Oracle OpenWorld, 2010

SPARC Enterprise Systems, Today and Tomorrow

Naoki Izuta
General Manager,
SPARC Enterprise server Project,
Enterprise Server Business Unit,
Fujitsu Limited
扇子: pronounced “sensu”
A Japanese Fan
Our Talk Today

- The Fujitsu Group
- SPARC Enterprise Servers
- SPARC Enterprise Servers: Tomorrow
The Fujitsu Group
Fujitsu is **How Big?**

- **Sales and support operations in over 70 countries**
- **176,000 employees worldwide**

At a glance

- A $50.0B leader in IT systems and services for the global marketplace

Core businesses:

- **Technology Solutions (System Platforms & Services)**
- **Ubiquitous Product Solutions (PCs etc.)**
- **Device Solutions**

consolidated financials FY2009
Business Composition

Device Solutions
- Electronic Components
- LSI Devices

Ubiquitous Product Solutions
- PC
- Mobile Phones

Technology Solutions
- Storage
- Server
- Submarine Network Solutions
- Software
- Security
- Data Center
- Consulting
- System Integration

Others

FY2009 $50.0 B

Note: US$1 = ¥93. FY 2009 is fiscal year ended March 31, 2010.
System Platforms

“If they don’t do all of the following, we don’t make them”

- High Performance and Scalable
- High Levels of Availability
- Customer Investment Protection
Mainframe GS21: We Protect Our Customers

1954 - Model 100 Relay based Computer
1968 - Model 230-60 Multi-Processor
1972 - Amdahl 470V/6 (M-190) Co-developed with Amdahl
1985 - Model M-780 Single board CPU
1995 - GS8000 series CMOS
2002 - GS 21 600 Max. 16 cluster / 256core

Next Generation
High Performance Computing: We Seek New Goals

1977
Model 230-75 APU

1982
Model VP-100/200

1992
VPP500

1999
VPP5000

2002
PRIMEPOWER HPC2500

2009
FX1 / JAXA
(Photo provided by JAXA)

2012
K computer 10pFLOPS

1982
Model VP-100/200

1999
VPP5000

2009
FX1 / JAXA
(Photo provided by JAXA)

2012
K computer 10pFLOPS
HAYABUSA: Asteroid Probe Project

6 billion Km journey of HAYABUSA over 7 years with Fujitsu’s technologies
- Orbit determination, Problem diagnostic, and Data transmission systems -

Arrived at asteroid “ITOKAWA”, 2005

Navigated with ion engines, 2003-2010

Return to Earth, 2010

Launched, 2003

The Sun

Photos of ITOKAWA and HAYABUSA by courtesy of JAXA
The Road to SPARC Enterprise

- **1983**: Initial partnership with Sun Microsystems
- **1987**: SF9010/MB86900, The First SPARC Processor
- **1988**: Enterprise Unix based-on System V Release4
- **1989**: DS/90 7000 series, hyperSPARC
- **1991**: SPARC64 V
- **1998**: PRIMEPOWER
- **2004**: Jointly developed SPARC/Solaris servers
- **2007**: SPARC Enterprise SPARC64 VI and VII
- **2007**: Next Generation
The Road to Human Centric Computing

- Human Centric
- Network Centric
- Computer Centric

- Cloud Computing
- Sensor Technology
- Ubiquitous Terminals
- Mobile Communication
Human Centric: IT Infrastructure
SPARC Enterprise Servers

- Unified Product with Oracle
- Virtualization
- Scalability / Performance
- High Availability
- Case Study
Jointly Developed, Manufactured & Delivered

Leveraging Sun and Fujitsu Strengths
Optimized Virtualization, Scalability and High Availability

Breakthrough Innovation and Best Enterprise OS

Technologies for Scalability, Reliability and Availability

Copyright 2010 FUJITSU LIMITED
The SPARC Enterprise Server Family

T-series for Web/AP workloads
Scalability up to 4 sockets/256 threads

M-series for Mission Critical workloads
Scalability up to 64 sockets/512 threads
Major Worldwide Development Centers

Documents
Source code
Technical Drawings

Oracle: Burlington, USA
Oracle: Santa Clara, USA
Oracle: San Diego, USA
Fujitsu: Kawasaki, Japan
Fujitsu: Sunnyvale, USA

Development Center
Factory
Balanced High Performance Systems

- Maximum Resource Utilization
 - Scalable, Secure and Green
- HA Technologies in a single box

Consolidated Integrated

Clustered Web/AP apps

Clustered MC apps
SPARC Enterprise M-series

- Best platform for mission-critical workloads
- Agility to adapt to business change
- Customer Investment Protection

Virtualization
- Solaris Containers
- Hardware Partitioning
- Dynamic Reconfiguration (XSCF-DR)

Scalability
- SMP Inter-connect
- Oracle Solaris
- Memory Placement Optimization

Availability
- System RAS (Robustness)
- Solaris ZFS
- Solaris FMA
Enhanced DR Operation

PRIMEPOWER

Partition A
AP
CPU
CPU

Partition B
AP
CPU
CPU

Operation

SPARC Enterprise

Partition A
AP
CPU
CPU

Partition B
AP
CPU
CPU

XSCF

Operation

Operation

Copyright 2010 FUJITSU LIMITED
CPU-Operating System Partnership

Next
SPARC64

Solaris 11

Solaris 10 9/10
ZFS RAID 3
Physical to Zone Migration

Solaris 10 5/09
Container Copy using ZFS clone

Solaris 10 5/08
CPU Capping for Container

capped-memory for Container

Solaris 10 11/06
ZFS
Enhancement for Container

Solaris 10
Solaris container
Dtrace, SMF, FMA

Upgradability, Compatibility
SPARC Enterprise
SPARC Enterprise Servers

- Unified Product with Oracle
- Virtualization
- Scalability / Performance
- Robustness
- Case Study
Virtualization Strengths

- Flexibility in resource optimization
- Manageability for ease of use
- Security for consolidation
Customer Focused Virtualization

Business Continuity
- Robustness
- Security
- Stability

Business Agility
- Effective Utilization
- Manageability

Consolidation of Varying Workloads

Higher
Fault Isolation
Lower

Lower
Flexibility
Higher

Hardware Partitioning
Oracle VM for SPARC
(Logical Domains: LDoms)
Solaris Containers

App A
OS
Firmware
Hardware

App A
OS
Firmware
Hardware

App A
OS
Firmware
Hardware

App B
OS
Firmware
Hardware

App B
OS
Firmware
Hardware

App B
OS
Firmware
Hardware
SPARC Enterprise Servers

- Unified Product with Oracle
- Virtualization
- **Scalability / Performance**
- High Availability
- Case Study
Scalability in Virtualized Environments

- High performance CPU and Cache hierarchy
- Proven scalability with robust interconnect
- Good balance of I/O and memory
High Performance CPU and Cache Architecture

- Over 20 times the performance since 2000

- 65nm
- 4-cores
- Multi-Thread / SMT
- 90nm
- 2-cores
- Multi-Thread / VMT
- L2$ on Die
- Over 2GHz frequency
- Non-Blocking Cache
- O-O-O Execution
- Super-Scalar

Copyright 2010 FUJITSU LIMITED
Proven Scalability

- Scalability to 256 cores - *Benchmark*\(^1\) verified -
- Mesh interconnect
 - Low latency, high throughput
 - High-speed transmission technology
- Solaris MPO

![Diagram showing scalability with cores and memory specifications](image-url)

- **4TB Memory**
- **60 GB/s of IO bandwidth** \(^3\)
- **1TB Memory**
- **30GB/s of IO bandwidth**
- **512GB Memory**
- **15GB/s of IO bandwidth**
- **2TB Memory**

*1 SPECjbb2005(Single JVM), Oracle Peoplesoft Enterprise Payroll
*2 Result of SPECint_rate2006 (base)
*3 Values using the next enhancement version

Copyright 2010 FUJITSU LIMITED
Easy & Effective Use of Large-Scale Resources

- Stable performance, even under high loads
 - Core / Thread / Process balancing
 - Automatic memory localization (Solaris MPO)

User/sys (%) vs. Number of threads

* SPARC Enterprise M9000 (128 cores/256 threads)
SPARC Enterprise with Flash Technology

- x7 higher throughput
- x20 Faster response time

Performance Test with Flash Module and Oracle Database Smart Flash Cache

Graphs showing:
- An increase in transaction per seconds [relative value] from HDD to HDD + F20 module, indicated as x7.
- A decrease in response time [relative value] from HDD to HDD + F20 module, indicated as x1/20.
SPARC Enterprise Servers

- Unified Product with Oracle
- Virtualization
- Scalability / Performance
- High Availability
- Case Study
Always ON

- Data Integrity
- 24x7 Operation
- Predictive self-healing
 - More critical in today’s multi-core CPU & SOC era
24x7 Predictive Self-Healing

- Data Integrity
- Dynamic Recovery and Component Offline
- Dynamic Replacement and Reallocation

SPARC64 VII Processor

- Hardware-based error detection and hardware-based self correction
- Hardware-based error detection
- Not affected in case of error

* This figure roughly depicts the ranges of error detection but does not exactly depict the actual chip floor plan.
Advanced System Architecture

- Superior Fault Management
 - Hardware fault detection and isolation
 - Dynamic instruction retry
 - Memory mirroring option
 - Statistical management

- Dynamic Resource Reallocation
 - In the Processor: cache ways, threads, cores
 - Memory: single page
 - Solaris ZFS

Solaris FMA and SMF

Secure data integrity throughout the system
SPARC Enterprise Servers

- Unified Product with Oracle
- Virtualization
- Scalability / Performance
- High Availability
- Case Study
Show case of SPARC Enterprise:
China Mobile Limited

- World leading Telecom carrier with the world’s largest network and customer base
 - Over 550 million customers
 - 70.6% of Market share in Mainland China
 - Their GSM global roaming services cover 237 countries

- Approx. 1000 SPARC Enterprise systems deployed in total
 - Including Centralized Finance System & General Budget System
 - SPARC Enterprise M9000, M8000, M5000, M4000, M3000
 - SPARC Enterprise T5240, T5220
Show case of SPARC Enterprise: Narita International Airport Corporation

- An aviation gateway to Japan
 - Destinations: 40 countries, 3 regions, 95 cities
 - Over 30 million passengers per year, 8th busiest airport in the world*
 - Total cargo 1.8 million tons, 4th busiest air-freight hub in the world*

- New Ramp Control System
 - New Air Traffic Control Information System delivers smooth airport operation through:
 - A design focused on ease of Air-Access
 - Always-ON, no system-down operation

- Systems
 - SPARC Enterprise M5000, M4000
 - Oracle Database 10g
 - FUJITSU CLUSTER Software

Show case of SPARC Enterprise: Mizuho Bank, Limited

- One of Japan’s “Megabanks”
- SPARC Enterprise Controlling Nation-wide ATMs
 - 5,300+ ATMs directly managed
 - 32x SPARC Enterprise M3000 in Cluster Configurations
SPARC Enterprise Servers: Tomorrow
Oracle/Fujitsu Collaboration: Next Stage

- Expand collaboration to maximize our strengths
- Deliver customers better: Products, Solutions, Delivery, and Support
- Enhance technologies for the Cloud Computing Era
Our Collaboration

Oracle: Burlington, USA
Oracle: Santa Clara, USA
Oracle: San Diego, USA
Fujitsu: Kawasaki, Japan
Fujitsu: Sunnyvale, USA
SPARC Enterprise Servers

Maximizing Results

<table>
<thead>
<tr>
<th>5 Year Trajectory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
</tr>
<tr>
<td>Threads</td>
</tr>
<tr>
<td>Memory Capacity</td>
</tr>
<tr>
<td>Database TPM</td>
</tr>
<tr>
<td>Java Ops Per Second</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 Socket</td>
</tr>
<tr>
<td>+20%</td>
</tr>
<tr>
<td>+ 2x Throughput</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8 Sockets</td>
</tr>
<tr>
<td>+3x Throughput</td>
</tr>
<tr>
<td>+1.5x Single Strand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-64 Sockets</td>
</tr>
<tr>
<td>+6x Throughput</td>
</tr>
<tr>
<td>+1.5x Single Strand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPARC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-64 Sockets</td>
</tr>
<tr>
<td>+2x Throughput</td>
</tr>
<tr>
<td>+1.5x Single Strand</td>
</tr>
</tbody>
</table>

Solaris 10 Update

<table>
<thead>
<tr>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
</table>
M-series Enhancements

- System Upgrade with Increased Performance
 - Significant Performance jump similar to SPARC64VI → VII + enhancement

- Customer Investment Protection
 - CPU Upgrade in a single box
 - Mix mode support in a single box
 - Binary Compatibility

- Coming Soon
 - Higher Frequency
 - Larger Caches
 - Increased IO Throughput

SPARC64 VI
- 2.4GHz
- 2 cores, 4 threads
- 2FPUs
- Shared L2$ Scalable to 64 Sockets
- Instruction Retry
- Mirrored Memory
- Dynamic Domains
- 90nm

SPARC64 VII
- 2.88GHz
- 4 cores, 8 threads
- Faster Memory
- 65nm

2006
2008/2009

Copyright 2010 FUJITSU LIMITED
SPARC Enterprise Servers

Maximizing Results

5 Year Trajectory

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>4x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threads</td>
<td>32x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Capacity</td>
<td>16x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database TPM</td>
<td>40x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java Ops Per Second</td>
<td>10x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORACLE and FUJITSU Partnership
Thank you very much for attending today!

Come See More at the Fujitsu Booth @Moscone South #1311
Acknowledgements

Sincere thanks to the following people who supported the production of this presentation:

Leader and Scenario Development (and Sensu deliverer):
Tatsuo Ito

Technical Writing & Artwork:
Maiko Obara, Rumi Nagashima, Masashi Shiga

Promotional Writing and English Supervision:
Paul Hendry, Torrey Martin, Ratnayake Akhila

Technical Supervision:
Osamu Nakajima, Sakae Majima

Product Marketing Support:
Mikiya Enokida, Masahiro Koyanagi

Overall Coordination:
Chie Tomiya, Yasuyuki Suzuki
shaping tomorrow with you