

Supercomputer "Fugaku" Formerly known as Post-K

Supercomputer Fugaku Project

RIKEN and Fujitsu are currently developing Japan's next-generation flagship supercomputer, the successor to the K computer, as the most advanced general-purpose supercomputer in the world

© RIKEN

Supercomputer Fugaku

- RIKEN and Fujitsu announced that manufacturing started in March 2019
- RIKEN announced on May 23, 2019 that the supercomputer is named "Fugaku"

Copyright 2019 FUJITSU LIMITED

Goals and Approaches for Fugaku

■ Goals

RIKEN announced predicted performance:

- More than 100x+ faster than K computer for GENESIS and NICAM+LETKF
- Geometric mean of speedup over K computer in 9 Priority Issues is greater than 37x+

https://postk-web.r-ccs.riken.jp/perf.html

Goals and Approaches for Fugaku

■ Goals

High application performance

Good usability and wide range of uses

Keeping application compatibility

Approaches

Develop

- 1. High-performance Arm CPU A64FX in HPC and AI areas
- 2. Cutting-edge hardware design
- 3. System software stack

Achieve

- High performance in real applications
- High efficiency in key features for Al applications

1. High-Performance Arm CPU A64FX in HPC and Al Areas

Architecture features

Peak performance (Chip level)

1. High-Performance Arm CPU A64FX in HPC and Al Areas

Architecture features

ISA	Armv8.2-A (AArch64 only) SVE (Scalable Vector Extension)	arm
SIMD width	512-bit	
Precision	FP64/32/16, INT64/32/16/8	
Cores	48 computing cores + 4 assistant cores (4 CMGs)	
Memory	HBM2: Peak B/W 1,024 GB/s	
Interconnect	TofuD: 28 Gbps x 2 lanes x 10 ports	

Peak performance (Chip level)

2. Cutting-edge Hardware Design

■ 1PFlops by Fugaku and K computer

	Fugaku	K computer
Configuration	1x rack including SSDs	80x compute racks & 20x disk racks
Nodes	384	8,160
Footprint	1.1 m ² (0.8 m x 1.4 m)	128 m ² (4 m x 32 m)

Scalable design

CMU(CPU Memory Unit)

- 100% direct water cooling
- 3x QSFP for AOC(Active Optical Cables)
- Single-sided blind mate connectors for electrical signals and water

3. System Software Stack

- Fujitsu developing system software in collaboration with RIKEN
 - Fujitsu Technical Computing Suite implementing development and execution environments with great usability on large-scale system

Fuqaku Under development w/ RIKEN

3. System Software Stack

- Fujitsu developing system software in collaboration with RIKEN
 - Fujitsu Technical Computing Suite implementing development and execution environments with great usability on large-scale system

Fugaku system hardware

High Performance in Real Application

- WRF: <u>Weather Research and Forecasting model</u> (v3.8.1)
 - Vectorizing loops including IF statements is key optimization
- Himeno Benchmark (Fortran90, size: XL)
 - Stencil calculation to solve Poisson's equation by Jacobi method

High memory B/W and long SIMD length work effectively

^{*} Normalized by the average elapsed time for timestep of Skylake

†Performance evaluation of a vector supercomputer SX-aurora TSUBASA https://dl.acm.org/citation.cfm?id=3291728

High Efficiency in Key Features for Al Applications

High FP16 & INT8 peak performance and high memory peak B/W

FP16 performance: 10.8+ TOPS, > 90%@HGEMM

INT8 performance: 21.6+ TOPS in partial dot product

Memory B/W: 1,024 GB/s, > 80%@STREAM Triad

Functions contributing to key features in Al fields

- 2x 512-bit wide SIMD pipelines per core for FP16 and INT8
- High memory B/W and calculation throughput
- Vectorization and software pipelining
- FP16 as data type of programming language (e.g., real (kind=2) in Fortran)
- Mathematical Library for HGEMM

Future Plans

Operations

Supercomputer Fugaku

Operations starting around CY2021

Today

Fujitsu HPC Products

■ Fujitsu will begin global sales of supercomputers based on the Supercomputer Fugaku technology in the 2nd half of FY2019

shaping tomorrow with you