64XACCXII 
(urs3<1:0> = 112) 

FPMAX
32x 

 

516 SDIAM FPSELMOV8X 
(urs3<1> = 0) 
FPSELMOV8F

XXII 
(urs3<1> = 1) 

FCMPEtd  FUCMPLE32X 
(urs3<1:0> = 002) 
FPCMPULE32X 
(urs3<1:0> = 002) 

FPCMPULE32FXXII 
(urs3<1:0> = 102) 
FPCMPULE32XACCXII 
(urs3<1:0> = 112) 

FUCMPLE64X 
(urs3<1:0> = 002) 
FPCMPULE64X 
(urs3<1:0> = 002) 

FPCMPULE64FXXII 
(urs3<1:0> = 102) 
FPCMPULE64XACCXII 
(urs3<1:0> = 112) 

FPMAX
u32x 

 

616  FPSELMOV16
X 
(urs3<1> = 0) 
FPSELMOV16

FXXII 
(urs3<1> = 1) 

FQUAtd FQUAo
d 

FPCMPULE4XXII 
(urs3<1:0> = 002) 
FPCMPULE4FXXII 
(urs3<1:0> = 102) 
FPCMPULE4XACCXII 
(urs3<1:0> = 112) 

FPCMPUGT4XXII 
(urs3<1:0> = 002) 
FPCMPUGT4FXXII 
(urs3<1:0> = 102) 
FPCMPUGT4XACCXII 
(urs3<1:0> = 112) 

FPMIN
32x 

 

716  FPSELMOV32
X 
(urs3<1> = 0) 
FPSELMOV32

FXXII 
(urs3<1> = 1) 

 FRQUA
od 

FUCMPNE32X 
(urs3<1:0> = 002) 
FPCMPUNE32X 
(urs3<1:0> = 002) 

FPCMPUNE32FXXII 
(urs3<1:0> = 102) 
FPCMPUNE32XACCXII 
(urs3<1:0> = 112) 

FUCMPNE64X 
(urs3<1:0> = 002) 
FPCMPUNE64X 
(urs3<1:0> = 002) 

FPCMPUNE64FXXII 
(urs3<1:0> = 102) 
FPCMPUNE64XACCXII 
(urs3<1:0> = 112) 

FPMIN
u32X 

 

816  FDESENCX  FXADD
odLO 

FCMPGT16X 
(urs3<1:0> = 002) 
FPCMPGT16X 
(urs3<1:0> = 002) 

FPCMPGT16FXXII 
(urs3<1:0> = 102) 
FPCMPGT16XACCXII 
(urs3<1:0> = 112) 

FCMPGT8X 
(urs3<1:0> = 002) 
FPCMPGT8X 
(urs3<1:0> = 002) 

FPCMPGT8FXXII 
(urs3<1:0> = 102) 
FPCMPGT8XACCXII 
(urs3<1:0> = 112) 

  

916 PADD32 FDESPC1X  FXADD
odHI 

FUCMPGT16X 
(urs3<1:0> = 002) 
FPCMPUGT16X 
(urs3<1:0> = 002) 

FPCMPUGT16FXXII 
(urs3<1:0> = 102) 
FPCMPUGT16XACCXII 
(urs3<1:0> = 112) 

FUCMPGT8X 
(urs3<1:0> = 002) 
FPCMPUGT8X 
(urs3<1:0> = 002) 

FPCMPUGT8FXXII 
(urs3<1:0> = 102) 
FPCMPUGT8XACCXII 
(urs3<1:0> = 112) 

  

A16  FDESIPX  FXMUL
odLO 

    

B16  FDESIIPX   FUCMPEQ16X 
(urs3<1:0> = 002) 
FPCMPUEQ16X 
(urs3<1:0> = 002) 

FPCMPUEQ16FXXII 
(urs3<1:0> = 102) 
FPCMPUEQ16XACCXII 
(urs3<1:0> = 112) 

FUCMPEQ8X 
(urs3<1:0> = 002) 
FPCMPUEQ8X 
(urs3<1:0> = 002) 

FPCMPUEQ8FXXII 
(urs3<1:0> = 102) 
FPCMPUEQ8XACCXII 
(urs3<1:0> = 112) 

  
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C16  FDESKEYX FbuxTOt
d 

 FCMPGT32X 
(urs3<1:0> = 002) 
FPCMPGT32X 
(urs3<1:0> = 002) 

FPCMPGT32FXXII 
(urs3<1:0> = 102) 
FPCMPGT32XACCXII 
(urs3<1:0> = 112) 

FCMPGT64X 
(urs3<1:0> = 002) 
FPCMPGT64X 
(urs3<1:0> = 002) 

FPCMPGT64FXXII 
(urs3<1:0> = 102) 
FPCMPGT64XACCXII 
(urs3<1:0> = 112) 

FPMAX
64x 

 

D16   FtdTObu
x 

 FUCMPGT32X 
(urs3<1:0> = 002) 
FPCMPUGT32X 
(urs3<1:0> = 002) 

FPCMPUGT32FXXII 
(urs3<1:0> = 102) 
FPCMPUGT32XACCXII 
(urs3<1:0> = 112) 

FUCMPGT64X 
(urs3<1:0> = 002) 
FPCMPUGT64X 
(urs3<1:0> = 002) 

FPCMPUGT64FXXII 
(urs3<1:0> = 102) 
FPCMPUGT64XACCXII 
(urs3<1:0> = 112) 

FPMAX
u64x 

 

E16 FMONTMU

LXII 

FMONTSQ

RXII 

FPCSL8XXII FbsxTOt
d 

FodTO
td 

FPCMPUNE4XXII 
(urs3<1:0> = 002) 
FPCMPUNE4FXXII 
(urs3<1:0> = 102) 
FPCMPUNE4XACCXII 
(urs3<1:0> = 112) 

FPCMPUEQ4XXII 
(urs3<1:0> = 002) 
FPCMPUEQ4FXXII 
(urs3<1:0> = 102) 
FPCMPUEQ4XACCXII 
(urs3<1:0> = 112) 

FPMIN
64x 

 

F16  FPADD128XH
I 

FtdTObs
x 

FtdTO
od 

FUCMPEQ32X 
(urs3<1:0> = 002) 
FPCMPUEQ32X 
(urs3<1:0> = 002) 

FPCMPUEQ32FXXII 
(urs3<1:0> = 102) 
FPCMPUEQ32XACCXII 
(urs3<1:0> = 112) 

FUCMPEQ64X 
(urs3<1:0> = 002) 
FPCMPUEQ64X 
(urs3<1:0> = 002) 

FPCMPUEQ64FXXII 
(urs3<1:0> = 102) 
FPCMPUEQ64XACCXII 
(urs3<1:0> = 112) 

FPMIN
u64x 

 

 

Table 14-15 IMPDEP1 : VIS instruction (op<1 :0> = 2, op3 = 3616) (3/3) 

opf<
3:0> 

opf<8:4>  
1016 1116 1216 1316 1416 1516 1616 1716 1816 1916-

1F16 
016 FSEXTWXII MOVdTOxXII FPCMPULE8    FCMP

EQd 
FMAXd   

116 FZEXTWXII MOVsTOuwXII 
(urs3<0> = 0) 
MOVfwTOuwXII 
(urs3<0> = 1) 

   FLCMPs FCMP
EQs 

FMAXs   

216   FPCMPUNE8   FLCMPd FCMP
EQEd 

FMINd   

316  MOVsTOswXII 
(urs3<0> = 0) 
MOVfwTOswXII 
(urs3<0> = 1) 

    FCMP
EQEs 

FMINs   

416 FPCMP64X  FPADD8XII   FPSUB8XII FCMP
LEEd 

FRCPA
d 

FEPERM32XXII  

516 FPCMPU64X      FCMP
LEEs 

FRCPA
s 

FEPERM64XXII  

616 FPSLL64X      FCMP
LTEd 

FRSQR
TAd 

  

716 FPSRL64X      FCMP
LTEs 

FRSQR
TAs 

  
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816  MOVxTOd FPCMPUGT8    FCMP
NEd 

FTRIS
SELd  

  

916  MOVwTOs 
(urs3<1:0> = 0
02) 
MOVwTOfuwXII 
(urs3<1:0> = 0
12) 
MOVwTOfswXII 
(urs3<1:0> = 1
12) 

    FCMP
NEs 

   

A16   FPCMPUEQ8    FCMP
NEEd 

FTRIS
MULd 

  

B16       FCMP
NEEs 

   

C16       FCMP
GTEd 

FEXPA
d 

  

D16       FCMP
GTEs 

   

E16       FCMP
GEEd 

   

F16 FPSRA64X      FCMP
GEEs 

   

 
 

Table 14-16 IMPDEP2: (op<1:0> = 2, op3 = 3716) 

size var 
0 1 2 3 

016 FPMADDX FPMADDXHI FTRIMADDd FSELMOVd 

116 FMADDs FMSUBs FNMSUBs FNMADDs 

216 FMADDd FMSUBd FNMSUBd FNMADDd 

316   FSHIFTORX  FSELMOVs 
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15.  Assembly Language Syntax 

Refer to the SPARC64 X/X+ specification. 
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