

Post-K Computer Development, Updates for SC'18

Copyright 2018 FUJITSU LIMITED

Japanese National Project

RIKEN and Fujitsu are currently developing Post-K computer, the most advanced general-purpose supercomputer, in the world

Post-K computer is optimized to achieve superior performance in real applications as next Japanese flagship system

Post-K Computer Goals and Approaches

Application performance

Approach

- 1. A64FX CPU
- 2. Compiler and Runtime
- 3. LLIO (Lightweight Layered IO-Accelerator)

A64FX CPU

Achieves high performance in HPC and AI applications

- Arm Scalable vector extension (SVE), high-bandwidth caches and memory
- (D|S|H)GEMM and INT (16b/8b) GEMM > 90%, STREAM Triad > 80%

	A64FX (Post-K computer)	SPARC64 VIIIfx (K computer)	12x Computing Cores + CMG 1x Assistant Core COre Core Core Performance 512-bit wide SIMD Core
ISA (Base + Extension)	Armv8.2-A + SVE	SPARC-V9 + HPC-ACE	> 2.7 TFLOPS 2x FMAs
Process Technology	7 nm	45 nm	> 11.0 TB/s (BF ratio = 4) GB/s GB/s
Peak Performance	> 2.7 TFLOPS	128 GFLOPS	L1D 64KiB, 4way
SIMD	512-bit	128-bit	L2 Cache >115 GB/s (BF ratio = 1.3) GB/s GB/s L2 Cache 8MiB, 16way
# of Cores	48+4	8	Memory 256
Memory Peak B/W	1024 GB/s	64 GB/s	1024 GB/s (BF ratio =~0.37) GB/s
			CMG: Core Memory Group HBM2 8GiB

Compiler and Runtime

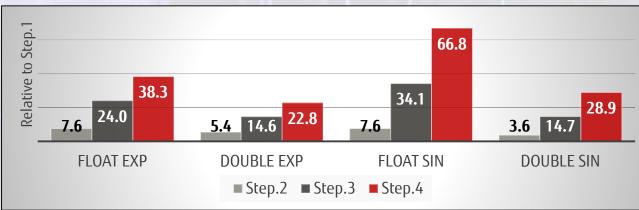
FUJITSU

Fujitsu's compiler and runtime libraries exploit the hardware capabilities along three dimensions

Support Fortran, C/C++, Python software development environment

E M	Memory access performance	Computational performance	Thread-parallel performance
Compiler & Runtime	Software prefetchLoop-blocking	 Software pipelining with Loop fission Auto-vectorization with SVE 	 CMG & SVE optimized math library OpenMP 5.0 API & fast barrier
Hardware capabilities	 Hardware prefetch Stacked memory; HBM2 	 Out-of-order 512-bit SVE 	 48 cores in 4 CMG Inter-core barrier

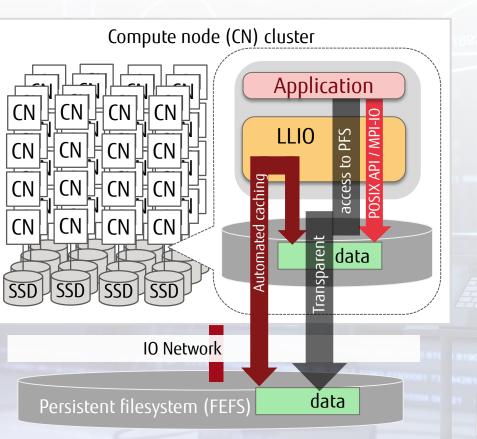
Preliminary Performance Evaluation Results



A64FX's instruction set and compiler achieve high performance on loop of math function

Step 1. <u>Armv8</u> coding

- **Step 2.** + <u>SVE</u> + <u>accel.Instruction</u> coding
- **Step 3.** + <u>Inlined</u> by compiler


Step 4. + Applied <u>software pipelining</u> by compiler

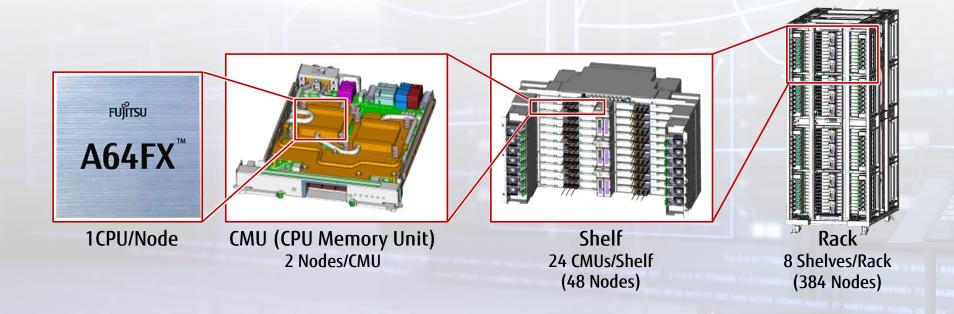
LLIO (Lightweight Layered IO-Accelerator)

Boosts I/O performance w/o modifying Apps

- Exploits SSD as a shared cache of persistent filesystem (PFS)
- Provides two kinds of temporary filesystems for I/O optimization
 Shared/Local temporary filesystem

Post-K Computer Current Status

- CPU powered-on, OS running
- System design verification and testing are underway
- Preliminary performance evaluation started



Development Proceeding on Schedule

Post-K Computer Hardware Features

Post-K computer's high-density mounting achieves over 1 PFlops per rack

9

(Cont.) Post-K Computer Hardware Features

FUJITSU

High-density mounting, shortened transmission distance between CPUs

Cable box

10

- High-efficiency water cooling unit on the CPU memory unit (CMU) provides 100% water-cooling
- The back-to-back layout and cable box shorten the cables length
- Single action connection of electric connectors and water couplers achieve compact CMU

CMU

Electric connectors and water couplers

High-efficiency water cooling unit

Conventional connection

Post-K computer connection

FUJITSU

shaping tomorrow with you