

ネットワーク統合ソリューション

Brocade VDX6720 データセンタスイッチ Brocade 1860 Fabric Adapter (CNA Mode) Brocade 1020 DCB/FCoE CNA 評価レポート

ブロケードコミュニケーションズシステムズ株式会社 2011年9月16日

目次

- ・はじめに
- 検証環境
- 検証項目一覧
- 検証結果
- まとめ
- 参考資料

はじめに

謝辞

Brocade VDX6720-60, Brocade 1020ならびにBrocade 1860の機能評価のために富士通検証センター(東京、浜松町)の設備、ならびに担当の皆様を適宜アサインしてご協力頂き、ありがとうございました。2011年8月24日~30日(5日間)の検証により下記のデータを得ることができました。

ETERNUS DX440S2とのFCoE/iSCSI接続検証

VMware ESX 4.1でのアダプタ動作検証

Brocade VDX接続検証

ご協力頂きありがとうございました。

ブロケード・コミュニケーションズ・システムズ(株)

Brocadeネットワーク統合ソリューション

- Brocade VDXファミリ
 - FC, FCoE, iSCSIに対応した次世代ファブリックスイッチ
 - スパニングツリーを排除したマルチパスネットワーク
 - 仮想サーバの移動に対応したスイッチのポート設定移動
 - 論理的に一台として動作するロジカルスイッチ

管理、設定が容易、仮想化対応、SAN/LAN統合、高帯域、 高冗長性をもったネットワークを提供します。

- Brocade 1860 Fabric Adapter
 - HBA, CNA, NICと1枚で3役をこなすハイパフォーマンスアダプタ
 - 16G FCをサポート

ハイスピード、ハイパフォーマンス、ハイフレキシビリティを提供します。

L2/3, FCoE/DCB, iSCSIが混在した仮想化環境

弊社USデータセンター

システム概要図

ディスク接続図

サービスネットワーク (192.168.109.x/16) 管理ネットワーク (10.20.109.x/16)

ネットワーク接続図

検証環境(マルチホップFCoE)

サービスネットワーク (192.168.109.x/16) 管理ネットワーク (10.20.109.x/16)

ネットワーク接続図

機器仕様

<サーバ>

PRIMERGY RX300 S5

• CPU: Intel Xeon X5570 2.93GHz 16コア

Memory:8GB

HDD: GB SAS x3(RAID 5)

VMWare ESX4.1

PRIMERGY TX300 S5

• CPU: Intel Xeon X5570 2.93GHz 16コア

Memory:8GB

HDD: GB SAS x3(RAID 5)

Windows Server 2008 R2 Standard SP1

<ストレージ>

ETERNUS DX440S2

• HDD: 450GB(2.5")/10Krpm × 72

• CM: 48GB (24GBキャッシュ/CM × 2CM)

port: iSCSI(10Gbps), FCoE(10Gbps)

<スイッチ>

Brocade VDX6720-60

OS version: NOS 2.0.1b

<アダプタ>

Brocade 1860, Brocade 1020

Driver version: 3.0.0.0_rc_bld04

検証項目一覧

検証項目

検証項目	検証手順・内容	備考
Brocade1860, Brocade1020 インストール	Brocade1860, 1020をサーバにインストールしHCM, vCenterより認識されることを確認する	
VDXを介したFCoE, iSCSI ボリューム認識	VDXを介してETERNUS DX440S2上のディスクを FCoE, iSCSIで認識できることを確認する	
VCS基本機能検証	VCSが正しく構成できることを確認する	
VLAN動作検証	vlanを正しく扱えることを確認する	
AMPP機能検証	vMotion前後でのポートプロファイル適応状況を確認	
VLAG動作検証	ipハッシュに基づくロードバランシグをしている Active-Activeチーミングに対してvLAGが動作することを確認する	
sFlow動作検証	sFlowによりトラフィックモニタできることを確認 する	確認ツールとしてsFlow trendを用いる

検証項目(続き)

検証項目	検証手順・内容	備考
マルチホップFCoE検証	マルチホップで構成されたネットーワー ク上でFCoE通信ができることを確認する	
10GbEパフォーマンス測定	仮想マシン間でB1860 Fabric Adapterを介 して10GbEの通信ができることを確認する	測定ツールとしてNTttcpを用いる
PostgreSQLによるパフォー マンス測定	PostgreSQLによりデータベース検索のパフォーマンス測定を行う	測定ツールとしてPstgreSQLベン チマークツールを使用する
iSCSIパフォーマンス測定	仮想マシンにDX440S5のディスクのiSCSI 領域をマウントし、IOmeterでパフォーマ ンス測定を行う	マウントポイントは 20GB x4LUN の領域 4/8/16/32/64/128KBの Read/Writeを行う
FCoEパフォーマンス測定	仮想マシンにDX440S5のディスクのFCoE 領域をマウントし、IOmeterでパフォーマ ンス測定を行う	マウントポイントは 20GB x4LUN の領域 4/8/16/32/64/128KBの Read/Writeを行う
vMotion時のパフォーマン ス結果	vMotion持のIO断時間をFCoE/iSCSIで測定する	測定ツールとしてKGENを用いる

検証結果

1. 環境構築

環境構築: Brocade 1860, 1020インストール

vCenter, HCMよりアダプタが認識されていることを確認

環境構築: VCS(Virtual Cluster Switching)構築

VDX6720-60を使用したVCSの構築

環境構築: VCS(Virtual Cluster Switching)構築

FCoEの設定

• CEE mapの設定(デフォルトのまま) • FCoEの設定(デフォルトのまま)

```
cee-map default
precedence 1
priority-group-table 1 weight 40 pfc on
priority-group-table 15.0 pfc off
priority-group-table 15.1 pfc off
priority-group-table 15.2 pfc off
priority-group-table 15.3 pfc off
priority-group-table 15.4 pfc off
priority-group-table 15.5 pfc off
priority-group-table 15.6 pfc off
priority-group-table 15.7 pfc off
priority-group-table 2 weight 60 pfc off
priority-table 2 2 2 1 2 2 2 15.0
remap fabric-priority priority 0
remap lossless-priority priority 0
```

```
fcoe
fabric-map default
 vlan 1002
 priority 3
 virtual-fabric 128
 fcmap 0E:FC:00
  advertisement interval 8000
 keep-alive timeout
map default
 fabric-map default
 cee-map default
```

LLDPの設定(デフォルトのまま)

```
protocol lldp
advertise dcbx-fcoe-app-tlv
advertise dcbx-fcoe-logical-link-tlv
advertise dcbx-tlv
```

環境構築: VCS(Virtual Cluster Switching)構築

ポートの設定

• FCoEポート設定

interface TenGigabitEthernet 1/0/1

fabric isl enable

fabric trunk enable

switchport

switchport mode access

switchport access vlan 1

fcoeport default

no shutdown

• ISLポート設定(デフォルトのまま)

interface TenGigabitEthernet 1/0/13

fabric isl enable

fabric trunk enable

no shutdown

必要最小限のFCoE設定はこれだけです。 iSCSIについては通常のスイッチポート設定。

環境構築:ボリュームの認識

iSCSI, FCoEを使用したボリュームの認識

VDX6720を介してETERNUS DX440S2のボリュームをiSCSI,
 FCoEで認識できることを確認

2. 機能検証

機能検証: VCSファブリックの形成

VCSファブリックが形成されていることを確認する

VCSファブリックの情報を確認する 2台のVDXを確認

ISLの情報を確認する 30GのISLトランクが形成されていることを確認

```
VDX-1# sh fabric isl

RBridge-ID: 1 #ISLs: 1

Src-Port Nbr-Port Nbr-WWN BW Trunk Nbr-Name

Te 1/0/15 Te 2/0/15 10:00:00:05:33:4F:08:80 30G Yes "VDX-2"
```

3

機能検証: 802.1Q tag VLAN

VLAN tagの動作確認

- 検証手順、結果
 - VDXのポートをtrunk mode, vSwitchにタグVLANを設定し、 通信できることを確認
 - VDXのポートでtrunk mode設定時、vmからのタグなしトラフィックが 廃棄されることを確認
 - no vlan dot1q tag nativeを設定することでタグなし、
 タグつきとも通信可能になることを確認

```
interface TenGigabitEthernet 2/0/3
fabric isl enable
fabric trunk enable
switchport
switchport mode trunk
switchport trunk allowed vlan add 10
fcoeport default
no shutdown
```

interface TenGigabitEthernet 2/0/4
fabric isl enable
fabric trunk enable
switchport
switchport mode trunk
switchport trunk allowed vlan add 10
fcoeport default
no shutdown

機能検証: AMPP (Auto Migration Port Profile)

AMPPの動作確認

• AMPPとは仮想マシーンのMACアドレスに紐付けたPort-Profileを仮想マシーンが通信するポートに適用するものです。仮想マシーンがvMotion等で移動した際にスイッチのポート設定を移動に追従させるために使用します。Port-Profileには、VLAN, ACL, QoS, FCoEのプロファイルを設定可能。

検証手順

- 仮想マシーンをvMotionする
- vMotion前の物理ポートに適用されていたPort-ProfileがvMotion後に通信を行う物理ポートにPort-Profileが適用されていることを確認する

• 検証結果

vMotion後の物理ポートにPort-Profileが適用されたことを確認

vMotion前

VDX-1# show port-profile status activated
Port-Profile PPID Activated Associated MAC vm2 1 Yes 0050.568f.0008

Interface Tel/0/4

vMotion後

© 2011 Brocade Communications Systems, Inc.

VDX-1# show port-profile status activated
Port-Profile PPID Activated Associated MAC Interface
vm2 1 Yes 0050.568f.0008 Te1/0/5

機能検証: vLAG (virtual link aggregation)

vLAGが動作することを確認

- vLAGとは1台のデバイスから2台のVDXに対してLink aggregationが構成できる技術
- デバイスからは通常のLAGの設定をする。
- VDX側ではport-channelの設定をする。
- VDXを跨いだ2つのポートは論理的に1つのポートとして扱われる。

機能検証: vLAG (virtual link aggregation)

vLAGが動作することを確認

- 検証手順
 - vSwitchのプロパティでロードバランシングを "IPハッシュに基づいたルート"に設定する

- VMから複数の宛先IPアドレスにpingを送信する
- VDXにvlagを設定した場合、しない場合の挙動を確認

機能検証: vLAG (virtual link aggregation)

vLAGが動作することを確認

```
interface Port-channel 1
switchport
switchport mode access
switchport access vlan 1
no shutdown
interface TenGigabitEthernet 1/0/4
 fabric isl enable
 fabric trunk enable
 channel-group 1 mode on type standard
 no shutdown
VDX-1# show port-channel 1
 Static Aggregator: Po 1 (VLAG)
 Aggregator type: Standard
  Member switches:
    RBridge-ID: 1 (1)
    RBridge-ID: 2 (1)
 Member:
```

VDX1 vLAG設定、show port-channel VDX2 vLAG設定、show port-channel

```
interface Port-channel 1
 switchport
 switchport mode access
 switchport access vlan 1
 no shutdown
interface TenGigabitEthernet 2/0/4
fabric isl enable
fabric trunk enable
channel-group 1 mode on type standard
no shutdown
VDX-2# show port-channel 1
 Static Aggregator: Po 1 (VLAG)
 Aggregator type: Standard
 Member switches:
    RBridge-ID: 1 (1)
    RBridge-ID: 2 (1)
   Te 2/0/4
```

検証結果: VMのMACアドレス0050.568f.0007がPo 1に、登録されていることを確認 pingが正常に通信できることを確認

```
VDX-1# show mac-address-table dynamic
                                                          VDX-2# show mac-address-table dynamic
VlanId
        Mac-address
                                                Ports
                           Type
                                    State
                                                          vlanId
                                                                  Mac-address
                                                                                     Туре
                                                                                              State
                                                                                                          Ports
                                                Te 1/0/1 1
         0023.2636.cda0
                           Dynamic Active
                                                                   0023, 2636, cda0
                                                                                     Dynamic Active
                                                                                                          Te 1/0/1
                                               Te 2/0/1 1
         0023.2636.cdb0
                           Dynamic Active
                                                                   0023.2636.cdb0
                                                                                     Dynamic Active
                                                                                                          Te 2/0/1
         0050.5648.c631
                           Dynamic Active
                                                                   0050.5648.c631
                                                                                                          Po 1
                                                                                     Dynamic Active
         0050.5670.458d
                           Dynamic Active
                                               Po 1
                                                                   0050.5670.458d
                                                                                     Dynamic Active
                                                                                                          Po 1
                                               Te 2/0/5 1
1
         0050.567e.a675
                           Dynamic Active
                                                                   0050.567e.a675
                                                                                     Dynamic Active
                                                                                                          Te 2/0/5
1
         0050.568f.0002
                           Dynamic Active
                                               Po 1
                                               Po 1 1
Te 2/0/5 1
                                                                   0050,568f,0002
                                                                                     Dynamic Active
                                                                                                          Po 1
         0050, 568f, 0004
                           Dynamic Active
                                                                   0050,568f,0004
                                                                                     Dynamic Active
                                                                                                          Te 2/0/5
         0050.568f.0007
                           Dynamic Active
                                                                   0050.568f.0007
                                                                                     Dynamic Active
         0050.568F.0009
                           Dynamic Active
                                                                   0050.5681.0009
                                                                                     Dynamic Active
Total MAC addresses
                                                          Total MAC addresses
   © 2011 Brocade Communications Systems, Inc.
```

機能検証:sFlow

sFlowコレクタを使用したトラフィック状況のモニタ

• 検証手順 iSCSIトラフィックが流れているポートを^{SH1516G} sFlowコレクタでモニタする

検証結果 sFlowコレクタでiSCSIトラフィック が表示されたことを確認

• sFlow設定

```
sflow enable
sflow collector 10.20.109.105
sflow polling-interval 5
sflow sample-rate 100

interface TenGigabitEthernet 1/0/4
fabric isl enable
fabric trunk enable
switchport
switchport
switchport mode access
switchport access vlan 1
fcoeport default
sflow enable
no shutdown
```


VDXが多段に構成されている状態でのFCoE通信確認

VDXが多段に構成されている状態でのFCoE通信確認

- 検証手順
 - VDXを多段接続にし、ログイン、ネームサーバ情報を確認する
 - IO meterを使用してIO試験を行う

ログイン情報を確認する

VDX-2ではBrocade 1020を使用した2台のESXからのログイン情報を確認

VDX-1ではETERNUS DX440S2のログイン情報を確認

Brocade 1020

VDX-2# show fcoe login				
FCOE-Port	Te-port	Device WWN	Device MAC	Session MAC
Fcoe 1/2/3 Fcoe 1/2/4	Te 2/0/3 Te 2/0/4	10:00:00:05:1e:a8:68:7e 10:00:00:05:1e:a8:68:56	00:05:1e:a8:68.7e 00:05:1e:a8:68:56	0e:fc:00:02:3f:00 0e:fc:00:02:40:00
VDX-1# show f	coe login			
FCOE-Port	Te-port	Device WWN	Device MAC	Session MAC
Fcoe 1/1/2	Te 1/0/2	50:00:00:e0:d4:00:72:99	00:23:26:36:a5:53	0e:fc:00:01:3e:00
Total number	of Logins = 1		ETERNUO DVA 4000	-

VDXが多段に構成されている状態でのFCoE通信確認

• ネームサーバの確認

```
VDX-2# show name-server detail
PID: 023f00
  Port Name: 10:00:00:05:1E:A8:68:7E
  Node Name: 20:00:00:05:1E:A8:68:7E
  SCR: 3
  FC4s: FCP
  PortSymb: [70] "Brocade-1020 | 3.0.0.04 | rx300s5-6 | VMware_ESX_4.1.0_build-320092 | "
  NodeSymb: NULL
  Fabric Port Name: 20:3F:00:05:33:4F:08:80
  Permanent Port Name: 10:00:00:05:1E:A8:68:7E
  Device type: Physical Initiator
  Interface: Fcoe 1/2/3
  Physical Interface: Te 2/0/3
  Share Area: No
  Redirect: No
PID: 024000
  Port Name: 10:00:00:05:1E:A8:68:56
  Node Name: 20:00:00:05:1E:A8:68:56
  SCR: 3
  FC4s: FCP
  PortSymb: [70] "Brocade-1020 | 3.0.0.04 | rx300s5-7 | VMware_ESX_4.1.0_build-320092 | "
  NodeSymb: NULL
  Fabric Port Name: 20:40:00:05:33:4F:08:80
  Permanent Port Name: 10:00:00:05:1E:A8:68:56
  Device type: Physical Initiator
  Interface: Fcoe 1/2/4
  Physical Interface: Te 2/0/4
  Share Area: No
  Redirect: No
total number of 2 entries
```

3

VDXが多段に構成されている状態でのFCoE通信確認

• ネームサーバの確認

```
VDX-1# show name-server detail
PID: 013e00
  Port Name: 50:00:00:E0:D4:00:72:99
  Node Name: 50:00:00:E0:D4:00:72:00
  SCR: 3
  FC4s: FCP
  PortSymb: NULL
  NodeSymb: NULL
  Fabric Port Name: 20:3E:00:05:33:55:6D:12
  Permanent Port Name: 50:00:00:E0:D4:00:72:99
  Device type: Physical Unknown(initiator/target)
  Interface: Fcoe 1/1/2
  Physical Interface: Te 1/0/2
  Share Area: No
  Redirect: No.
total number of 1 entries
```

VDXが多段に構成されている状態でのFCoE通信確認

- 検証結果
 - IOが問題なく行えることを確認。
- IO meterによるIO確認
 - FCoEによるread, write
- ISLリンクでのFCoEトラフィック状況


```
VDX-2# sh int te 2/0/13 | in rate
Queueing strategy: fifo
    Input 426.601672 Mbits/sec, 48400 packets/sec, 4.27% of line-rate
    Output 9.391716 Mbits/sec, 9105 packets/sec, 0.09% of line-rate
VDX-2# sh int te 2/0/14 | in rate
Queueing strategy: fifo
    Input 415.479612 Mbits/sec, 47151 packets/sec, 4.15% of line-rate
    Output 9.189000 Mbits/sec, 8934 packets/sec, 0.09% of line-rate
VDX-2# sh int te 2/0/15 | in rate
Queueing strategy: fifo
    Input 419.746948 Mbits/sec, 47586 packets/sec, 4.20% of line-rate
    Output 9.212404 Mbits/sec, 8957 packets/sec, 0.09% of line-rate
```

3. パフォーマンス測定

10GbEパフォーマンス測定

Brocade 1860のパフォーマンス試験

- 検証手順
 - 仮想マシン間で接続された 10GbE I/F間でNTttcpを用いて、 通信速度を計測する
 - NTttcpのパラメータ
 - 受信側
 - ntttcpr -m
 16,0.192.168.109.132 -n
 10000 -a 16 -w -v -l 1048576
 -fr
 - 送信側
 - ntttcpr -m
 16,0.192.168.109.132 -n
 10000 -a 16 -w -v -l 1048576

• 検証結果

 ESX4.1上の仮想マシン上で NTttcpを用いて、Brocade 1860 を用いて9.464Gbpsのスループットが出る事を確認した

•NTttcp実行時の画面出力

PostgreSQLによるパフォーマンス測定

データベースを用いた、ストレージ別パフォーマンス測定

• 検証手順

- 仮想マシンにPostgreSQLを導入し、データベースを作成する
- PostgreSQL用ベンチマークソフト により、TPSの測定を行う(測定結果は3回試行した平均値)
- 仮想マシンを配置したストレージ 領域の選択は、ESXのStorage vMotionを用い、PRIMERGYの内 蔵ディスク(SAS)とETERNUSの FCoEおよびiSCSIのそれぞれの領 域に配置して実行した

• 検証結果

- FCoE, iSCSI, SASの順番にパ フォーマンスが出る事を確認
- 仮想マシン上にデータベースを作 成する場合、FCoE上がパフォーマ ンスが出ることが分かる

•ベンチマーク試験結果(TPS値の測定結果)

iSCSI/FCoE パフォーマンス測定 -1

仮想マシン上からIOmeterを用いたストレージI/Oパフォーマンス結果

•スループット (MB/sec) 250 200 **■** FCoE Read 150 ■ iSCSI Read 100 FCoE Write ■ iSCSI Write 50 1K 2K 4K 8K 16K 32K 64K 128K

- 検証結果より、8KB 以下はiSCSIより FCoEの方がパフォー マンスが良いことが 分かった
- 16KB以上のIOPS は両者で殆ど変わ らない
- 検証結果より、8KB 以下はiSCSIより FCoEの方がパフォー マンスが良いことが 分かった
- 16KB以上はiSCSI とFCoEの両者で殆 ど変わらない

iSCSI/FCoE パフォーマンス測定 -2

仮想マシン上からIOmeterを用いたストレージI/Oパフォーマンス結果

検証結果より、 iSCSIよりFCoEの方 が若干応答時間が 短いことが分かった

検証結果より、 iSCSIよりFCoEの方 がCPUを利用しな い事が分かった

vMotion時のパフォーマンス結果

データベースを用いた、ストレージ別パフォーマンス測定

• 検証手順

- Data StoreがFCoEおよびiSCSI上の 仮想マシンにてvMotionを行い、ストップウオッチで移動時間を計測する (測定結果は3回試行した平均値)
- 仮想マシン上でKGEN(パフォーマンス 測定ソフト)を用いて、ストレージ別の 移動時間および、移動中のストレー ジパフォーマンスの相違を測定する

FCoEの方がiSCSIより若干vMotionの時間が短かった

•FCoE上でvMotionを行った際のI/Oパフォーマンス

•iSCSI上でvMotionを行った際のI/Oパフォーマンス

まとめ

まとめ

- Fabric Adapter Brocade 1860, CNA Brocade 1020とも VMware ESXに問題なく認識され、ファブリックスイッチ Brocade VDX6720-60を介してETERNUS DX440S2のボリュームをFCoE, iSCSIを用いてマウント、問題なくIO通信ができることを確認。
- Brocade VDX6720-60を使用したイーサネット・ファブリックにおいてFCoE, iSCSIのIOトラフィック, IPデータトラフィックが混在した環境でのネットワークが構成できることを確認。
- 上記により、基本動作検証を完了することができました。

参考資料

Brocade 1860 Fabric Adapter

HBA/CNA/NICの機能を1つのカードに統合

AnyIO テクノロジ HBA/CNA/NIC機能を動的かつポート単位に構成

Brocade 1860 Fabric Adapter (HBA/CNA/NIC)

Cloudや仮想化環境向けの機能を搭載した、サーバ向け次世代アダプター

http://www.brocadejapan.com/products/adapters/1860-fabric-adapter/overview

・ 主な機能

- ハイパフォーマンスでマルチI/Oに対応したアダプター
 - 4/8/16G FC HBA と 1/10G DCB/Ethernet に対応したアダプター
 - PCI Express 2.0 x8対応
- 1 枚のカードでマルチプロトコルに対応 (AnyIO対応)
 - FC/FCoE ハードウエアオフロード機能、iSCSI TLV機能、NICオフロード機能に対応
- アプリケーションサービスへの対応
 - 16 個のPhysical Functionと 255 個のVirtual Functionに対応したSR-IOV
 - SANに関する機能: Nポートトランキング、ハードウエアベースの暗号化, FC QoS, FC-SP
 - LANに関する機能:仮想マシン毎の仮想アダプタ機能、QoS機能
- ハイパーバイザーからオフロードされた、仮想スイッチ機能
 - VEB, VEPAによるL2ハードウエアオフロード機能
 - VCS/VDXと連携したネットワーク管理を実現

Brocade VDX 6720 データセンタスイッチ

Ethernet Fabric を提供する業界初のスイッチ

Brocade VCS テクノロジー 全ての Brocade VDX スイッ チは Ethernet Fabric を構 成する VCS 技術を搭載

第6世代の ASIC 低消費電力と低遅延を実現 既存の実績のあるASIC技術

Brocade Network OS (NOS)

- •実績のあるBrocade Fabric OS (Fibre Channel SwitchのOS)の堅牢性を継承
- •高可用性を実現
- •LAN/SANを統合し、コンバージド・トラフィックに対応(FCoE) Ethernet/IPおよびFCPスタック
- ・業界で良く知られているOSと同じ操作感(CLI)を実現

VCSとは

VCSの主な機能

1. 論理筐体

- 3. vLAG
- 2. マルチパス
- 4. 仮想マシンの移動対応

8

ご提供中の技術文書など

• Brocade VCSによる仮想化データセンター・ネットワークの実現

http://www.brocadejapan.com/docs/resources/pdf/BR_VCS_WP.pdf

• VCS対応「Brocade VDX 6720」のデータセンターへの導入

http://www.brocadejapan.com/docs/resources/pdf/VDX6720_WP.PDF

• イーサネット・ファブリックとBrocade VCS テクノロジ

http://www.brocadejapan.com/docs/resources/pdf/Ethernet_fabric_BR_VCS_WP.pdf

Brocade VALによる仮想データセンター・ネットワークの最適化

http://www.brocadejapan.com/docs/resources/pdf/BR_VAL_WP.pdf

• 新たなプロトコル「FCoE」- 概要と機能

http://www.brocadejapan.com/docs/pdf/emerging_FCoE_protocol_WP.pdf

ありがとうございました

お問い合わせ先

ブロケードコミュニケーションズシステムズ株式会社

パートナー営業部 第1営業部 鈴木

電話:03-6203-9100(代表)

FAX: 03-6203-9101

E-Mail: suzuki@brocade.com