

PRIMEHPC FX10: Advanced Software

Koh Hotta

Fujitsu Limited

System Software supports ---

- Stable/Robust & Low Overhead Execution of Large Scale Programs
 - Operating System
 - File System
- Program Development for High Speed Execution
 - Just Compile and Enjoy High Performance
 - Compiler
 - MPI
 - Tuning Support Environment

System Software Stack

User/ISV Applications

HPC Portal / System Management Portal

System operations management

- System configuration management
- System control
- System monitoring
- System installation & operation

Job operations management

- Job manager
- Job scheduler
- Resource management
- Parallel execution environment

High-performance file system

- Lustre-based distributed file system
- High scalability
- IO bandwidth guarantee
- High reliability & availability

VISIMPACT™

- Shared L2 cache on a chip
- Hardware intra-processor synchronization

Compilers

- Hybrid parallel programming
- Sector cache support
- SIMD / Register file extensions

Support Tools

- Profiler & Tuning tools
- Interactive debugger

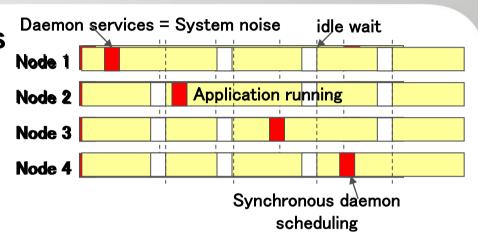
MPI Library

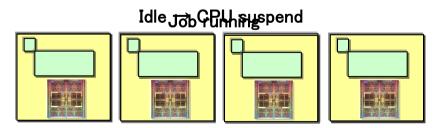
- Scalability of High-Func.
- Barrier Comm.

Application development environment

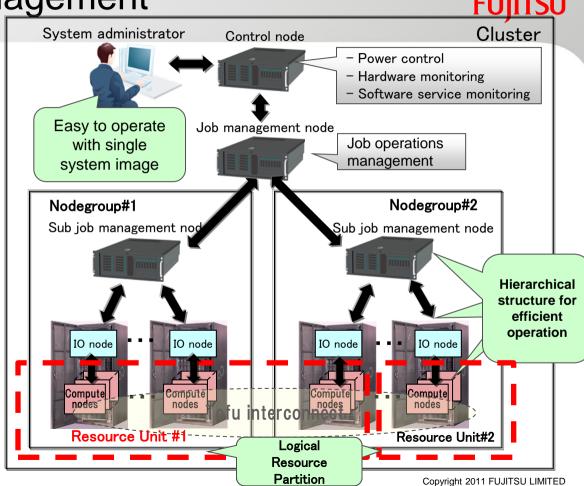
File system, operations management

Linux-based enhanced Operating System

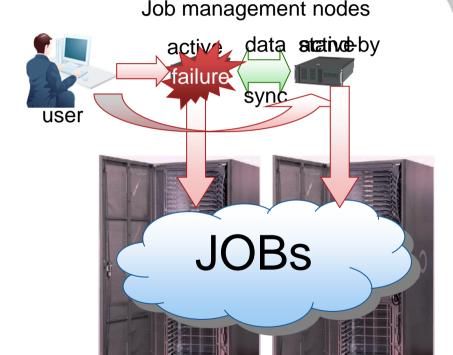

- Enhanced hardware support
- System noise reduction
- Error detection / Low power


PRIMEHPC FX10

OS: Linux ported on SPARC64


- You can port your applications on PC clusters with little effort
- Additional feature for large scale system
 - Daemons are scheduled to reduce waiting
 - CPU suspension facility

Flexible System Management


- Hierarchical structure in large scale systems
 - A job is distributed to each node thorough the sub job management node.
- A single system image through the control node
- A logical resource partition, named "Resource Unit" allocated flexibly

Robust system operation

- The important nodes have redundancy.
 - Control node
 - Job management node
 - Sub job management node
 - File servers
- In case of job management node failure
 - A stand-by node succeeds
 - Job data synchronization between active nodes and stand-by nodes.
 - Executing jobs can continue to run

System Software Stack

User/ISV Applications

HPC Portal / System Management Portal

System operations management

- System configuration management
- System control
- System monitoring
- System installation & operation

Job operations management

- Job manager
- Job scheduler
- Resource management
- Parallel execution environment

High-performance file system

- Lustre-based distributed file system
- High scalability
- IO bandwidth guarantee
- High reliability & availability

VISIMPACTTM

- Shared L2 cache on a chip
- Hardware intra-processor synchronization

Compilers

- Hybrid parallel programming
- Sector cache support
- SIMD / Register file extensions

MPI Library

- Scalability of High-Func.
- Barrier Comm.

Support Tools

- Profiler & Tuning tools
- Interactive debugger

Application development environment

File system, operations management

Linux-based enhanced Operating System

- Enhanced hardware support
- System noise reduction
- Error detection / Low power

PRIMEHPC FX10

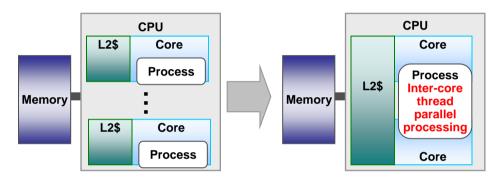
I have a dream

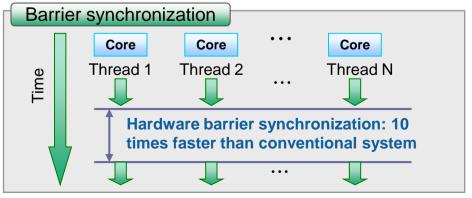
that one day you just compile your programs and enjoy high performance on your high-end supercomputer.

So, we must provide easy hybrid parallel programming method including compiler and run-time system support.

Hybrid Parallelism on huge # of cores

- Too large # of processes to manipulate
 - To reduce number of processes, hybrid thread-process programming is required
 - But *Hybrid parallel programming is annoying for programmers*
- Even for multi-threading, procedure level or outer loop parallelism was desired
 - Little opportunity for such coarse grain parallelism
 - System support for "fine grain" parallelism is required
- VISIMPACT solves these problems

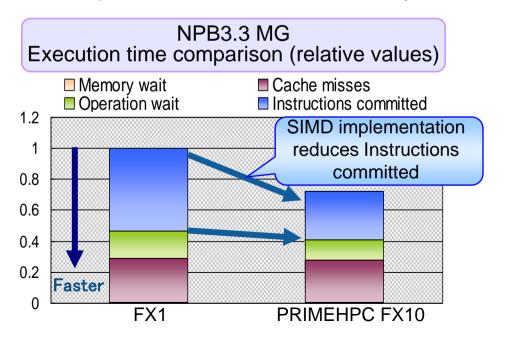

VISIMPACT™

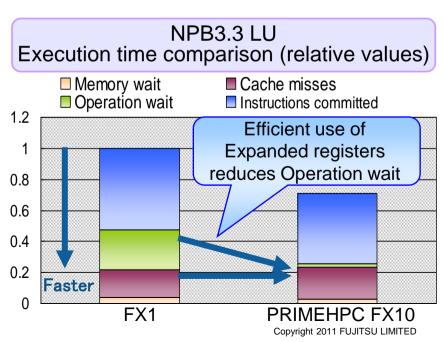


(Virtual Single Processor by Integrated Multi-core Parallel Architecture)

- Mechanism that treats multiple cores as one high-speed CPU
 - Practical automatic parallelization
 - Program and compile And enjoy high-speed
 - You need not think about hybrid

- CPU technologies
 - Shared L2 cache memory to avoid false sharing
 - Inter-core hardware barrier facilities to reduce overhead of thread synchronization



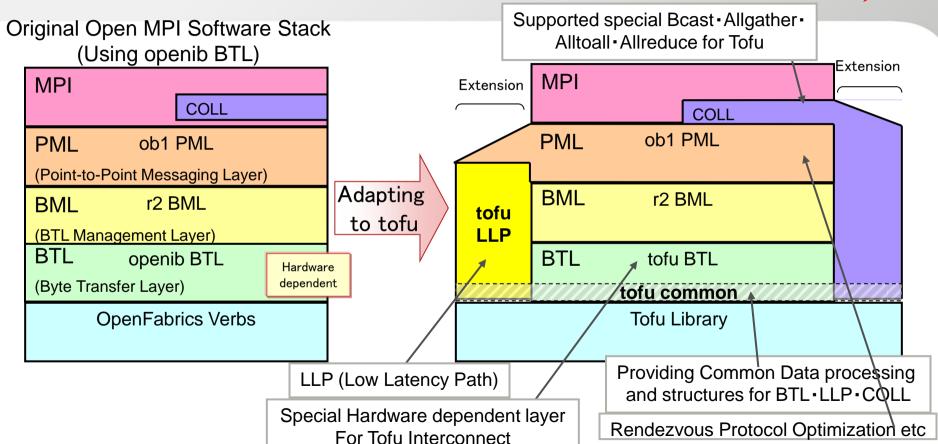


Compiler uses HPC-ACE architecture

- Instruction-level parallelism with SIMD instructions
- Improvement of computing efficiency used 256 floating point registers
- Improvement of cache efficiency used "sector cache"

MPI Approach for FX10

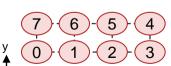
- Open MPI based
 - Open Standard, Open Source, Multi-Platform including PC Cluster
 - Adding extension to Open MPI for "Tofu" interconnect
- High Performance
 - Short-cut message path for low latency communication
 - Torus oriented protocol: Message Size, Location, Hop Sensitive
 - Trunking Communication utilizing multi-dimensional network links by Tofu selective routing.


Goal for MPI on FX10

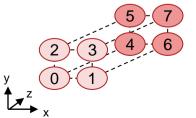
- High Performance
 - Low Latency & High Bandwidth
- Highly Scalability
 - Collective Performance Optimized for Tofu interconnect
- High Availability, Flexibility and Easy to Use
 - Providing Logical 3D-Torus for each JOB with eliminating failure nodes.
 - Providing New up version of MPI Standard functions as soon as possible

MPI Software stack

Flexible Process Mapping to Tofu environment



- You can allocate your processes as you like.
- Dimension Specification for each rank
 - 1D :(x)
 - 2D :(x,y)
 - 3D :(x,y,z)

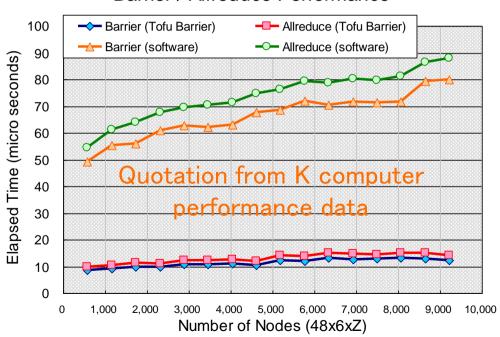

- (0) (1)
- (1) (2) (3)
- (7) (6)
- (5)
- (4)

(0,0) (1,0) (2,0) (3,0) (3,1) (2,1) (1,1)

(0,1)

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,1)

Customized MPI Library for High Scalability

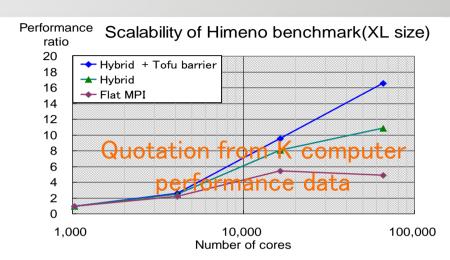

■ Point-to-Point communication

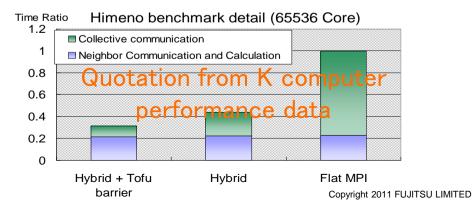
- Use a special type of low-latency path that bypasses the software layer
- •The transfer method optimization according to the data length, process location and number of hops

■ Collective communication

- High performance Barrier, Allreduce, Bcast and Reduce used Tofu barrier facility
- Scalable Bcast, Allgather, Allgatherv, Allreduce and Alltoall algorithm optimized for Tofu network

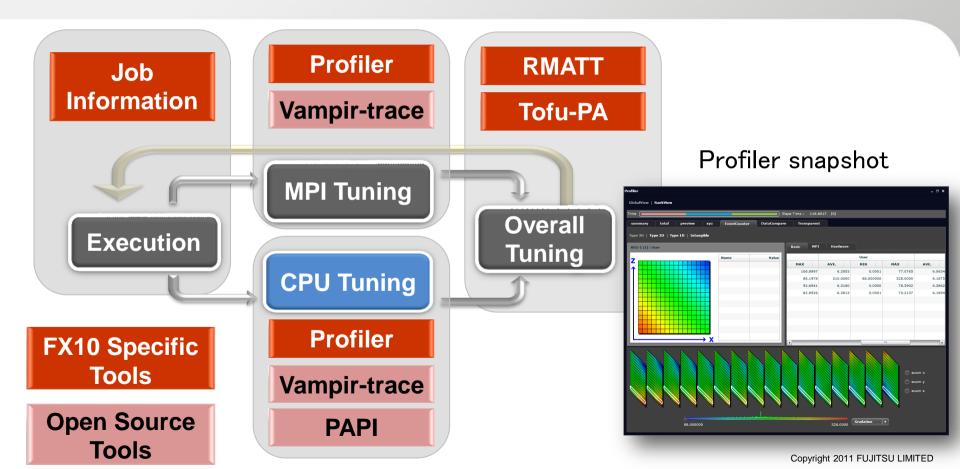
Barrier / Allreduce Performance




Programming Model for High Scalability

Hybrid parallelism by VISIMPACT and MPI library

- VISIMPACT
 - Multi-thread parallelization
- ■MPI library
 - Collective communications using Tofu barrier facility


Performance Tuning

- ■Not only by compiler optimization, but also you can manipulate performance
 - Compiler directives to tune programs.
 - Tools to help your effort to tune your programs

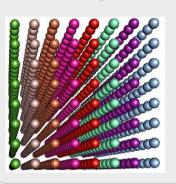

Application Tuning Cycle and Tools

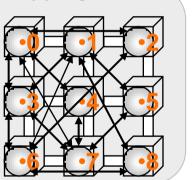
Performance Tuning (Event Counter Example)

- 3-D job example
 - Display 4096 procs in 16 x 16 x 16 cells
 - Cells painted in colors according to the proc status (e.g. CPU time)
 - Cut a slice of jobs along x-, y-, or z-axis to view

Rank Mapping Optimization

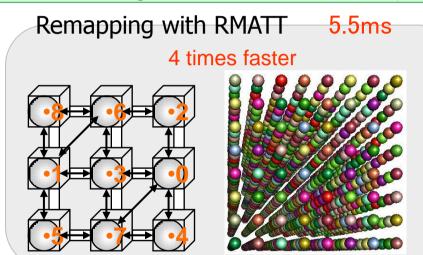
(RMATT : Rank Map Automatic Turning Tool)




Bruck algorism(Allgather type) Communication

Number of ranks: 4096 ranks

Network configuration: 16x16x16 nodes (4096)


Standard x,y,z order mapping 22.3ms

Communication analysis by Vampir-trace

Log file of network configuration and communication pattern (Communication weight between ranks)

input

Re-execution using optimized rank map file

Optimized rank map file
Reduce number of hops and congestion

Conclusion: FX10 enables practical high-level parallel environment

- LINUX for SPARC64 processors
 - Reducing the system noise effect & power usage
- Highly available job/system management facilities
- VISIMPACTTM lets you treat multi-core CPU as one single high-speed core.
 - Collaboration by the CPU architecture and the compiler.
 - High-speed hardware barrier to reduce the overhead of synchronization
 - Shared L2 cache to improve memory access
 - Automatic parallelization to recognize parallelism and accelerate your program
- Open MPI based MPI to utilize "Tofu" interconnect.
- Tuning facility shows the activity of parallel programs.

shaping tomorrow with you