SPARC64[™] XIfx: Fujitsu's Next Generation Processor for HPC

August 11, 2014

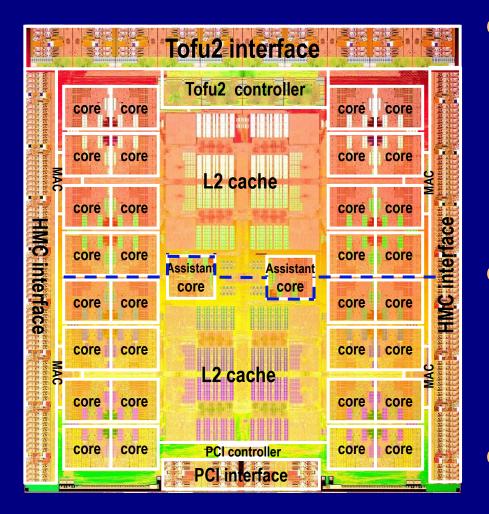
Toshio Yoshida

Next Generation Technical Computing Unit Fujitsu Limited

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance **RAS** ♦ Summary

Fujitsu Processor Development 2011 2012 2013 2014 10Peta **20Peta scale** 100Peta scale **EXA** scale SPARC64 SPARC64 SPARC64 **HPC** VIIIfx IXfx Xlfx K computer Post-FX10 **FX10** 32 Cores 8 Cores 16 Cores + 2 Assistant Cores HPC-ACE **HPC-ACE** DIMM **HPC-ACE2** DIMM HMC **Tofu interconnect** Tofu interconnect **Tofu interconnect2** UNIX SPARC64 SPARC64 X X+ Server 16cores 16cores SMT / SWoC SMT / SWoC+ 3GHz 3.7GHz Mainframe **GS21** 2600 SPARC64[™] XIfx 3 All Rights Reserved, Copyright© FUJITSU LIMITED 2014

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary


Design Concept of SPARC64[™] XIfx

- Designed for massively parallel supercomputer systems
 - High performance for wide range of real applications
 - High scalability
 - Low power consumption
 - Groundwork for EXA scale computing
- Enhance and inherit K computer features
 - Stand-alone scalar many-core architecture
 - Enhanced VISIMPACT and Sector cache
 - On-chip integrated Tofu interconnect 2
- Introduce new technologies to EXA scale
 - Wider SIMD enhancements
 - Leading-edge memory technology
 - Cores dedicated for non-computation operation

SPARC64™ XIfx

HPC-ACE2 HMC Assistant cores

SPARC64™ Xlfx Chip Overview

Architecture Features

- 32 computing cores
 + 2 assistant cores
- HPC-ACE2
- 24 MB L2 cache
- HMC, Tofu2, PCI Gen3

20nm CMOS

- 3,750M transistors
- 1,001 signal pins
- 2.2GHz

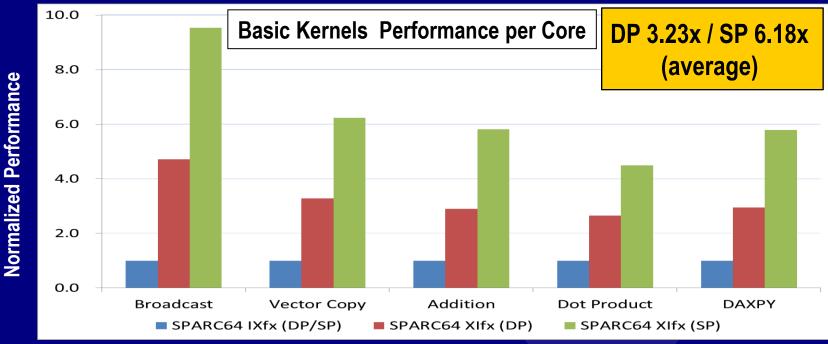
Performance (peak)

- 1.1TFlops
- HMC 240GB/s x 2(in/out)
- Tofu2 125GB/s x 2(in/out)

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

Node Architecture

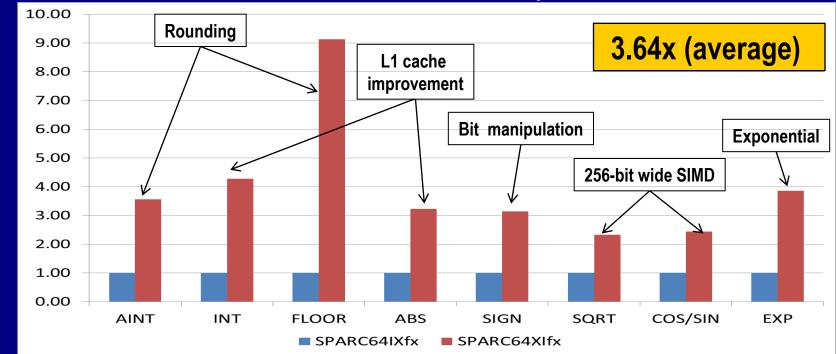
- Stand-alone scalar many-core with wider SIMD
 - No accelerator
- Non-hierarchical and high bandwidth memory
 - 8x HMCs (32GB, 240GB/s x2 (in/out))
- Isolation of non-computation operation for jitter reduction
 - 32 Computing cores
 - 2 Assistant cores
 - Daemon, IO, MPI asynchronous communication, etc.
 - Sector cache is used for assistant core to avoid cache pollution
 - Computing cores and Assistant cores keep cache coherency
- Single OS manages computing and assistant cores
 - Single OS minimizes memory management overhead


Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

HPC-ACE2: ISA enhancements

- Wider SIMD enhancements from K computer / FX10
 - 256-bit wide SIMD (64-bit x 4 / 32-bit x 8)
 - More integer operations
 - Stride load/store
 - Indirect load/store
 - Compress
 - Round
 - Permutation

Wider SIMD Extensions


- 256-bit wide SIMD with 128 FPRs
 - 64-bit (DP: Double Precision) x 4 SIMD
 - 32-bit (SP: Single Precision) x 8 SIMD
- DP 3.2x, SP 6.1x faster than SPARC64[™] IXfx in basic kernels
 - Improved L1 cache pipelines
 - Higher frequency 1.848GHz -> 2.2GHz

11

Built-in Functions

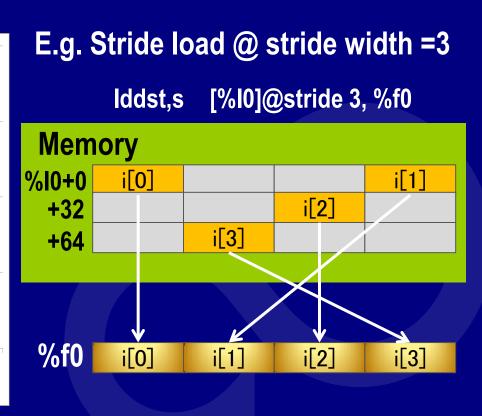
- Built-in functions accelerated by
 - HPC-ACE2 instructions
 - 256-bit wide SIMD
 - Rounding / Bit manipulation / Exponential auxiliary instructions
 - Microarchitectural enhancements

Built-in Functions Performance per Core

SPARC64™ XIfx

Normalized Performance

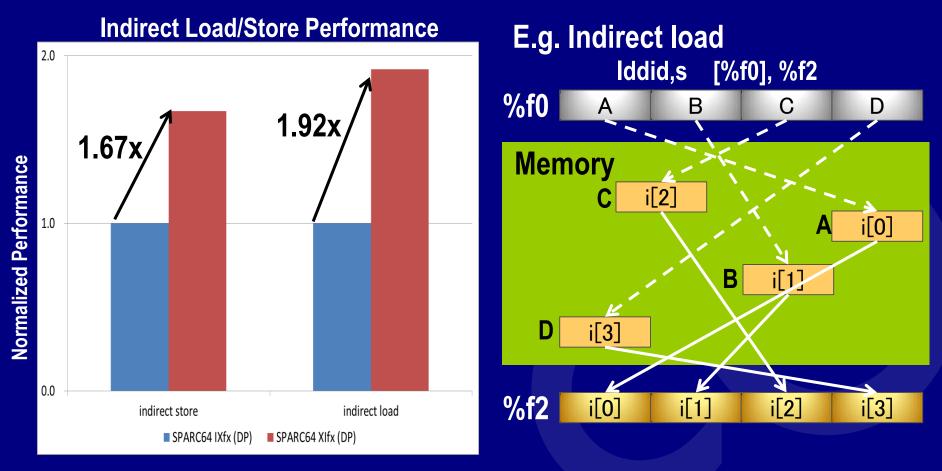
Stride Load/Store Instructions


Stride access is frequently used in various HPC apps.

13

- Support from 2 to 7-element stride width
- 3.6x faster than SPARC64[™] IXfx

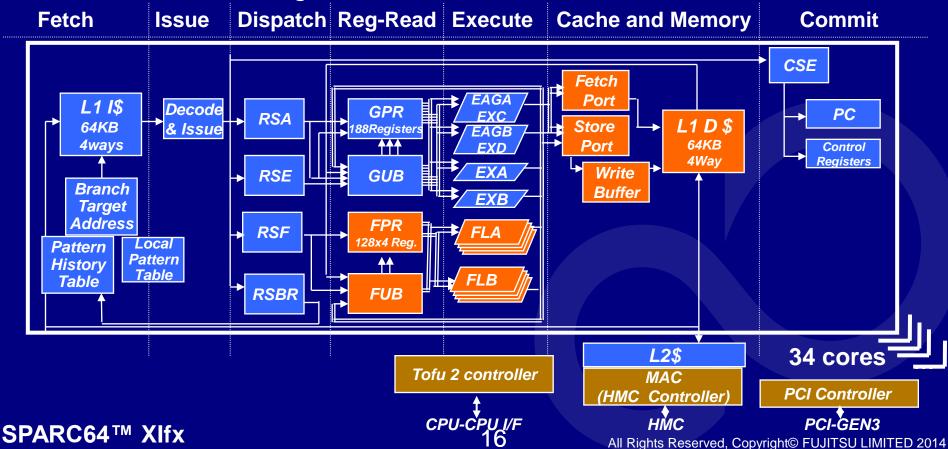
Stride load Performance


4.0 3.63x 3.67x 3.0 **Vormalized Performance** 2.0 0. 0.0 3-element Stride 4-element Stride SPARC64 IXfx (DP) SPARC64 XIfx (DP)

Indirect Load/Store Instructions

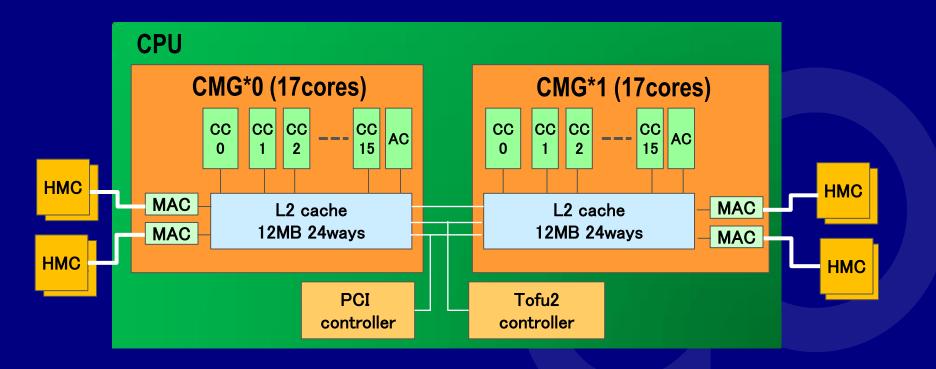
- Indirect load and store instructions for list accesses

 List accesses appear in wide ranges of HPC apps.
- More than 1.6x faster than SPARC64[™] IXfx


SPARC64[™] XIfx

14

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

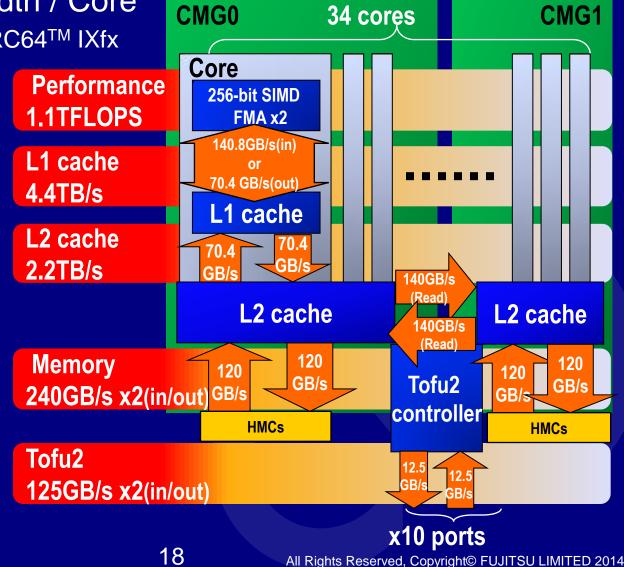

SPARC64[™] Xlfx Core Pipeline

- 2x <u>256-bit SIMD FMAs</u> + 4x ALUs (shared with 2 AGENs)
- 2x 256-bit SIMD LOADs or 1x 256-bit SIMD STORE
- Fundamental pipelines are based on SPARC64[™] X+
 - Superscalar, Out-of-Order, branch prediction, etc.
- No multithreading

Many-Core Architecture

- SPARC64[™] XIfx has 2 CMGs (Core Memory Group)
 - CMG consists of 17 cores, L2 cache and 2 memory controllers (MAC)
 - Two CMGs keep cache coherency by ccNUMA with on-chip directory
 - 32GB memory capacity
 - To bind a process in a CMG is recommended

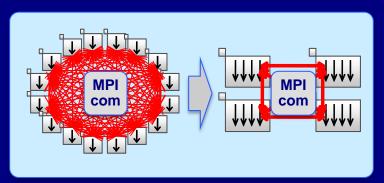
SPARC64[™] XIfx


High Bandwidth

High bandwidth cache, memory and Tofu2

- Compared to SPARC64[™] IXfx
- 8x HMC
 - 15 Gbps
 - 16 lanes
 - 8 ports
- Tofu2

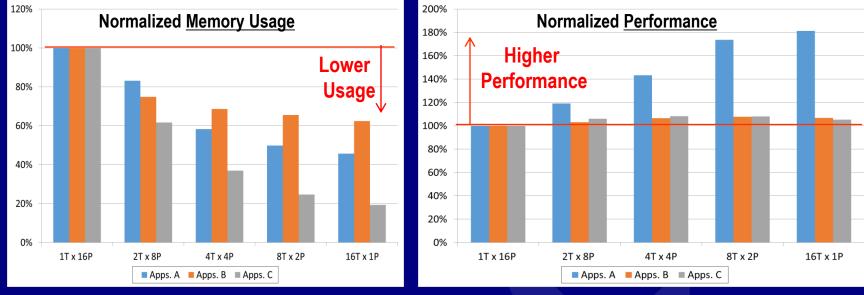
- 25 Gbps
- 4 lanes
- 10 ports



Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

Enhanced VISIMPACT

- Advantages of Hybrid Parallelization
 - To reduce communication cost in highly parallel programs
 - To increase user memory space by reducing communication buffer
- VISIMPACT* (introduced in FX1)
 - Automatic parallelization technology by Fujitsu's compiler
 - Hardware barrier for fast synchronization
- Enabling 8 sets of Hardware barriers between 32 cores
 - Optimum combination of # Threads and # Processes depends on apps.
 - Any combinations of T(Threads) and P(Processes) are supported
 - 32 T(Thread) x 1 P(Process), 16 T x 2 P, 8 T x 4 P, etc.
 - The goal is heterogeneous hybrid parallelization for load imbalance and multi physics


*Virtual Single Processor by Integrated Multi-core Parallel Architecture

Effect of VISIMPACT

- Lower memory usage
 - By reducing communication buffer for MPI
- Higher performance
 - By reducing MPI communication cost

Memory usage and Performance of #Threads x #Processes

SPARC64™ XIfx

Enhanced Sector Cache

• Sector Cache (introduced in K computer)

Cache line is replaced to keep specified sector size when cache miss occurs
 L2 Cache

- Like 'Local Memory'
 - Leave the reusable data on cache by dividing cache into segments
- Unlike 'Local Memory'
 - No need for a dedicated address
 - No penalty to save and restore in context switch

Sector Sector Sector

0

1

2

3

Reusable

data 1

Reusable

data 2

Reusable

data 1

Reusable

data 2

Reusable

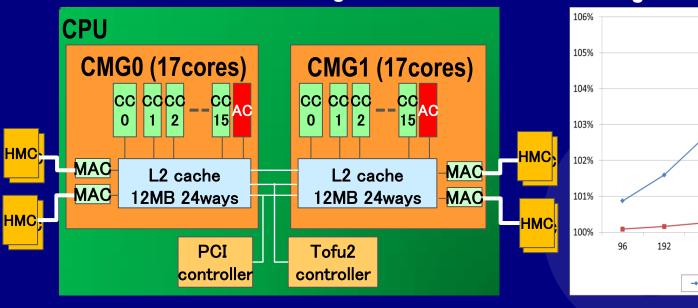
data 3

Instruction fetch

Normal data

Streaming data

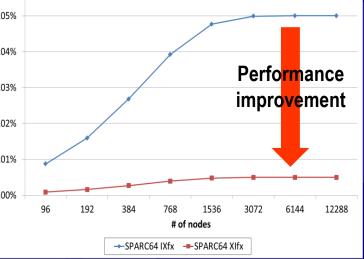
- SPARC64[™] XIfx supports 4 sectors in L1 cache (per core) and L2 cache (per CMG) respectively
 - More usable than SPARC64[™] IXfx of 2 sectors in L1 and L2 respectively
 - Each sector size can be specified separately


Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

Assistant core

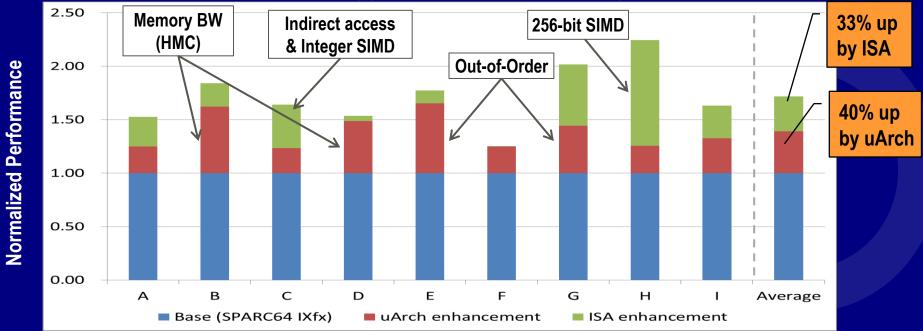
- Assistant core serves Daemon, IO, MPI asynchronous communication instead of computation
 - Each CMG has an assistant core allocated on 17th core
 - Sector cache within L2 cache allocates one sector to assistant core to avoid cache pollution

24


Minimize performance degradation in large systems by jitter reduction

CPU block diagram

SPARC64[™] XIfx


Perf degradation ratio by jitter (model)

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

Performance

- SPARC64[™] XIfx boosts performance up by ISA and mircoarchitectural enhancements
 - 97% execution efficiency for DGEMM
 - Sector cache realizes the same effect as <u>2.5x L1 cache size</u>
 - <u>1.7x faster per core</u> than SPARC64[™] IXfx in real HPC applications such as fluid dynamics

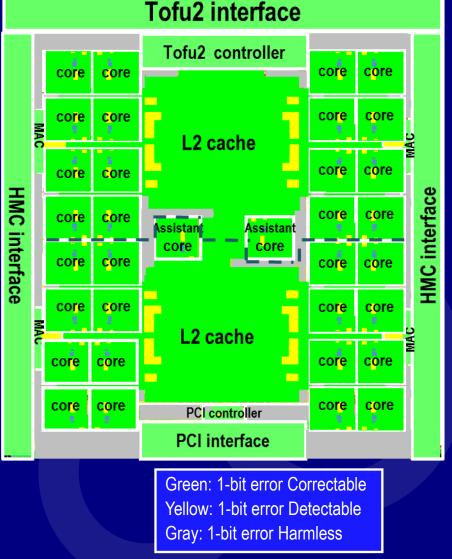
26

Real HPC Applications Performance per Core

SPARC64™ XIfx

Fujitsu Processor Development ◆ SPARC64TM XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS ♦ Summary

Reliability, Availability, Serviceability


28

- HPC system requires extensive RAS capability of CPU and interconnect
- SPARC64[™] XIfx inherits mainframe-level RAS features
 - # checkers in CPU increased to ~92,900
 - Tofu2 buses support self-recovery and lane dynamic degradation

Units	Error Detection and Correction
Cache (Tags)	ECC, Parity & Duplicate
Cache (Data)	ECC, Parity
Registers	ECC (INT/FP), Parity (Others)
ALUs	Parity, Residue
Other RAS features	
Cache dynamic degradation	
Hardware Instruction Retry	
Lane dynamic degradation for Tofu2	

SPARC64[™] XIfx

SPARC64[™] XIfx RAS diagram

Fujitsu Processor Development ◆SPARC64[™] XIfx Design Concept and Processor Overview Node Architecture HPC-ACE2: ISA enhancements Microarchitecture Enhanced VISIMPACT and Sector Cache Assistant Core Performance RAS Summary

Summary

◆ SPARC64[™] XIfx is Fujitsu's latest SPARC processor, designed for massively parallel supercomputing systems

Enhance and inherit K computer features
 Stand alone scalar many-core architecture
 VISIMPACT and Sector Cache

- ♦ On-chip integrated Tofu2
- Introduce new technologies to EXA scale
 HPC-ACE2
 HMC
 Assistant cores

◆ SPARC64[™] XIfx has improved performance of real HPC applications significantly

 As a next step, Fujitsu goes forward to EXA scale supercomputing

Abbreviations

SPARC64[™] XIfx

- RSA: Reservation Station for Address generation
- RSE: Reservation Station for Execution
- RSF: Reservation Station for Floating-point
- RSBR: Reservation Station for Branch
- GUB: General-purpose Update Buffer
- FUB: Floating-point Update Buffer
- GPR: General-Purpose Register
- FPR: Floating-Point Register
- CSE: Commit Stack Entry
- EAG: Effective Address Generator
- EX : Execution unit (Integer)
- FL : Floating-point unit
- HPC-ACE: High Performance Computing-Arithmetic Computational Extensions
- HMC: Hybrid Memory Cube
- Tofu: Torus-Fusion