SPARC64™ X+:
Fujitsu’s Next Generation Processor for UNIX servers

August 27, 2013
Toshio Yoshida
Processor Development Division
Enterprise Server Business Unit
Fujitsu Limited
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Design of SPARC64™ X / X+

◆ Combine Fujitsu HPC and UNIX processor features

✓ Single-Thread Performance
 – Higher clock speed
 – Micro-architectural enhancements
 – Directly connected DIMMs

✓ High Throughput for massive data processing
 – SIMD parallelism and more registers
 – Multi-core and multi-thread
 – High bandwidth interconnect and memory links
 – Scalability up to 64 sockets (2048 threads)

✓ Software on Chip (SWoC) for specific applications
 – Cipher, Decimal, Database
SPARC64™ X+ Chip Overview

- **Architecture Features**
 - 16 cores x 2 SMT threads
 - Shared 24 MB L2\$
 - Memory and I/O Controllers
 - HPC-ACE
 - SWoC (Software on Chip)

- **28nm CMOS**
 - 24.0mm x 25.0mm
 - 2,990M transistors
 - 1,500 signal pins
 - 3.5GHz+

- **Performance (peak)**
 - 448GFlops+
 - 102GB/s memory throughput
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Software on Chip (SWoC)

- **SPARC64™ X / X+ Software on Chip**
 - Cipher
 - Decimal (IEEE754 DPD, NUMBER)
 - Database processing

- **Accelerate specific software functions in hardware**
 - SWoC engines implemented in floating-point unit can use 128 floating-point registers, software pipelining
 - Area/number of gates < 3% of core and < 1% of chip
Cipher and Decimal Performance

• Cipher
 – AES/DES/SHA/RSA in SPARC64™ X
 – RSA further improved in SPARC64™ X+
 • New instruction for RSA sign library

• Decimal
 – SPARC64™ X+ micro-architectural enhancements speed up several NUMBER libraries
Database Acceleration

- Fine-grained data manipulation
 - Byte vector in SPARC64™ X
 - Bit vector enhanced in SPARC64™ X+

- Integer Byte Compare
 - Enhanced ISA supports SIMD operation
 - Enhanced core supports instruction in both floating-point pipelines

Integer Byte Compare

- SPARC64™ X: FLA
 - 64 bit

- SPARC64™ X+: FLA+FLC, FLB+FLD
 - 128 bit

Bit Vector Operations

- Shift -> Mask -> Or

Extract 2 bit fields from rs1

- Logical operation with rs2

Logical operations
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 - Design Concept and Processor Overview
 - Software on Chip (SWoC)
 - Micro-Architecture
 - System Architecture
 - RAS
 - Power Management

◆ Summary
Micro-Architectural Enhancements 1/2

- Register window switches
 - Out-of-order access to 48 integer registers (current & next window)
 - No penalty for all window switches between same two windows
 - SPARC64™ X handles only one window switch without penalty

- Improved Branch prediction
 - Rehashed indirect branch predictor
 - Indirect branch with variable target address
 - Local pattern branch predictor
 - More pattern history table entries
Micro-Architectural Enhancements 2/2

- L1 data cache
 - Dedicated write pipeline
 - 64 RAM banks (8 sets of 8-banked RAMs)
 - One write and two reads each cycle, except when RAM bank conflict occurs
 - Faster atomic memory operations
 - Increased hardware prefetch throughput

L1-D Cache Schematic

L1-D Cache Throughput

SPARC64™ X+
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
SPARC64™ X / X+ System Architecture

◆ Scales from 1 to 64 CPU sockets (2048 threads)
 – Directory-based cache coherency
 – High-speed interconnect, up to 25Gbps per lane in SPARC64™ X+
 (Up to 14.5Gbps in SPARC64™ X)

◆ System Configuration
 – Building Block (BB) is 4 CPUs and 2 XBs
 – Up to 4 BBs can be connected by XBs
 – 16BBs can be connected via XB-Boxes

Building Block (4 CPU Sockets)

To other XBs
~168GBps (IN/OUT)
System Scalability

- SPARC64™ X systems demonstrate high scalability across a wide-range of applications
 - Integer, Floating-Point, Java, ERP, DWH

SPARC64™ X efficiently scales to 64 CPU sockets

![Graph showing system scalability](image)
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Mainframe-level RAS features for SPARC64™ X / X+

- Number of checkers increased to ~54,000
- System bus mechanisms for self-recovery and lane dynamic degradation

Guarantee Data Integrity and Keep on Running

Units

<table>
<thead>
<tr>
<th>Units</th>
<th>Error Detection and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (Tags)</td>
<td>ECC, Parity & Duplicate</td>
</tr>
<tr>
<td>Cache (Data)</td>
<td>ECC, Parity</td>
</tr>
<tr>
<td>Registers</td>
<td>ECC (INT/FP), Parity (Others)</td>
</tr>
<tr>
<td>ALUs</td>
<td>Parity, Residue</td>
</tr>
</tbody>
</table>

Other RAS features

- Cache dynamic degradation
- Hardware Instruction Retry
- Lane dynamic degradation

SPARC64™ X+ RAS diagram

1. Green: 1-bit error Correctable
2. Yellow: 1-bit error Detectable
3. Gray: 1-bit error Harmless

System Bus Reliability

- Intermittent failure: Resend Data
- Permanent failure: Dynamically degrade lane. Continue operation.

Reliability, Availability, Serviceability

SPARC64™ X+

All Rights Reserved, Copyright© FUJITSU LIMITED 2013
Agenda

Fujitsu Processor Development

SPARC64™ X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

Summary
Save energy while Idle

- CPU Lower Power (LP) State introduced in SPARC64™ X
 - Dynamically decrease frequency and voltage
 - Keep all data and caches coherent
 - State transition managed by software

✓ 45% power savings measured in SPARC64™ X
✓ Transition time between states is ~1.7ms
✓ Continue working while in transition

- DIMM power saving mechanism
 - Memory controller supports two lower power states
 - Power-down
 - Self-refresh
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Summary

◆ SPARC64™ X+ is Fujitsu’s latest SPARC processor, designed for Fujitsu’s next generation UNIX servers

◆ SPARC64™ X+ realizes improved single-thread performance with a higher clock speed, micro-architectural enhancements, and SWoC

◆ SPARC64™ X / X+ systems realize high scalability, from 1 to 64 CPU sockets (2048 threads)

◆ SPARC64™ X+ implements extensive RAS features

◆ Fujitsu will continue to develop the SPARC64™ series
Abbreviations

- **SPARC64™ X+**
 - RSA: Reservation Station for Address generation
 - RSE: Reservation Station for Execution
 - RSF: Reservation Station for Floating-point
 - RSBR: Reservation Station for Branch
 - GUB: General-purpose Update Buffer
 - FUB: Floating-point Update Buffer
 - GPR: General-Purpose Register
 - FPR: Floating-Point Register
 - CSE: Commit Stack Entry
 - EAG: Effective Address Generator
 - EX: Execution unit (Integer)
 - FL: Floating-point unit
 - HPC-ACE: High Performance Computing-Arithmetic Computational Extensions
 - ERP: Enterprise Resource Planning
 - DWH: Data WareHouse