

# ネットワーク統合ソリューション

Brocade VDX6720 データセンタスイッチ Brocade 1860 Fabric Adapter (CNA Mode) Brocade 1020 DCB/FCoE CNA 評価レポート



ブロケードコミュニケーションズシステムズ株式会社 2011年9月16日

## 目次

- ・はじめに
- 検証環境
- 検証項目一覧
- 検証結果
- ・まとめ
- •参考資料

# はじめに





Brocade VDX6720-60, Brocade 1020ならびにBrocade 1860の機能評価のため に富士通検証センター(東京、浜松町)の設備、ならびに担当の皆様を適宜アサイン してご協力頂き、ありがとうございました。2011年8月24日~30日(5日間)の検証 により下記のデータを得ることができました。

ETERNUS DX440S2とのFCoE/iSCSI接続検証

VMware ESX 4.1でのアダプタ動作検証

Brocade VDX接続検証

ご協力頂きありがとうございました。

ブロケード・コミュニケーションズ・システムズ(株)



## Brocadeネットワーク統合ソリューション

### Brocade VDXファミリ

- FC, FCoE, iSCSIに対応した次世代ファブリックスイッチ
- スパニングツリーを排除したマルチパスネットワーク
- 仮想サーバの移動に対応したスイッチのポート設定移動
- 論理的に一台として動作するロジカルスイッチ

管理、設定が容易、仮想化対応、SAN/LAN統合、高帯域、 高冗長性をもったネットワークを提供します。

- Brocade 1860 Fabric Adapter
  - HBA, CNA, NICと1枚で3役をこなすハイパフォーマンスアダプタ
  - 16G FCをサポート

ハイスピード、ハイパフォーマンス、ハイフレキシビリティを提供します。

## 検証環境

### L2/3, FCoE/DCB, iSCSIが混在した仮想化環境



弊社USデータセンター







注) RDM は、 Raw Device Mapping の略 LUN は、 Logical Unit Numberの略

サーバ2 (ESX-2)

VM5

iSCSI

(0S)

VM4

HDD

(0S)

VM6

HDD

(OS)

iSCSI (RDM)

LUN x4



ネットワーク接続図

### サービスネットワーク (192.168.109.x/16)管理ネットワーク (10.20.109.x/16)

#### VM #2 VM #6 VM #4 VM #5 VM #1 VM #3 vNIC #2 vNIC #1 PRIMERGY TX300S5 PRIMERGY vSwitch #1 vSwitch #1 vSwitch #2 vSwitch #2 VMWare RX300S5 ESX 4.1 B1020/B1860 **Onboard NIC** B1020/B1860 **Onboard NIC** SH1516G 📄 Brocade ..... VDX6720 .... iSCSI/FCoE iSCSI FMV E780/A ----FCoE \_\_\_\_\_ sFLow collector -----LAN \_\_\_\_\_ **ETERNUS DX440S2** (iSCSI/FCoE) ------------------------3

© 2011 Brocade Communications Systems, Inc.

# 検証環境(マルチホップFCoE)

サービスネットワーク (192.168.109.x/16) 管理ネットワーク (10.20.109.x/16)

### ネットワーク接続図



© 2011 Brocade Communications Systems, Inc.

## 機器仕様

### <サーバ>

- PRIMERGY RX300 S5
  - CPU: Intel Xeon X5570 2.93GHz 16コア
  - Memory:8GB
  - HDD: GB SAS x3(RAID 5)
  - VMWare ESX4.1
- PRIMERGY TX300 S5
  - CPU: Intel Xeon X5570 2.93GHz 16コア
  - Memory:8GB
  - HDD: GB SAS x3(RAID 5)
  - Windows Server 2008 R2 Standard SP1

### <ストレージ>

- ETERNUS DX440S2
  - HDD: 450GB(2.5")/10Krpm × 72
  - CM: 48GB (24GBキャッシュ/CM × 2CM)
  - port: iSCSI(10Gbps), FCoE(10Gbps)

### <スイッチ>

- Brocade VDX6720-60
  - OS version: NOS 2.0.1b
- <アダプタ>
- Brocade 1860, Brocade 1020
  - Driver version: 3.0.0.0\_rc\_bld04









| 検証項目                                  | 検証手順・内容                                                               | 備考                         |
|---------------------------------------|-----------------------------------------------------------------------|----------------------------|
| Brocade1860,<br>Brocade1020<br>インストール | Brocade1860,1020をサーバにインストールしHCM,<br>vCenterより認識されることを確認する             |                            |
| VDXを介したFCoE, iSCSI<br>ボリューム認識         | VDXを介してETERNUS DX440S2上のディスクを<br>FCoE, iSCSIで認識できることを確認する             |                            |
| VCS基本機能検証                             | VCSが正しく構成できることを確認する                                                   |                            |
| VLAN動作検証                              | vlanを正しく扱えることを確認する                                                    |                            |
| AMPP機能検証                              | vMotion前後でのポートプロファイル適応状況を確<br>認                                       |                            |
| VLAG動作検証                              | ipハッシュに基づくロードバランシグをしている<br>Active-Activeチーミングに対してvLAGが動作するこ<br>とを確認する |                            |
| sFlow動作検証                             | sFlowによりトラフィックモニタできることを確認<br>する                                       | 確認ツールとしてsFlow<br>trendを用いる |

# 検証項目(続き)

| 検証項目                       | 検証手順・内容                                                       | 備考                                                                  |
|----------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|
| マルチホップFCoE検証               | マルチホップで構成されたネットーワー<br>ク上でFCoE通信ができることを確認する                    |                                                                     |
| 10GbEパフォーマンス測定             | 仮想マシン間でB1860 Fabric Adapterを介<br>して10GbEの通信ができることを確認する        | 測定ツールとしてNTttcpを用いる                                                  |
| PostgreSQLによるパフォー<br>マンス測定 | PostgreSQLによりデータベース検索のパ<br>フォーマンス測定を行う                        | 測定ツールとしてPstgreSQLベン<br>チマークツールを使用する                                 |
| iSCSIパフォーマンス測定             | 仮想マシンにDX440S5のディスクのiSCSI<br>領域をマウントし、IOmeterでパフォーマ<br>ンス測定を行う | マウントポイントは 20GB x4LUN<br>の領域<br>4/8/16/32/64/128KBの<br>Read/Writeを行う |
| FCoEパフォーマンス測定              | 仮想マシンにDX440S5のディスクのFCoE<br>領域をマウントし、IOmeterでパフォーマ<br>ンス測定を行う  | マウントポイントは 20GB x4LUN<br>の領域<br>4/8/16/32/64/128KBの<br>Read/Writeを行う |
| vMotion時のパフォーマン<br>ス結果     | vMotion持のIO断時間をFCoE/iSCSIで測定<br>する                            | 測定ツールとしてKGENを用いる                                                    |

# 検証結果



# 1. 環境構築



# 環境構築: Brocade 1860, 1020インストール

vCenter, HCMよりアダプタが認識されていることを確認



© 2011 Brocade Communications Systems, Inc.

# 環境構築: VCS(Virtual Cluster Switching)構築 VDX6720-60を使用したVCSの構築



## 環境構築: VCS(Virtual Cluster Switching)構築 FCoEの設定

### • CEE mapの設定(デフォルトのまま) • FCoEの設定(デフォルトのまま)

```
cee-map default
precedence 1
priority-group-table 1 weight 40 pfc on
priority-group-table 15.0 pfc off
priority-group-table 15.1 pfc off
priority-group-table 15.2 pfc off
priority-group-table 15.3 pfc off
priority-group-table 15.5 pfc off
priority-group-table 15.6 pfc off
priority-group-table 15.7 pfc off
priority-group-table 2 weight 60 pfc off
priority-table 2 2 1 2 2 15.0
remap fabric-priority priority 0
```

```
fcoe
fabric-map default
vlan 1002
priority 3
virtual-fabric 128
fcmap 0E:FC:00
advertisement interval 8000
keep-alive timeout
!
map default
fabric-map default
cee-map default
```

### ・LLDPの設定(デフォルトのまま)

```
!
protocol lldp
advertise dcbx-fcoe-app-tlv
advertise dcbx-fcoe-logical-link-tlv
advertise dcbx-tlv
!
```

## 環境構築: VCS(Virtual Cluster Switching)構築 ポートの設定

FCoEポート設定

interface TenGigabitEthernet 1/0/1

fabric isl enable

fabric trunk enable

switchport

switchport mode access

switchport access vlan 1

fcoeport default

no shutdown

• ISLポート設定(デフォルトのまま)

interface TenGigabitEthernet 1/0/13 fabric isl enable fabric trunk enable

no shutdown

必要最小限のFCoE設定はこれだけです。 iSCSIについては通常のスイッチポート設定。

## 環境構築:ボリュームの認識

iSCSI, FCoEを使用したボリュームの認識

 VDX6720を介してETERNUS DX440S2のボリュームをiSCSI, FCoEで認識できることを確認



# 2. 機能検証



# 機能検証: VCSファブリックの形成

VCSファブリックが形成されていることを確認する

### VCSファブリックの情報を確認する 2台のVDXを確認

VDX-1# sh fabric all

VCS Id: 1 VCS Mode: Fabric Cluster

| RBridge-ID | WWN                     | IP Address    | Name     |
|------------|-------------------------|---------------|----------|
| 1          | 10:00:00:05:33:55:6D:12 | 10.20.109.101 | "VDX-1"  |
| 2          | 10:00:00:05:33:4F:08:80 | 10.20.109.102 | >"VDX-2" |

The Fabric has 2 RBridge(s)

 ISLの情報を確認する 30GのISLトランクが形成されていることを確認

VDX-1# sh fabric isl RBridge-ID: 1 #ISLs: 1 Src-Port Nbr-Port Nbr-WWN BW Trunk Nbr-Name Te 1/0/15 Te 2/0/15 10:00:00:05:33:4F:08:80 30G Yes "VDX-2"

## 機能検証: 802.1Q tag VLAN

VLAN tagの動作確認

- 検証手順、結果
  - VDXのポートをtrunk mode, vSwitchにタグVLANを設定し、 通信できることを確認
  - VDXのポートでtrunk mode設定時、vmからのタグなしトラフィックが 廃棄されることを確認
  - no vlan dot1q tag nativeを設定することでタグなし、
     タグつきとも通信可能になることを確認

```
interface TenGigabitEthernet 2/0/3
fabric isl enable
fabric trunk enable
switchport
switchport mode trunk
switchport trunk allowed vlan add 10
fcoeport default
no shutdown
```

```
interface TenGigabitEthernet 2/0/4
fabric isl enable
fabric trunk enable
switchport
switchport mode trunk
switchport trunk allowed vlan add 10
fcoeport default
no shutdown
```

## 機能検証: AMPP (Auto Migration Port Profile)

### AMPPの動作確認

 AMPPとは仮想マシーンのMACアドレスに紐付けたPort-Profileを仮想マシーンが通信 するポートに適用するものです。仮想マシーンがvMotion等で移動した際にスイッチの ポート設定を移動に追従させるために使用します。Port-Profileには、VLAN, ACL, QoS, FCoEのプロファイルを設定可能。

### • 検証手順

- 仮想マシーンをvMotionする
- vMotion前の物理ポートに適用されていたPort-ProfileがvMotion後に通信を行う物理ポートにPort-Profileが適用されていることを確認する

### • 検証結果

vMotion後の物理ポートにPort-Profileが適用されたことを確認

#### vMotion前

| VDX-1# show port-profile status<br>Port-Profile<br>vm2 | activated<br>PPID<br>1 | Activated<br>Yes | Associated MAC<br>0050.568f.0008 | Interface<br>Tel/0/4 |  |
|--------------------------------------------------------|------------------------|------------------|----------------------------------|----------------------|--|
| vMotion後                                               |                        |                  |                                  |                      |  |
| VDX-1# show port-profile status<br>Port-Profile<br>vm2 | activated<br>PPID<br>1 | Activated<br>Yes | Associated MAC<br>0050.568f.0008 | Interface<br>Te1/0/5 |  |

© 2011 Brocade Communications Systems, Inc.

# 機能検証: vLAG (virtual link aggregation) vLAGが動作することを確認



- vLAGとは1台のデバイスから2台のVDXに対してLink aggregationが構成できる技術
- デバイスからは通常のLAGの設定をする。
- VDX側ではport-channelの設定をする。
- VDXを跨いだ2つのポートは論理的に1つのポートとして扱われる。

### 機能検証:vLAG (virtual link aggregation) vLAGが動作することを確認

- 検証手順
  - vSwitchのプロパティでロードバランシングを "IPハッシュに基づいたルート"に設定する

| リシー例外             |                         |                 |   |
|-------------------|-------------------------|-----------------|---|
| ード バランシング: 🕕      | $\overline{\mathbf{v}}$ | ローノンッシュに基づいたルート | - |
| ットワークのフェイルオーバー検出: | Γ                       | リンク状態のみ         | - |
| イッチへの通知:          | Γ                       | (\$0)           | - |
| ェイルバック:           | Γ                       | はい              | - |
|                   |                         |                 |   |

- VMから複数の宛先IPアドレスにpingを送信する
- VDXにvlagを設定した場合、しない場合の挙動を確認

| VlanId Mac-address<br>1 0023.2636.cda0<br>1 0023.2636.cda0<br>1 0050.5648.c631<br>1 0050.5670.458d<br>1 0050.567e.a675<br>1 0050.568f.0002<br>1 0050.568f.0004<br>1 0050.568f.0007<br>1 0050.568f.0009<br>Total MAC addresses : | Type S<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>9 | tate Ports<br>ctive Te 1/0/1<br>ctive Te 2/0/1<br>ctive Te 2/0/4<br>ctive Te 2/0/4<br>ctive Te 2/0/5<br>ctive Te 2/0/5<br>ctive Te 2/0/4<br>ctive Te 2/0/4<br>ctive Te 2/0/4<br>ctive Te 1/0/5 | vLAGを設定しない場合<br>pingを送信しているVMのMACアドレスを<br>二つのスイッチで受信するため、<br>MACテーブル上でフラップが確認される。 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| VDX-2# sh mac-a d<br>VlanId Mac-address<br>1 0023.2636.cda0<br>1 0023.2636.cdb0<br>1 0050.5648.c631<br>1 0050.5670.458d<br>1 0050.567e.a675<br>1 0050.568f.0002<br>1 0050.568f.0004                                             | Type S<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A<br>Dynamic A                                | tate Ports<br>ctive Te 1/0/1<br>ctive Te 2/0/1<br>ctive Te 2/0/4<br>ctive Te 2/0/4<br>ctive Te 2/0/5<br>ctive Te 2/0/4<br>ctive Te 2/0/4<br>ctive Te 2/0/5                                     | Pingを送信しているVMのMACアドレス                                                             |
| 1 0050.568f.0007<br>1 0050.568f.0009<br>Total MAC addresses :                                                                                                                                                                   | Dynamic A<br>Dynamic A<br>9                                                                                                      | ctive Te <mark>1/</mark> 0/4<br>ctive Te 1/0/5                                                                                                                                                 |                                                                                   |

© 2011 Brocade Communications Systems, Inc.

# 機能検証:vLAG (virtual link aggregation)

### vLAGが動作することを確認

### VDX1 vLAG設定、show port-channel

```
interface Port-channel 1
switchport
switchport mode access
switchport access vlan 1
no shutdown
```

```
interface TenGigabitEthernet 1/0/4
fabric isl enable
fabric trunk enable
channel-group 1 mode on type standard
no shutdown
```

```
VDX-1# show port-channel 1
Static Aggregator: Po 1 (vLAG)
Aggregator type: Standard
Member switches:
    RBridge-ID: 1 (1)
    RBridge-ID: 2 (1)
Member:
    Te 1/0/4
```

### VDX2 vLAG設定、show port-channel

interface Port-channel 1
switchport
switchport mode access
switchport access vlan 1
no shutdown

```
interface TenGigabitEthernet 2/0/4
fabric isl enable
fabric trunk enable
channel-group 1 mode on type standard
no shutdown
```

```
VDX-2# show port-channel 1
Static Aggregator: Po 1 (vLAG)
Aggregator type: Standard
Member switches:
    RBridge-ID: 1 (1)
    RBridge-ID: 2 (1)
Member:
    Te 2/0/4 *
```

 検証結果: VMのMACアドレス0050.568f.0007がPo 1に、登録されていることを確認 pingが正常に通信できることを確認

| VDX-1#  | show mac-address-ta | able dynam | ic     |          | VDX-2# | show mac-address-t | able dynam | nic    |          |
|---------|---------------------|------------|--------|----------|--------|--------------------|------------|--------|----------|
| VlanId  | Mac-address         | туре       | State  | Ports    | vlanId | Mac-address        | Type       | State  | Ports    |
| 1       | 0023.2636.cda0      | Dynamic    | Active | те 1/0/1 | 1      | 0023.2636.cda0     | Dýnamic    | Active | те 1/0/1 |
| 1       | 0023.2636.cdb0      | Dynamic    | Active | те 2/0/1 | 1      | 0023.2636.cdb0     | Dvnamic    | Active | Te 2/0/1 |
| 1       | 0050.5648.c631      | Dynamic    | Active | Po 1     | 1      | 0050.5648.c631     | Dvnamic    | Active | Po 1     |
| 1       | 0050.5670.458d      | Dynamic    | Active | Po 1     | 1      | 0050.5670.458d     | Dvnamic    | Active | Po 1     |
| 1       | 0050.567e.a675      | Dynamic    | Active | те 2/0/5 | 1      | 0050.567e.a675     | Dynamic    | Active | Te 2/0/5 |
| 1       | 0050.568f.0002      | Dynamic    | Active | Po 1     | 1      | 0050.568f.0002     | Dynamic    | Active | Po 1     |
| 1       | 0050.568f.0004      | Dynamic    | Active | Te 2/0/5 | 1      | 0050 568f 0004     | Dynamic    | Active | Te 2/0/5 |
| 1       | 0050.568f.0007      | Dynamic    | Active | Po 1     | 1      | 0050.568f.0007     | Dynamic    | Active | Po 1     |
| 1       | 0050.568T.0009      | Dynamic    | Active | Te 1/0/5 | 1      | 0050.5681.0009     | Dynamic    | Active | Te 1/0/5 |
| Total N | MAC addresses :     | 9          |        |          | Total  | MAC addresses :    | 9          |        |          |

© 2011 Brocade Communications Systems, Inc.

## 機能検証:sFlow

sFlowコレクタを使用したトラフィック状況のモニタ

- 検証手順 iSCSIトラフィックが流れているポートを<sup>SH1516G</sup> sFlowコレクタでモニタする
- 検証結果 sFlowコレクタでiSCSIトラフィック が表示されたことを確認
- sFlow設定

sflow enable sflow collector 10.20.109.105 sflow polling-interval 5 sflow sample-rate 100

```
interface TenGigabitEthernet 1/0/4
fabric isl enable
fabric trunk enable
switchport
switchport mode access
switchport access vlan 1
fcoeport default
sflow enable
no shutdown
```



| \$ 24- | # \$24.45  | - J 438- | 2+-2 # | The sector                                               | - MIG                    | Framesa w |  |
|--------|------------|----------|--------|----------------------------------------------------------|--------------------------|-----------|--|
|        |            |          | 200    | PARSE 1125-2011948/308<br>Deveryout<br>Boostarget7013280 | 12.34, <b>HIM</b> - 1 () |           |  |
| Sere   | 28         |          |        |                                                          |                          |           |  |
|        | 28         |          |        |                                                          |                          |           |  |
|        | 59K<br>79K |          |        |                                                          |                          |           |  |
|        |            |          |        |                                                          |                          |           |  |

## 機能検証:マルチホップFCoE動作確認 VDXが多段に構成されている状態でのFCoE通信確認



- VDXはマルチホップFCoEをサポートする
- マルチホップFCoEとはFCFを持ったス イッチの多段構成におけるFCoE接続 を意味しています。
- Brocade 8000ではこの構成はサポー トされておりません。



© 2011 Brocade Communications Systems, .....

# 機能検証:マルチホップFCoE動作確認

VDXが多段に構成されている状態でのFCoE通信確認

- 検証手順
  - VDXを多段接続にし、ログイン、ネームサーバ情報を確認する
  - IO meterを使用してIO試験を行う

ログイン情報を確認する VDX-2ではBrocade 1020を使用した2台のESXからのログイン情報を確認 VDX-1ではETERNUS DX440S2のログイン情報を確認 Brocade 1020

| VDX-2# SHOW I COE        | e login              |                                                    |                                        |                                        |
|--------------------------|----------------------|----------------------------------------------------|----------------------------------------|----------------------------------------|
| FCOE-Port                | Te-port              | Device WWN                                         | Device MAC                             | Session MAC                            |
| Fcoe 1/2/3<br>Fcoe 1/2/4 | Te 2/0/3<br>Te 2/0/4 | 10:00:00:05:1e:a8:68:7e<br>10:00:00:05:1e:a8:68:56 | 00:05:1e:a8:68/7e<br>00:05:1e:a8:66:56 | 0e:fc:00:02:3f:00<br>0e:fc:00:02:40:00 |
| VDX-1# show fcoe         | e login              |                                                    |                                        |                                        |
|                          |                      |                                                    |                                        |                                        |
| FCOE-Port                | Te-port              | Device WWN                                         | Device MAC                             | Session MAC                            |
| FCOE-Port<br>Fcoe 1/1/2  | Te-port<br>Te 1/0/2  | Device WWN<br>50:00:00:e0:d4:00:72:99              | Device MAC<br>00:23:26:36:a5:53        | Session MAC<br>0e:fc:00:01:3e:00       |

## 機能検証:マルチホップFCoE動作確認

VDXが多段に構成されている状態でのFCoE通信確認

### • ネームサーバの確認

VDX-2# show name-server detail

```
PID: 023f00
  Port Name: 10:00:00:05:1E:A8:68:7E
  Node Name: 20:00:00:05:1E:A8:68:7E
  SCR: 3
  FC4s: FCP
  Portsymb: [70] "Brocade-1020 | 3.0.0.04 | rx300s5-6 | VMware_ESX_4.1.0_build-320092 | "
  NodeSymb: NULL
  Fabric Port Name: 20:3F:00:05:33:4F:08:80
  Permanent Port Name: 10:00:00:05:1E:A8:68:7E
  Device type: Physical Initiator
  Interface: Fcoe 1/2/3
  Physical Interface: Te 2/0/3
  Share Area: No
  Redirect: No
PID: 024000
  Port Name: 10:00:00:05:1E:A8:68:56
  Node Name: 20:00:00:05:1E:A8:68:56
  SCR: 3
  FC4s: FCP
  Portsymb: [70] "Brocade-1020 | 3.0.0.04 | rx300s5-7 | VMware_ESX_4.1.0_build-320092 | "
  NodeSymb: NULL
  Fabric Port Name: 20:40:00:05:33:4F:08:80
  Permanent Port Name: 10:00:00:05:1E:A8:68:56
  Device type: Physical Initiator
  Interface: Fcoe 1/2/4
  Physical Interface: Te 2/0/4
  Share Area: No
  Redirect: No
```

total number of 2 entries

機能検証:マルチホップFCoE動作確認 VDXが多段に構成されている状態でのFCoE通信確認

```
• ネームサーバの確認
```

```
VDX-1# show name-server detail
PID: 013e00
Port Name: 50:00:00:E0:D4:00:72:99
Node Name: 50:00:00:E0:D4:00:72:00
SCR: 3
FC4s: FCP
PortSymb: NULL
NodeSymb: NULL
Fabric Port Name: 20:3E:00:05:33:55:6D:12
Permanent Port Name: 50:00:00:E0:D4:00:72:99
Device type: Physical Unknown(initiator/target)
Interface: Fcoe 1/1/2
Physical Interface: Te 1/0/2
Share Area: No
Redirect: No
```

total number of 1 entries

# 機能検証:マルチホップFCoE動作確認

VDXが多段に構成されている状態でのFCoE通信確認

- 検証結果
  - IOが問題なく行えることを確認。
- IO meterによるIO確認
  - FCoEによるread, write
- ISLリンクでのFCoEトラフィック状況

| Fran executive and workers                                      | Results Since   | -Upde | ite Fin | equen | cy (se |   |    |    |    |    |       |     |
|-----------------------------------------------------------------|-----------------|-------|---------|-------|--------|---|----|----|----|----|-------|-----|
| from the Topology window<br>to the progress bar of your choice. | C Start of Test | 1     | 2       | ŝ     | i      | 5 | 10 | 15 | si | 45 | 8Ó    | 00  |
| isplay                                                          |                 |       |         |       |        |   |    |    |    |    |       |     |
| Total I/Os per Second                                           | All Menagers    |       |         | 207   | 11.75  |   |    |    |    |    | 6000  | 2   |
| Total MBs per Second                                            | All Managers    |       |         | 647   | 7.24   |   |    |    |    |    | 100   | 0   |
| Average I/O Response Time (ms)                                  | All Managers    |       |         | 1.5   | 444    |   |    |    |    |    | 1     | 0   |
| Maximum I/O Response Time (ms)                                  | All Managers    |       |         | 4.1   | 540    |   |    |    |    |    | 1     | 0   |
| % CPU Utilization (total)                                       | All Menagers    |       |         | 18.5  | 64 %   | _ |    |    |    |    | 100 5 | * > |
| Total Error Count                                               | All Managers    |       | _       | (     | 0      |   | _  | _  | _  | _  | 1     | 0   |

```
VDX-2# sh int te 2/0/13 | in rate
Queueing strategy: fifo
Input 426.601672 Mbits/sec, 48400 packets/sec, 4.27% of line-rate
output 9.391716 Mbits/sec, 9105 packets/sec, 0.09% of line-rate
VDX-2# sh int te 2/0/14 | in rate
Queueing strategy: fifo
Input 415.479612 Mbits/sec, 47151 packets/sec, 4.15% of line-rate
output 9.189000 Mbits/sec, 8934 packets/sec, 0.09% of line-rate
VDX-2# sh int te 2/0/15 | in rate
Queueing strategy: fifo
Input 419.746948 Mbits/sec, 47586 packets/sec, 4.20% of line-rate
output 9.212404 Mbits/sec, 8957 packets/sec, 0.09% of line-rate
```

# 3. パフォーマンス測定



# 10GbEパフォーマンス測定

Brocade 1860のパフォーマンス試験

- 検証手順
  - 仮想マシン間で接続された 10GbE I/F間でNTttcpを用いて、 通信速度を計測する
  - NTttcpのパラメータ
    - 受信側
      - ntttcpr m
        16,0.192.168.109.132 n
        10000 a 16 w v I 1048576
        -fr
    - 送信側
      - ntttcpr -m
        16,0.192.168.109.132 -n
        10000 -a 16 -w -v -l 1048576

### • 検証結果

 ESX4.1上の仮想マシン上で NTttcpを用いて、Brocade 1860 を用いて9.464Gbpsのスループッ トが出る事を確認した

#### •NTttcp実行時の画面出力



# PostgreSQLによるパフォーマンス測定

データベースを用いた、ストレージ別パフォーマンス測定

- 検証手順
  - 仮想マシンにPostgreSQLを導入し、データベースを作成する
  - PostgreSQL用ベンチマークソフト により、TPSの測定を行う(測定結 果は3回試行した平均値)
  - 仮想マシンを配置したストレージ 領域の選択は、ESXのStorage vMotionを用い、PRIMERGYの内 蔵ディスク(SAS)とETERNUSの FCoEおよびiSCSIのそれぞれの領 域に配置して実行した

• 検証結果

- FCoE, iSCSI, SASの順番にパ フォーマンスが出る事を確認
- 仮想マシン上にデータベースを作 成する場合、FCoE上がパフォーマ ンスが出ることが分かる





# iSCSI/FCoE パフォーマンス測定 -1

仮想マシン上からIOmeterを用いたストレージI/Oパフォーマンス結果





- 検証結果より、8KB 以下はiSCSIより FCoEの方がパフォー マンスが良いことが 分かった
- 16KB以上のIOPS は両者で殆ど変わ らない
- 検証結果より、8KB 以下はiSCSIより FCoEの方がパフォー マンスが良いことが 分かった
- 16KB以上はiSCSI とFCoEの両者で殆 ど変わらない

## iSCSI/FCoE パフォーマンス測定 -2

仮想マシン上からIOmeterを用いたストレージI/Oパフォーマンス結果



 検証結果より、 iSCSIよりFCoEの方 が若干応答時間が 短いことが分かった

- CPU使用率 (%) 25 20 FCoE Read 15 iSCSI Read 10 FCoE Write iSCSI Write 5 0 1K 2K 4K 8K 16K 32K 64K 128K
- 検証結果より、 iSCSIよりFCoEの方 がCPUを利用しな い事が分かった

# vMotion時のパフォーマンス結果

データベースを用いた、ストレージ別パフォーマンス測定

- 検証手順
  - Data StoreがFCoEおよびiSCSI上の 仮想マシンにてvMotionを行い、ス トップウオッチで移動時間を計測する (測定結果は3回試行した平均値)
  - 仮想マシン上でKGEN(パフォーマンス 測定ソフト)を用いて、ストレージ別の 移動時間および、移動中のストレー ジパフォーマンスの相違を測定する







© 2011 Brocade Communications Systems, Inc.

# まとめ



## まとめ

- Fabric Adapter Brocade 1860, CNA Brocade 1020とも VMware ESXに問題なく認識され、ファブリックスイッチ Brocade VDX6720-60を介してETERNUS DX440S2のボリュームをFCoE, iSCSIを用いてマウント、問題なくIO通信ができることを確認。
- Brocade VDX6720-60を使用したイーサネット・ファブリックにおい てFCoE, iSCSIのIOトラフィック, IPデータトラフィックが混在した環境 でのネットワークが構成できることを確認。
- ・上記により、基本動作検証を完了することができました。





© 2011 Brocade Communications Systems, Inc.

### **Brocade 1860 Fabric Adapter**

HBA/CNA/NICの機能を1つのカードに統合



## Brocade 1860 Fabric Adapter (HBA/CNA/NIC)

Cloudや仮想化環境向けの機能を搭載した、サーバ向け次世代アダプター

http://www.brocadejapan.com/products/adapters/1860-fabric-adapter/overview

- 主な機能
  - ハイパフォーマンスでマルチI/Oに対応したアダプター



- 4/8/16G FC HBA と 1/10G DCB/Ethernet に対応したアダプター
- PCI Express 2.0 x8対応
- 1 枚のカードでマルチプロトコルに対応 (AnylO対応)
  - FC/FCoE ハードウエアオフロード機能、iSCSI TLV機能、NICオフロード機能に対応
- アプリケーションサービスへの対応
  - 16 個のPhysical Functionと 255 個のVirtual Functionに対応したSR-IOV
  - SANに関する機能: Nポートトランキング、ハードウエアベースの暗号化, FC QoS, FC-SP
  - LANに関する機能:仮想マシン毎の仮想アダプタ機能、QoS機能
- ハイパーバイザーからオフロードされた、仮想スイッチ機能
  - VEB, VEPAによるL2ハードウエアオフロード機能
  - VCS/VDXと連携したネットワーク管理を実現

# Brocade VDX 6720 データセンタスイッチ

Ethernet Fabric を提供する業界初のスイッチ



•LAN/SANを統合し、コンバージド・トラフィックに対応(FCoE) Ethernet/IPおよびFCPスタック

・業界で良く知られているOSと同じ操作感(CLI)を実現

RAS

Non-stop

Operation

## VCSとは VCSの主な機能



# ご提供中の技術文書など

• Brocade VCSによる仮想化データセンター・ネットワークの実現

http://www.brocadejapan.com/docs/resources/pdf/BR\_VCS\_WP.pdf

• VCS対応「Brocade VDX 6720」のデータセンターへの導入

http://www.brocadejapan.com/docs/resources/pdf/VDX6720\_WP.PDF

• イーサネット・ファブリックとBrocade VCS テクノロジ

http://www.brocadejapan.com/docs/resources/pdf/Ethernet\_fabric\_BR\_VCS\_WP.pdf

• Brocade VALによる仮想データセンター・ネットワークの最適化

http://www.brocadejapan.com/docs/resources/pdf/BR\_VAL\_WP.pdf

• 新たなプロトコル「FCoE」 - 概要と機能

http://www.brocadejapan.com/docs/pdf/emerging\_FCoE\_protocol\_WP.pdf







お問い合わせ先 ブロケードコミュニケーションズシステムズ株式会社 パートナー営業部 第1営業部 鈴木 電話:03-6203-9100(代表) FAX:03-6203-9101 E-Mail:suzuki@brocade.com

© 2011 Brocade Communications Systems, Inc.