Violin Memory 「6616FC モデル」と富士通基幹 IA サーバ 「PRIMEQUEST 2800E」との接続検証結果

2014年7月15日

マクニカネットワークス株式会社 ネットワーク第2事業部 プロダクト第3技術部

目次

1. 検証目的	1
2. 検証	1
2-1. 実施日	1
2-2. 検証場所	1
2-3. 検証構成	1
2-4. 接続構成	2
3. 検証内容と結果	3
3-1. パフォーマンステスト	
4. まとめ	
付録 結果詳細	14
1. デバイス認識の確認	14
2. パーティション設定/ファイルシステム作成/マウント	15
3. アンマウント	16
4. オートマウント/再起動/シャットダウン	16
5. マルチパステスト	17
付録 Violin Memory 6000 シリーズのご紹介	18
付録 エンタープライズ向けオールフラッシュストレージソリューション	20
付録 ストレージ性能アセスメントサービス (無償) のご案内	21

1. 検証目的

本検証は、富士通様 基幹IAサーバPRIMEQUESTシリーズの新規、既存ユーザ様に、Violin Memory 社製オールフラッシュストレージ製品 Violin Memory 6000シリーズを安心してご 使用頂く為に、基本動作確認と性能評価を行う事が目的です。

また、基本構成、基本動作、基本性能を提示する事で、本製品の導入検討時の参考材料を 提示するものです。

なお、今回の検証では PRIMEQUEST 2800E を使用しております。その他の PRIMEQUEST シリーズの接続性については、弊社までお問い合わせください。

2. 検証

2-1. 実施日

2014年5月26日(月) ~ 2014年6月18日(水)

2-2. 検証場所

富士通検証センター(東京・浜松町)

2-3. 検証構成

① PRIMEQUEST 2800E Windows Server 2012 R2 Standard

構成	スペック
PRIMEQUEST 2800E with Emulex 16Gbps HBA (型名:MC-0JFC81)	CPU: E7-8890v2(2.8GHz/15コア)×8 メモリ: 4TB HDD:【OS用途】MC-5DK731(SSD200GB) 【パフォーマンス比較用途】 MC-5DS741(300GB 10Krpm) x 2 RAID1 FC HBA: MC-0JFC81 x 4(Dual Channel 16Gbps Emulex) FCドライバ/FW/BIOS: 2.74.214.004(Inbox)/1.1.43.202/KT8.03x12
PRIMEQUEST 2800E with Qlogic 8Gbps HBA	CPU: E7-8890v2(2.8GHz/15コア)×8 メモリ: 4TB HDD:【OS用途】MC-5DK731(SSD200GB) 【パフォーマンス比較用途】 MC-5DS741(300GB 10Krpm) x 2 RAID1 FC HBA: Qlogic QLE2562 x 4(Dual Channel 8Gbps Qlogic) FCドライバ/FW/BIOS: 9.1.11.3(Inbox)/5.09.0/3.24

表1:検証サーバスペック

(参考)以下はWindows上で取得した環境情報です。

図1: Windows 環境基本情報

② Violin Memory 6616 FC モデル

モデル	I/F	NANDタイプ	物理容量	実効容量	SWバージョン
6616	FC8Gbps*8 Topology設定は以下に設定 Emulex HBA使用時 : Loop Qlogic HBA使用時 : Point to Point	SLC	16TB	7.8TB	G5.5.2 A5.5.2.1

表 2: Violin Memory 6616 検証機コンフィグレーション

2-4. 接続構成

本レポートに記載のパフォーマンス測定時に使用した構成です。

Emulex, Qlogic HBA とも同様の構成でテストを実施しました。

※同時に8Gbps SW接続でのテストも実施しました。詳細はお問い合わせください。

結線	PRIMEQUEST2800E IOU#/PCI SLOT#/Port#	Violin Memory Port#
1	IOU#0/PCI Slot#0/Port0	mg-a/hba-a1
2	IOU#0/PCI Slot#0/Port1	mg-a/hba-b1
3	IOU#1/PCI Slot#0/Port0	mg-b/hba-a1
4	IOU#1/PCI Slot#0/Port1	mg-b/hba-b1
⑤	IOU#2/PCI Slot#0/Port0	mg-a/hba-a2
6	IOU#2/PCI Slot#0/Port1	mg-a/hba-b2
7	IOU#3/PCI Slot#0/Port0	mg-b/hba-a2
8	IOU#3/PCI Slot#0/Port1	mg-b/hba-b2

表3:接続構成一覧

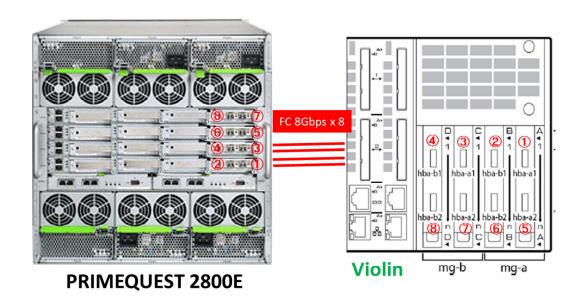


図2:接続構成図

※Violin Memory は 8Gbps FC をサポートしています。よって Emulex16Gbps HBA 使用 時も 8Gbps での接続となります。

3. 検証内容と結果

- 前提条件
- ➤ OS に付属するマイクロソフトマルチパス I/O (MPIO)をインストールし、検証を実施 しました。
- ➤ 4K Block 100GB LUN を作成し、全てのパスに割り当て、マルチパス構成にて実施しました。
- 検証内容・結果サマリー

以下のとおり全てのテストをパスしました。

接続性に関するテスト 1-9 についての詳細は付録: 結果詳細を参照してください。

	検証項目	宴施内容	結果
1	デバイス認識の確認	[ディスクの管理]でデバイスが正常認識されることを確認	0
2	パーティション設定	[ディスクの管理]でパーティションが正常に作成反映されることを確認	0
3	ファイルシステム作成	[ディスクの管理]でファイルシステムが正常に作成できることを確認	0
4	マウント	[ディスクの管理]でドライブレターを割り当て、正常にマウントでき、且つリード/ライトが問題ないことを確認	0
5	アンマウント	[ディスクの管理]でドライブレターを削除し、正常にアンマウント できることを確認	0
6	オートマウント	サーバー再起動後、正常にマウントしたデバイスがリード/ライトできることを確認	0
7	サーバー再起動	サーバー再起動後、全てのデバイスが正常に認識され、マウントしたデバイスがリード/ライトできることを確認	0
8	サーバーシャットダウン	サーバーシャットダウン。その後再度起動し、全てのデバイスが正常に認識され、マウントしたデバイスがリード/ライトできることを確認	0
9	マルチパステスト	ベンチマークソフト:IOMeterを使用し、高負荷IOをかけた状態でFCケーブルの挿抜実施。IOエラーが発生しないこと、フェールオーバー/バックの時間が適正なことを確認	0
10	パフォーマンス	ベンチマークソフト: IOMeterを使用し、パフォーマンス測定を実施。 適正なパフォーマンスが得られることを確認	0

表4:検証結果サマリー

3-1. パフォーマンステスト

■ 確認方法

Windows のスタンダードベンチマークツールである IOMeter を使用し、複数のパラメータ にて測定を実施しました。また、参考として内蔵 HDD との比較も実施しました。

8Gbps SW 接続の測定も実施しておりますが、本レポートでは直結時の数値を一部抜粋して記載しています。

その他のパラメータ、構成についての詳細はお問い合わせください。

■ ベンチマークソフト

iometer-1.1.0-rc1

 $\frac{\text{http://sourceforge.net/projects/iometer/files/iometer-devel/1.1.0-rc1/iometer-1.1.0-rc1-win64.x86 64-bin.zip/download}{\text{http://sourceforge.net/projects/iometer-files/iometer-devel/1.1.0-rc1/iometer-1.1.0-rc1-win64.x86 64-bin.zip/download}$

- 前提条件
- ▶ 全てのパス:8パスを使用したマルチパス環境
- ➤ LUN数:8
- ➤ Violin LUN Block Size: 4K
- ▶ 素性能を見るため全てブロックデバイスに実施

IOMeter パラメータ:

以下は各テストで共通のパラメータです。

- > Transfer Request Size: 4KB
- > 100% Random
- ▶ 60 秒間測定
- ➤ 60Worker ※Violin Memory の測定では、全ての Worker に 8LUN 割り当て

■ 確認方法

IOMeter で以下のリードライト比率にて測定しました。

- ▶ リード 100%
- ▶ ライト 100%
- ▶ リード20%、ライト80%
- ▶ リード70%、ライト30%
- ▶ リード80%、ライト20%

■ 結果

リード 70% ライト 30%にて 1 台のサーバで 80 万 IOPS 以上を記録。その際も Violin Memory のレイテンシーは μ s を維持し続けることが確認できました。

また、実環境で多い 10-15 万 IOPS では、Violin Memory のレイテンシーは 100-150 μ s で持続し、IOMeter のレスポンスタイムも 300 μ s 以下でした。これは一般的な HDD ベースのハイエンドストレージのベストケースが 3ms 位であることを考慮すると、10 倍以上アプリケーションンのレスポンスが早くなる可能性を示しています。また、実際に Violin Memory 導入により、10-20 倍高速化されることは珍しくありません。

内蔵 HDD (SAS 10,000rpm HDD2 本 RAID1) との比較では、全てのリード比率にて 2,000 倍以上のパフォーマンスを記録。 内蔵 HDD は RAID コントローラーに接続されており、 RAID 1 構成ということもあり単純には比較できませんが、V6616 がエンタープライズ向け HDD 4,000 本分相当以上のパフォーマンスを有していることが分かります。

また、高 IO 負荷時においても、PRIMEQUEST2800E の圧倒的な CPU パワーにより、CPU 使用率は僅か数%でした。

※一般的に DB 等のトランザクション処理はリード 70%、ライト 30%が相当し、仮想環境はリード 20%、ライト 80%が相当します。

※サーバとの SW 接続構成、異なるパラメータでのパフォーマンス測定も実施しております。詳細はお問い合わせください。

↓ テストケース1

- ➤ Emulex 16Gbps HBA
- ➤ Outstanding I/O: 1

※Violin Memory は 8Gbps FC をサポートしています。よって Emulex16Gbps HBA 使用 時も 8Gbps での接続となります。

50 万 IOPS 以上の高負荷時でもレスポンスタイムは μ s と超低レイテンシーであることが分かります。

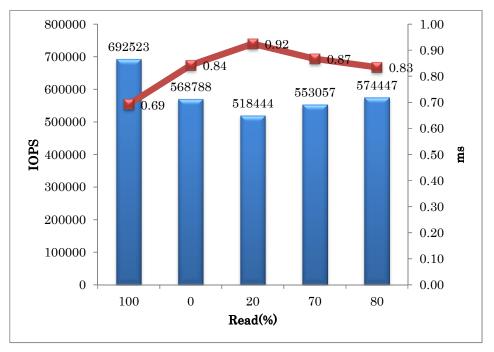


図3:【パフォーマンステスト】IOMeter 実測値: Emulex Outstanding I/O:1 (横軸: リード比率 右縦軸: 平均レスポンスタイム)

↓ テストケース 2 (参考: Emulex HBA 最大パフォーマンス)

- ➤ Emulex 16Gbps HBA
- > Outstanding I/O: 4

※Violin Memory は 8Gbps FC をサポートしています。よって Emulex16Gbps HBA 使用 時も 8Gbps での接続となります。

サーバ 1 台でリード 70% ライト 30%にて 80 万 IOPS 以上を記録しました。

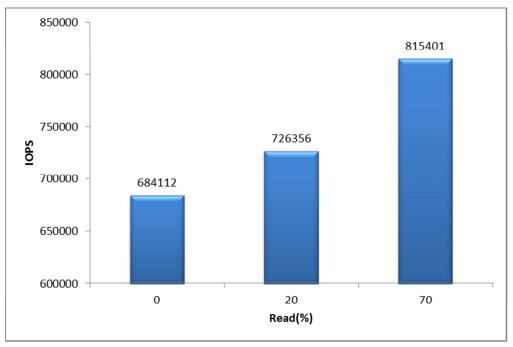


図4:【パフォーマンステスト (参考: Emulex 最大値)】

IOMeter 実測値: Emulex Outstanding I/O:4 (横軸:リード比率)

- ↓ テストケース 3
- ➤ Qlogic 8Gbps HBA
- ➤ Outstanding I/O: 1

50万 IOPS 以上の高負荷時でもレスポンスタイムは μ s と超低遅延であることが分かります。

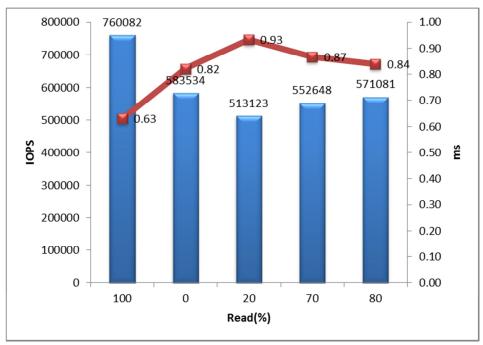


図 5 : 【パフォーマンステスト】IOMeter 実測値: Qlogic Outstanding I/O:1 (横軸:リード比率 右縦軸:平均レスポンスタイム)

- ↓ テストケース 4(参考: Qlogic HBA 最大パフォーマンス)
- \triangleright Qlogic 8Gbps HBA
- ➤ Outstanding I/O: 32

サーバ1台でリード 70% ライト 30%にて 80万 IOPS 以上を記録しました。

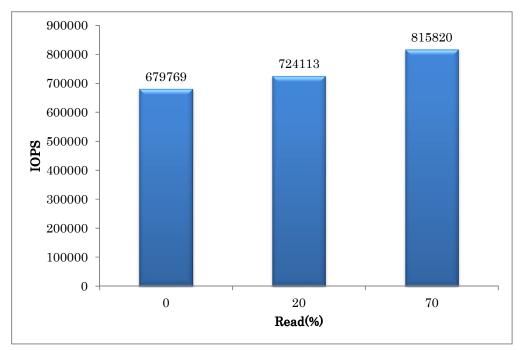


図 6:【パフォーマンステスト (参考: Qlogic 最大値)】

IOMeter 実測値: Qlogic Outstanding I/O:32 (横軸: リード比率)

↓ テストケース 5 (参考: 内蔵 HDD パフォーマンス比較)

今回測定された Violin Memory6616 最大パフォーマンスと内蔵 HDD 最大パフォーマンスの比較です。

Violin Memory V6616

- ➤ Qlogic 8Gbps HBA
- Outstanding I/O: 32

内蔵 HDD

- > SAS6Gbps 10Krpm 300GB HDD x 2 RAID1 構成
- ▶ オンボード SAS RAID コントローラー接続

全てのリード比率にて、Violin Memory V6616 が内蔵 HDD (RAID1) の 2,000 倍以上のパフォーマンスを記録しました。内蔵 HDD は RAID コントローラーに接続されており、RAID 1 構成ということもあり単純には比較できませんが、V6616 が HDD4,000 本分相当以上のパフォーマンスを有していることが分かります。

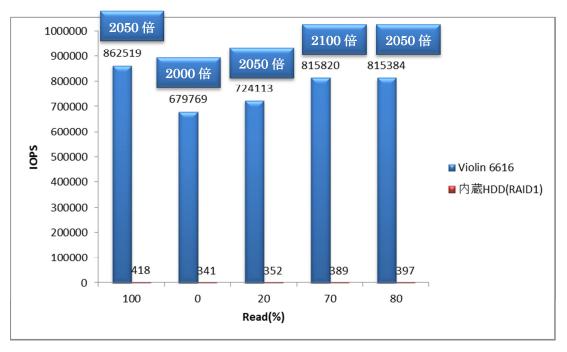


図7:【パフォーマンステスト (参考)】内蔵 HDD との比較 (横軸:リード比率)

図8:【パフォーマンステスト (参考)】

Violin GUI: 高負荷時も安定したパフォーマンスと μ s の低レイテンシーを実現

通常負荷時(※)のレイテンシーは 100-150 μs アプリケーションのレスポンスを大幅に改善します

図9:【パフォーマンステスト(参考)】

Violin GUI: 通常負荷時(※) のレイテンシー

※通常 10 万 IOPS 前後の環境が多く、Violin Memory 選択の理由のひとつに、フラッシュ に特化した独自設計による超低レイテンシーがあります。通常 10-20 倍アプリケーション のレスポンスが改善されます。また後述のアセスメントサービスで事前に試算も可能です。

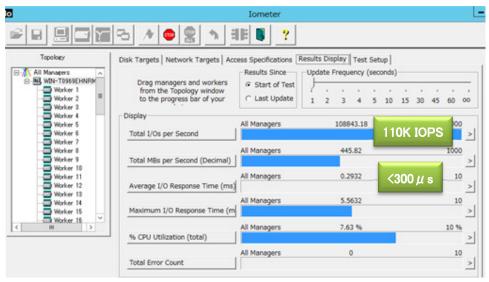


図10:【パフォーマンステスト(参考)】

IOMeter:通常負荷時(※:上記参照)のレイテンシー

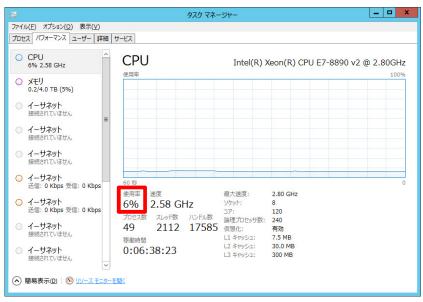


図11:【パフォーマンステスト (参考)】Windows CPU 使用率

PRIMEQUEST の圧倒的な CPU パワーにより、CPU 使用率は僅か 6%(リード 70%、ライト 30% 60 万 IOPS 時(Emulex HBA))

4. まとめ

富士通社製基幹 IA サーバ「PRIMEQUEST 2800E」と Violin Memory 社製オールフラッシュメモリーアレイ「Violin Memory 6616 FC モデル」が問題なく接続できることを確認しました。

また、パフォーマンスについて、1 台のサーバ接続で 80 万 IOPS 以上の値がでること、高 負荷時でも μ μ μ の低レイテンシーを持続可能なことを確認しました。

今回は Violin Memory 6616 FC モデルで検証を実施しましたが、実装されている SW は 6000 シリーズ全て共通で、容量・NAND のタイプが異なるだけです。従って、Violin Memory 6000 シリーズ FC モデル全てのモデルで、富士通社製基幹 IA サーバ「PRIMEQUEST 2800E」との接続は問題ないと判断できます。

また、Violin Memory 社製オールフラッシュメモリーアレイの最大の特徴は、特許技術である v RAID やスイッチ型メモリーファブリックにより、スパイクフリーで常に最大のパフォーマンスを継続して発揮できるところにあります。 それによりアプリケーションのサービスレベルを常にハイレベルで一定に保つことが可能となります。

本検証で確認されたような超高 IOPS/低レイテンシーにより、既存の HDD ベースのハイエンドストレージを Violin Memory に置き換えることで、通常 10-20 倍アプリケーションのレスポンスは改善されます。

富士通社製基幹 IA サーバ「PRIMEQUEST 2800E」と Violin Memory 社製オールフラッシュメモリーアレイの組み合わせにより、お客様のシステムの性能が格段に向上し、より快適な環境をご提供できると確信しております。

5. お問い合わせ先

詳細については、下記にお問い合わせください。

マクニカネットワークス株式会社

Violin Memory 製品担当

E-Mail: <u>Violin@cs.macnica.net</u> TEL: 045-476-1960(営業窓口) 045-476-2010(技術窓口)

URL: http://www.macnica.net/violinmemory/index.html/

付録 結果詳細

1. デバイス認識の確認

■ 確認方法

[コンピューターの管理]→[ディスクの管理]でデバイスが正常認識されることを確認しました。

■ 結果

以下の通りデバイスが正常認識されることを確認しました。

また、[デバイスマネージャー]、[MPIO のプロパティ]でも同様の確認を実施しました。

図12:【デバイス認識の確認】ディスクの管理(抜粋)

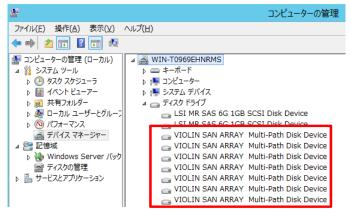


図13:【デバイス認識の確認】デバイスマネージャー(抜粋)

図14:【デバイス認識の確認】デバイスのプロパティ:全般

図15:【デバイス認識の確認】デバイスのプロパティ:MPIO設定

2. パーティション設定/ファイルシステム作成/マウント

■ 確認方法

[コンピューターの管理]→[ディスクの管理]でデバイスに正常にパーティション設定ができ、ファイルシステムが作成できることを確認しました。

■ 結果

以下の通りデバイスにパーティション設定/ファイルシステム作成が正常に行われ、ドライブレターの割り当てが正常に反映され、割り当てたドライブに対し正常にリード/ライト可能なことを確認しました。

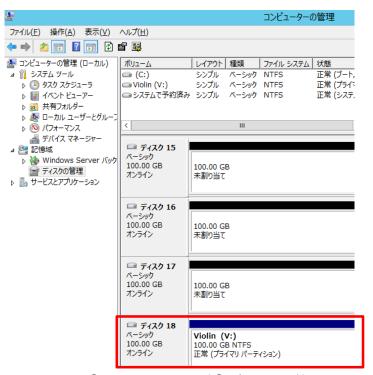


図16:【パーティション設定】ディスクの管理

3. アンマウント

■ 確認方法

[コンピューターの管理] \rightarrow [ディスクの管理] \rightarrow [ドライブ文字とパスの変更] \rightarrow [削除]で正常にアンマウントされることを確認しました。

■ 結果

正常にアンマウントされることを確認しました。

4. オートマウント/再起動/シャットダウン

■ 確認方法

[サーバーマネージャー] → [ローカルサーバー]を選択→[タスク] → [ローカルサーバーのシャットダウン]→[再起動]、[シャットダウン]を実施、正常に再起動、シャットダウンが実施されることを確認しました。また、再起動後に割り当てたドライブが正常に認識され、マウントしたボリュームに対してリード/ライト可能なことを確認しました。

■ 結果

再起動/シャットダウンとも正常に実施でき、再起動後に正常にボリュームはマウントされ、リード/ライト可能なことを確認しました。

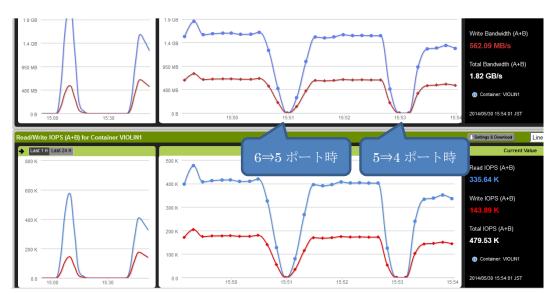
5. マルチパステスト

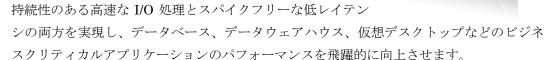
■ 確認方法

IOMeter にて 60 万 IOPS 以上の負荷をかけた状態で Violin Memory 側の FC ケーブルを 抜き、8 ポート接続状態⇒7 ポート接続状態⇒6 ポート接続状態⇒5 ポート接続状態⇒4 ポート接続状態⇒3 ポート接続状態⇒2 ポート接続状態⇒1 ポート接続状態とし、IO がエラー 停止をしないか、パフォーマンスは適切かを確認しました。また同様に 1 ポートずつ元の接続に戻し、正常にフェールバックするかを確認しました。

■ 結果

エラー停止することなく I/O は継続され、ケーブル挿抜時のパフォーマンスも適切であることを確認しました。また、IOMeter より生成される結果(csv ファイル)より、Error カウントが 0 であること、Windows のシステムログ上に不正な記録がないことを確認しました。




図17:【マルチパステスト】Violin GUI:5ポート⇒4ポート

付録 Violin Memory 6000 シリーズのご紹介

大容量・高速のフラッシュストレージアレイ

ヴァイオリン・メモリー社のフラッシュストレージアレイは、独自のハードウェア RAID 機構(vRAID)と NAND型フラッシュ・メモリを利用した独自のメモリ・モジュール(VIMM)により構成されたアプライアンス型フラッシュストレージアレイです。

Violin インテリジェントメモリーモジュール (VIMM)

Violin インテリジェントメモリーモジュールはフラッシュメモリーファブリック内のハードウェアフラッシュ変換レイヤーとして機能し、ガーベッジコレクション、ウェアレベリング、エラー/障害管理を提供します。データは、VIMM との間で読み取り、書き込みが実行されます。各 VIMM には次の要素が含まれます。

- 高パフォーマンスでロジックベースのフラッシュメモリーコントローラー
- 管理プロセッサー
- メタデータ用 DRAM
- ストレージ用 NAND フラッシュ

低レイテンシーフラッシュ vRAID

SSD や PCIe カードなどの他のソリッドストレージソリューションとアーキテクチャーは、プロセッサーやソフトウェアを使用して、RAID、ページマッピング、およびガーベッジコレクションを実行します。Violinはこれらの機能をハードウェアに実装する

ことで、遅延を低減し、持続したランダム書き込み IOPS を 1 万以下から 100 万以上へと 大幅に高めています。特に NAND フラッシュシステムの性能を強化するために設計された、 Violin のフラッシュ vRAID 技術は、完全な RAID データ保護、および根本的に効率と性能 が向上したソリューションを提供します。 vRAID は、読み取りが消去によってブロックさ れることがないようにすることで、負荷状態においてスパイクのない遅延を保証します。 特に、Violin 6000 シリーズ フラッシュメモリーアレイのマイクロ秒単位の遅延は、Tier 1 ストレージキャッシュ(DRAM)よりも 80%も低く、ファイルの読み取り/書き込み、レスポンス、クエリー時間などの指標を大幅に改善します。

Violin Memory 6000 シリーズ仕様

製品名	V-6606	V-6616	V-6212	V-6224	V-6232	V-6264
NANDタイプ	SLC (Single Level Cell)		MLC (Multi Level Cell)			
物理容量 (TiB/TB)	6TiB /6.6TB	16TiB /17.6TB	12TiB /13.2TB	24 TiB/26 TB	32TiB /35.2TB	64TiB /70.3TB
最大利用可能容量 (TiB/TB)*	3 TiB/3.5 TB	10 TiB/11 TB	6.5 TiB/7 TB	13 TiB/14.5 TB	20 TiB/22 TB	40 TiB/44 TB
IO処理能力 (4KB IOPS)	450,000 IOPS	1,000,000 IOPS	200,000 IOPS	350,000 IOPS	500,000 IOPS	750,000 IOPS
最大帯域幅 (100% Reads)	3GB/s	4GB/s	1.5GB/s	2GB/s	4GB/s	4GB/s
レイテンシ	250 µ秒以下	250 µ秒以下	500 µ秒以下	500 µ秒以下	500 µ秒以下	500 µ秒以下
VIMM 構成 (データ + ホットスペア)	20+4	60+4	20+4	20+4	60+4	60+4
本体寸法(mm)	幅: 420 奥行: 700 高さ: 134					
ラックマウント サイズ	3U					
本体重量(kg)	34.5	40.4	34.5	36	40.4	41.7
消費電力 (W)	1,150	1,700	1,400	1050	1,750	1,500

^{*} 最大使用可能容量は、84% フォーマット・レベルによる

付録 エンタープライズ向けオールフラッシュストレージソリューション

Violin Memory は包括的なフラッシュソリューションを提供しています。 詳細はお問い合わせください。

Windows in a Flash: Windows フラッシュアレイ

Violin とマイクロソフト: 他に例を見ないパートナーシップ

- マイクロソフトアプリケーションを性能劣化なしで統合および仮想化
- マイクロソフト管理ツールで標準化し、トレーニングとコストを節約
- SAN の機能と DAS のパフォーマンスを NAS の価格で獲得
- 運用コストを最大 80%削減

Business in a Flash: Concerto 7000 オールフラッシュアレイ

- 強力なビジネス継続性
- ストレージの動的なスケーラビリティ
- 包括的なデータ保護

付録 ストレージ性能アセスメントサービス (無償) のご案内

お客様の現システムにおけるストレージ性能情報を取得・分析することにより、以下項目 の結果を得ることを目的とします。

- 現システムのストレージ I/O 負荷を正確に把握・可視化致します。
- 現システムの性能ボトルネックがストレージ I/O に起因するものか どうかの見極めを 致します。
- システム性能向上のためのチューニングポイントの特定を致します。
- 既存ストレージを Violin Memory Flash Array にリプレイスすることによる導入効果 測定(性能向上率、ストレージ集約率、など)を致します

アセスメントサービスの結果は実機でご確認ください。PoC機のお貸出し(無償)

報告書イメージ

以上