

The First arm-based HPC processor

A64FX

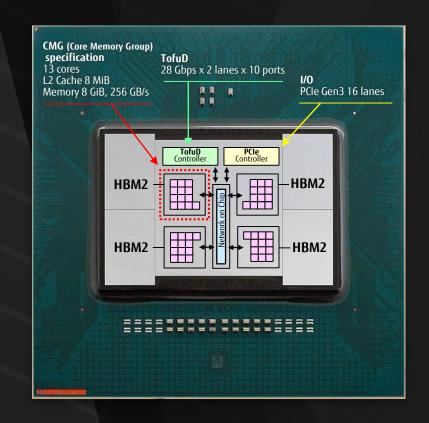
- designed by Fujitsu

Architecture

and

Achievements

Performance and Advantages from Hardware Design


Memory, NIC and PCIe are integrated into a chip.

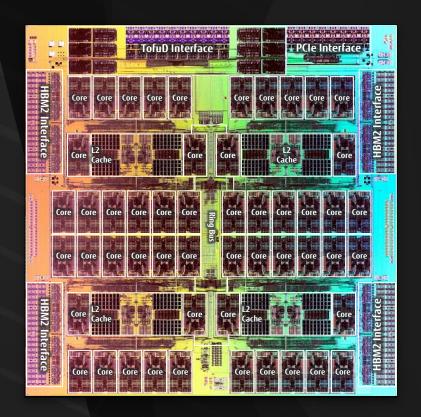
→ High-memory BW and superior power efficiency are achieved.

Peak Memory BW	1,024 GB/s
Power efficiency	16.876 GF/W (HPL, @2.0GHz)
Peak Performance	2.7+ TFLOPS

Hardware Specifications

Process Technology	7 nm FinFET		
# of Cores	48 + 0/2/4		
Memory / Capacity	HBM2 / 32 GiB (8 GiB × 4 stacks)		
PCle	Gen 3 / 16 lanes		
	Tofu Interconnect D		
Interconnect	6D mesh/torus		
	Chip-integrated NIC		
	Tofu Interconnect D 6D mesh/torus		

Performance and Advantages from Hardware Design


Memory, NIC and PCIe are integrated into a chip.

→ High-memory BW and superior power efficiency are achieved.

Peak Memory BW	1,024 GB/s
Power efficiency	16.876 GF/W (HPL, @2.0GHz)
Peak Performance	2.7+ TFLOPS

Hardware Specifications

7 nm FinFET	
48 + 0/2/4	
HBM2 / 32 GiB (8 GiB × 4 stacks)	
Gen 3 / 16 lanes	
Tofu Interconnect D	
6D mesh/torus	
Chip-integrated NIC	

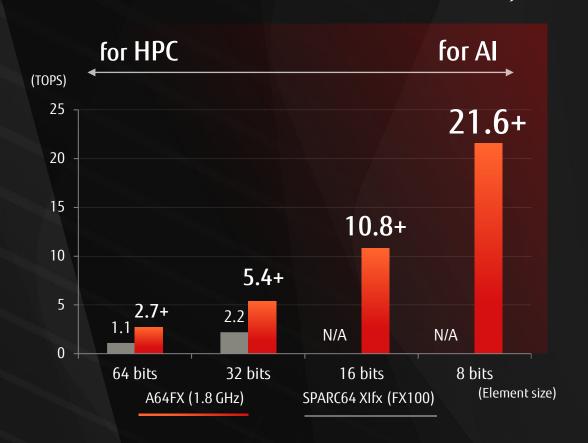
Green500 #1 on the List

Green500 List for November 2019

Listed below are the November 2019 The Green500's energy-efficient supercomputers ranked from 1 to 10.

Note: Shaded entries in the table below mean the power data is derived and not meassured.

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficienc (GFlops/watt
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AiMOS - IBM Power System AC922, IBM POWER9 20C 3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100 , IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771


- A64FX prototype Fujitsu A64FX 48C 2GHz
 ranked #1 on the list
- 768x general purpose A64FX CPUs w/o accelerators
 - 1.9995 PFLOPS @ HPL, 84.75%
 - 16.876 GF/W
 - Power quality level 2

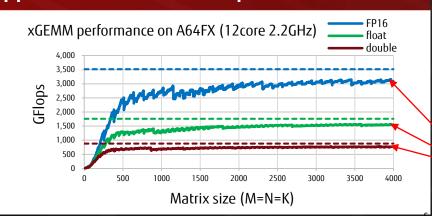
A64FX: High Performance also in the Al Area.

FUĴITSU

- Armv8.2-A & SVE 512-bit wide SIMD
- Supports a wide variety of precisions.

- FP64/32/16, INT64/32/16/8

Scalable Vector Extensions for Future Continuity


The SVE enables implementation choices for vector lengths

- Providing the vector-length agnostic programming model
- Avoiding the need to recompile or rewrite when longer vectors appear in the future

Sophisticated Arm SVE Instructions Fujitsu contributed to the specifications

- Per-lane predication
- Gather-load and scatter-store
- HPC-focused instructions
 - e.g. Reciprocal inst., Math. acceleration inst., etc.

Applicabilities of SVE are proven

The vector-length agnostic kernel of xGEMM achieved over 90% of the peak performance in each precision for big matrices

A64FX for Everyone

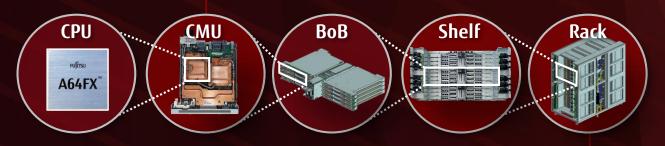
For Fujitsu Products

Used in Fujitsu high-end computing servers FX1000/FX700

For Partners

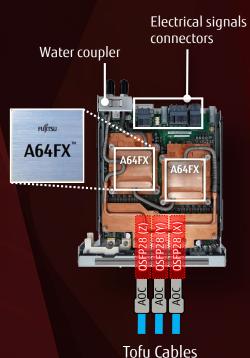
Open the door to all partners

For Arm Ecosystem



A64FX in Fujitsu Products: FX1000

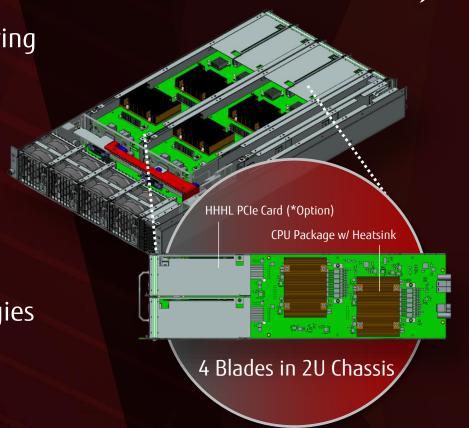
FUJITSU


High-density hardware design

- 2 CPUs are accommodated in a CMU
- 100% direct water cooling
- Single-sided blind mate connectors for electrical signals and water

384 CPUs are accommodated in a rack

Achieve 1PF/rack

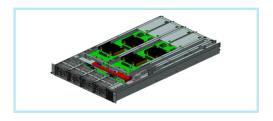


A64FX in Fujitsu Products: FX700

FUJITSU

High-performance Arm server featuring the A64FX CPU

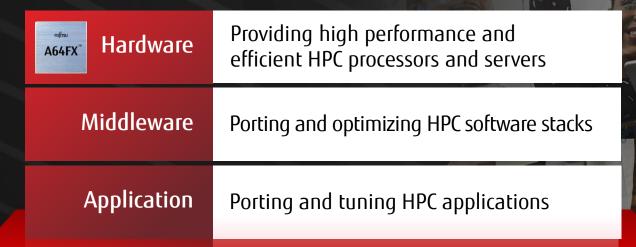
- Same CPU as Fugaku and FX1000
- Easy deployment and flexible configuration
 - Air-cooled, 2U rack-mountable chassis
 - From 2 to 8 CPUs per chassis
- Utilize open and standard technologies
 - InfiniBand
 - RHEL 8, OpenHPC, Bright Cluster Manager, etc.



Cray to ship Fujitsu A64FX announced Nov. 12

INTRODUCING THE CRAY CS500 - FUJITSU A64FX ARM SERVER

- Next generation Arm® solution enabled through Cray Fujitsu Technology Agreement
- Builds on Cray and Fujitsu strong history with vector processing and supercomputing
- Supported in Cray CS500 infrastructure including Cray Programming Environment
- Leadership performance for many memory intensive HPC applications
- Provides customers with more choice and flexibility
- GA in mid'2020



Building the Arm HPC Ecosystem

Fujitsu collaborates closely with partners and communities to contribute to the prosperity of the Arm HPC Ecosystem making Arm system easy-to-use

OSS Build Verification on the aarch64

RIKEN and Fujitsu verify Spack's 3000+ recipes with multiple compilers

Spack is a package manager for supercomputers

The verification results are available on the RIKEN's web page https://postk-web.r-ccs.riken.jp/oss/public/

Summary of results

• Spack version used: September 6, 2019

Pull Requests made: RIKEN 47, Fujitsu 46

	Fujitsu Compiler (under development)	GNU GCC	LLVM Clang
Aarch64	2072/3451(60.04%)	2387/3451(69.17%)	288/3451(8.35%)
X86	N/A	2479/3451(71.83%)	768/3574 (21.49%) #

Spack version: October 31 2019

shaping tomorrow with you