SPARC64™ VII
Fujitsu’s Next Generation Quad-Core Processor

August 26, 2008
Takumi Maruyama
LSI Development Division
Next Generation Technical Computing Unit
Fujitsu Limited
Fujitsu Processor Development

- **High Performance Technology**
 - Hardware Barrier
 - Multi-core / Multi-thread
 - L2$ on Die
 - Non-Blocking $ O-O-O Execution
 - Super-Scalar
 - Single-chip CPU
 - Store Ahead Branch History Prefetch

- **High Reliability Technology**
 - Cache ECC
 - Register/ALU Parity
 - Instruction Retry
 - Cache Dynamic Degradation
 - RC/RT/History

SPARC64™ VII

- **Technology generation**
- **SPARC64™ Processor**
- **GS8000**
- **Tr=10M CMOS Al 250nm / 220nm**
- **GS8600**
- **Tr=10M CMOS Al 350nm**
- **GS8600B**
- **Tr=30M CMOS Cu 180nm / 150nm**
- **GS8900**
- **Tr=46M CMOS Cu 180nm**
- **GS21 900**
- **Tr=540M CMOS Cu 90nm**
- **GS21 600**
- **Tr=400M CMOS Cu 90nm**
- **GS8800B**
- **Tr=500M CMOS Cu 90nm**
- **GS8800**
- **GSPARC64 VI**
- **Tr=190M CMOS Cu 90nm**
- **GS21 900**
- **Tr=190M CMOS Cu 90nm**
- **SPARC64 V +**
- **Tr=30M CMOS Cu 130nm**
- **GSPARC64 V**
- **Tr=400M CMOS Cu 90nm**
- **GS21 900**
- **Tr=500M CMOS Cu 90nm**
- **GS21 600**
- **Tr=190M CMOS Cu 90nm**
- **SPARC64 VI**
- **Tr=600M CMOS Cu 65nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**
- **GS8600**
- **Tr=600M CMOS Cu 65nm**
- **GS8900**
- **Tr=540M CMOS Cu 90nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**
- **GS8600**
- **Tr=600M CMOS Cu 65nm**
- **GS8900**
- **Tr=540M CMOS Cu 90nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**
- **GS8600**
- **Tr=600M CMOS Cu 65nm**
- **GS8900**
- **Tr=540M CMOS Cu 90nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**
- **GS8600**
- **Tr=600M CMOS Cu 65nm**
- **GS8900**
- **Tr=540M CMOS Cu 90nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**
- **GS8600**
- **Tr=600M CMOS Cu 65nm**
- **GS8900**
- **Tr=540M CMOS Cu 90nm**
- **GS21**
- **Tr=600M CMOS Cu 65nm**

All Rights Reserved, Copyright © FUJITSU LIMITED 2008
SPARC64™ VII Chip

- **Architecture Features**
 - 4core x 2threads (SMT)
 - Embedded 6MB L2$
 - 2.5GHz
 - Jupiter Bus

- **Fujitsu 65nm CMOS**
 - 21.31mm x 20.86mm
 - 600M transistors
 - 456 signal pins

- **135 W (max)**
 - 44% power reduction per core from SPARC64™ VI
SPARC64™ VII Design Target

- Upgradeable from current SPARC64™ VI on SPARC Enterprise Servers
 - Keep single thread performance & high reliability by reusing SPARC64™ VI core as much as possible
 - Same system I/F: Jupiter-Bus

- More Throughput Performance
 - Dual core to Quad-core
 - VMT (Vertical Multithreading) to SMT (Simultaneous Multithreading)

- Technical Computing
 - Shared L2$ & Hardware Barrier
 - Increased Bus frequency (on Fujitsu ‘FX1’ server)
Simultaneous Multi-Threading

- **Fine Grain Multi-thread**
 - Fetch/Issue/Commit stage: Alternatively select one of the two threads each cycle.
 - Execute stage: Select instructions based on oldest-ready independently from threads.

- **SMT throughput increase**
 - x 1.2 INT/FP
 - x 1.3 Java
 - x 1.3 OLTP

- **Split HW Queues**
 - To avoid interaction between threads.
 - Automatically combined if the other thread is idle.

<table>
<thead>
<tr>
<th>#Active threads</th>
<th>IB</th>
<th>Reservation Station</th>
<th>Rename Registers</th>
<th>Port</th>
<th>CSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RSE</td>
<td>RSF</td>
<td>GUB</td>
<td>FUB</td>
</tr>
<tr>
<td>Two</td>
<td>4+4</td>
<td>8x2</td>
<td>8x2</td>
<td>24+24</td>
<td>24+24</td>
</tr>
<tr>
<td>One</td>
<td>8</td>
<td>8x2</td>
<td>8x2</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>
Integrated Multi-core Parallel Architecture

- **L2 cache**
 - Shared by 4 Cores to avoid false-sharing
 - B/W between L2 cache and L1 cache
 - (2x of SPARC64™ VI)
 - $L2 \rightarrow L1$: 32 byte/cycle/2 core x 4 core
 - $L2 \leftarrow L1$: 16 byte/cycle/core x 4 core

- **Hardware Barrier**
 - High speed synchronization mechanism between cores in a CPU chip.
 - Reduce overhead for parallel execution

Handles the multi-core CPU as one equivalent fast CPU with Compiler Technology (Fujitsu’s Parallelnavi Language Package 3.0)

- Automatic parallelization
- Optimize the innermost loop

DO J=1,N
DO I=1,M
 A(I,J)=A(I,J+1)*B(I,J)
END
END
Hardware Barrier

- **Barrier resources**
 - BST: Barrier STatus
 - BST_mask: Select Bits in BST
 - LBSY: Last Barrier synchronization status
 - Synchronization is established when all BST bits selected by BST_mask are set to the same value.

- **Usage**
 - Each core updates BST
 - Wait until LBSY gets flipped

Synchronization time: 60ns
- 10 times faster than SW

Sample Code of Barrier Synchronization

```c
/*
 * %r1: VA of a window ASI, %r2: %r3: work
 */
ldxa [%r1]ASI_LBSY, %r2 ! read current LBSY
not %r2 ! inverse LBSY
and %r2, 1, %r2 ! mask out reserved bits
stxa %r2, [%r1]ASI_BST ! update BST
membar #storeload ! to make sure stxa is complete
loop:
  ldxa [%r1]ASI_LBSY, %r3 ! read LBSY
  and %r3, 1, %r3 ! mask out reserved bits
  subcc %r3, %r2, %g0 ! check if status changed
  bne,a loop ! if not changed, sleep for a while
sleep ! if not changed, sleep for a while
```
Other performance enhancements

- Faster FMA (Fused Multiply-Add)
 - 7 cycles → 6 cycles
 - DGEMM efficiency: 93% on 4 cores
 \[\text{LINPACK} = 2,023 \text{GFlops with 64CPU} \]

- Prefetch Improvement
 - HW prefetch algorithm further refined
 - SW is now able to specify “strong” prefetch to avoid prefetch lost.

- Shared context
 - Virtual address space shared by two or more processes
 - Effective to save TLB entries

- New Instruction
 - Integer Multiply-Add with FP registers

- etc…

\[\text{Performance relative to SPARC64™ VI} \]

- Single thread performance: x1.0 - x1.2
- Throughput: x1.7 - x1.9
Reliability, Availability, Serviceability

- Existing RAS features

<table>
<thead>
<tr>
<th>Cache Protection</th>
<th>Tag</th>
<th>ECC (L2$)</th>
<th>Dupicate & Parity (L1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td>ECC (L2$, L1D$)</td>
<td>Parity (L1I$)</td>
</tr>
<tr>
<td>Cache Dynamic Degradation</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALU/Register</td>
<td>ECC (INT Regs)</td>
<td>Parity (FP Regs, etc)</td>
<td></td>
</tr>
<tr>
<td>HW Instruction Retry</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

- New RAS features of SPARC64™ VII
 - Integer registers are ECC protected
 - Number of checkers increased to ~3,400
RAS coverage

- RAM (71.5Mbits)
 - L1$: (data)
 - L2$: (tag)
 - Others

- RF/Latch (0.9Mbits)
 - Arch Reg (INT)
 - Arch Reg (FP) etc.

Green: 1bit error Correctable
Yellow: 1bit error Detectable
Gray: 1bit error harmless

More than 70% of Transient States are 1bit error detectable.
- Recoverable through HW Instruction Retry

- All RAMs are ECC protected or Duplicated
- Most latches are parity protected
- Guaranteed Data Integrity
 Servers based on SPARC64™ VII

• SPARC Enterprise: UNIX
 – Max 64CPUs / SMP
 – Upgradeable from SPARC64™ VI
 – Possible to mix SPARC64™ VI and SPARC64™ VII within the same SB

• FX1: Technical Computing
 – Single CPU node
 – Increased Jupiter Bus freq = 1.26GHz
 – System chip is newly designed to realize
 • Higher memory throughput
 • Lower Memory latency
 • Smaller footprint
 – Performance
 • FP throughput/socket: x1.5
 • STREAM benchmark: >13.5GB/s
Performance Analysis

- **Performance Analyzer**
 - About 100 performance events can be monitored
 - Available through cputrack() and cpustat()
 - 8 performance events can be gathered at the same time.

- **Commit base performance events**
 - Number of commit instructions each cycle.
 - The cause of no commit
 - L2$miss
 - L1D$miss
 - Fetch miss
 - Execution Unit busy
 - …
Memory access cost has been reduced on FX1.
SPARC64™ Future

- Design History:
 Evolution rather than revolution

- **SPARC64™ V (1core)**
 - RAS
 - Single thread performance

- **SPARC64™ VI (2core x 2VMT)**
 - Throughput

- **SPARC64™ VII (4core x 2SMT)**
 - More Throughput
 - High Performance Computing

- What’s next?
SPARC64™ VII Summary

• The same system I/F with existing SPARC64™ VI to protect customer’s investment

• 4core x 2SMT design realizes high throughput without sacrificing single thread performance

• Shared L2$ and HW barrier makes 4 cores behave as a single processor with compiler technology.

• The new system design has fully exploited potential of SPARC64™ VII.

• Fujitsu will continue to develop SPARC64™ series to meet the needs of a new era.
Venus

- For PETA-scale Computing Server
 - 8core
 - Embedded Memory Controller
- SPARC-V9 + extension (HPC-ACE)
 - SIMD
- Fujitsu 45nm CMOS
 ➤ 128GF@socket
Abbreviations

• **SPARC64™ VII**
 – RSA: Reservation Station for Address generation
 – RSE: Reservation Station for Execution
 – RSF: Reservation Station for Floating-point
 – RSBR: Reservation Station for Branch
 – GUB: General Update Buffer
 – FUB: Floating point Update Buffer
 – GPR: General Purpose Register
 – FPR: Floating Point Register
 – CSE: Commit Stack Entry
 – FP: Fetch Port
 – SP: Store Port

• **Chip-sets**
 – SC: System Controller
 – MC: Memory Controller
 – JSC: Jupiter System Controller
 – SB: System Board

• **Others**
 – DGEMM: Double precision matrix multiply and add