

Post-K Supercomputer Overview

Post-K supercomputer overview

- Developing "Post-K" as the successor to the K computer with RIKEN
- Developing HPC-optimized high performance CPU and system software
- Selected ARMv8 with SVE ISA for the CPU

Post-K goals and approaches

Goals

High application performance

Good power efficiency

Application portability

Advance from K computer and PRIMEHPC FX series

Good usability for users

Approaches

Develops a custom high performance & scalable CPU

[High performance] Post-K CPU core design[Scalability & Power efficiency] SMaC based Post-K CPU design

Advances system software for Post-K

Optimizes for higher application performance and scalability

Complies with standard specifications for usability and application portability

Post-K CPU core design

- Developing high performance CPU adopting ARMv8 with SVE ISA
 - Contributing to development of SVE (Scalable Vector Extension) with ARM
- Inheriting and enhancing the preceding CPUs' functions

HPC apps acceleration	Post-K	FX100	FX10	K computer
Base ISA + SIMD Extensions	ARMv8+SVE	SPARCv9+HPC-ACE2	SPARCv9+HPC-ACE	SPARCv9+HPC-ACE
SIMD width [bit]	512	256	128	128
Gather Load and Scatter Store	✓ Enhanced	✓	-	-
FMA: Floating-point multiply and add	✓	✓	~	✓
Packed Single Precision SIMD	✓ Enhanced	•	-	-
Math. acceleration primitives*	✓ Enhanced	✓ Enhanced	~	✓
Inter-core barrier	V	•	~	✓
Sector cache	✓ Enhanced	✓ Enhanced	~	✓
Hardware "prefetch" assist	✓ Enhanced	✓ Enhanced	~	✓

^{*}Mathematical acceleration primitives include trigonometric functions, exponential functions, etc.

SMaC based Post-K CPU design

Improves Fujitsu's proven μ-architecture, SMaC(Scalable Many Core) optimized for HPC applications

SMaC example for FX100

Middle-sized, general purpose, out-of-order, superscalar processor core

- Good performance for variety of apps
- Low power with power management functions

Assistant core

- OS jitter reduction and assistance for IO, async MPI
- Scalable for massively parallel system

Core Memory Group (CMG), many core building block, ccNUMA thin connection

- Hierarchal structure for hybrid parallel model
- Optimized area and performance

Advanced system software for Post-K

- Developing based on co-design scheme with application developers
- Keeping application portability by providing programming environment

Optimizes for higher application performance and scalability

- Develops HPC-optimized technologies
- Enhances the features of K computer, PRIMEHPC FX10/FX100 systems

Hardware:

- Fujitsu-designed CPU with SVE
- Tofu 6D mesh/torus interconnect

System software:

- McKernel with Zero OS jitter
- Distributed file system FEFS
- Parallelizing compilers
- Tuned MPI libs
- Management software

Complies standard specifications for usability and application portability

- Compliance with ARM standard platform specifications
 - To co-operate ARM/Linux community and utilize system software and OSSs
 - To ensure binary level application portability

• ISA ARMv8-A with SVE

• System architecture SBSA level3, SBBR

Firmware interface UEFI, PSCI

• API, library Linux APIs, Standard MPIs Standard math. libs

Languages

Fully supported: Fortran 2008, C11, C++14, OpenMP 4.5

Partially supported: Fortran 2015, C++1z, OpenMP 5.0

shaping tomorrow with you