AICS·····

Performance Improvement of Application on the K computer

November 13, 2011 Kazuo Minami Team Leader, Application Development Team Research and Development Group Next-Generation Supercomputer R & D Center RIKEN

RIKEN Advanced Institute for Computational Science

Difficulties when you use Modern Supercomputers

Improvement of Applications Performance at RIKEN

Purpose

To check application's performance, prior to the operation of K computer
Select some applications (Nano/Engineering/Earth Science/Physics)

• By considering, application's domain and computing characteristics; $B \neq F$ or parallelism

RIKEN Advanced Institute for Computational

Target Applications

Program Name	Discipline	Outline	Behavior in Computational Science	Scheme
NICAM	earth science	Nonhydrostatic ICosahedral Atmospheric Model (NICAM) for Global-Cloud Resolving Simulations	In Earth Simulator the peak performance ratio was 25–40%, however, large value of Byte/FLOP is required. The single CPU tuning is essential by using K computer.	FDM (atmosphere)
Seism3D	earth science	Simulation of Seismic-Wave Propagation and Strong Ground Motions		FDM (wave)
FrontFlow/ Blue	engineering	Unsteady Flow Analysis based on Large Eddy Simulation (LES)		FEM (fluid)
PHASE	material science	First-Principles Simulation within the Plane-Wave Pseudo potential formalism	Single processor tuning is available by applying matrix multiplication to the kernel. However, the lack of parallelism occurs in the original parallel approach. The development of parallelism is required.	DFT (plane wave)
RSDFT	material science	Ab-initio Calculation in Real Space		The real- space DFT
LatticeQCD	physics	Study of elementary particle and nuclear physics based on Lattice QCD simulation	Single processor tuning by using K computer and parallel tuning based on Tofu-topology are necessary.	QCD

Collaboration

Application Developers

- Studying massive parallelism and high-performance
- Developing the code using test samples

Studying massive parallelism and high-performance Trial parallelization and performance tuning based on knowledge of hardware

RIKEN

Procedures of Performance Improvement

Analysis of Application Evaluation of the kernel

Parallelization & Single CPU Tuning

3.1 Parallelization

Key points for aiming at High Parallel

- (1) Does non-parallel parts remain there? If so, no problem?
- (2) Is load imbalance getting worse at high parallel?
- (3) How much does the neighboring comm. time occupy at high parallel?
- (4) How much does the global comm. time increase at high parallel ?

These evaluations are crucial

Approach

- (1) Setting a target problem
- (2) Making a test sample (100 parallelism)

Strong scaling: measuring performance by increasing parallelism under the constant scale of the whole problem Weak scaling: measuring performance by increasing parallelism under the constant scale of one CPU problem

- (3) Measuring and evaluating the test sample; execution time, load imbalance, communication time between neighbors, global communication
- (4) If no problem, measuring parallel performance through weak scaling
- (5) If not, measuring parallel performance through strong scaling and find its

ak scaling aling and find its cause RIKEN Advanced Institute for Computational Science

3.2 Single CPU Tuning

(1) Extract kernels

 \rightarrow making them the independent test programs

(2) Trials for increasing performance

 \rightarrow applying ideas using K computer

(3) Estimate the work volume

- → make it clear that what the impact on the whole code is and estimate the amount of work volume for introducing the performance model.
- (4) Fix the model of increasing performance
 - \rightarrow evaluate the tests and select and fix the best.

AICS.....

the best.

Mounting high-performance model and Tuning for K computer

Example of Performance improvement

RSDFT

Seism3D

RSDFT

 Real Space DFT(RSDFT) is a simulation technique most suitable for massively-parallel architectures to perform firstprinciples electronic-structure calculation based on density functional theory.

DFT (Density Functional Theory)

-Solving Kohn-Sham equation-

105.....

Variational principle of the total energy with respect to the electron density leads to the Kohn–Sham equation, $n(\mathbf{r}) = \sum_{i: \text{ occupied}} |\varphi_i(\mathbf{r})|^2$

$$\left[-\frac{1}{2}\nabla^2 + V_{\text{nucl}}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{\text{XC}}[n]}{\delta n(\mathbf{r})}\right] \varphi_i(\mathbf{r}) = \varepsilon_i \varphi_i(\mathbf{r}) \quad .$$

RIKEN Advanced Institute for Computational Scienc

Flow of the SCF calculation

Solving Kohn-Sham equation -RSDFT(Real Space Density Functional Theory code)-

Parallelization and optimization (1/3)

The RSDFT has been

- parallelized by spaces,
- optimized by rewriting matrix-matrix product with BLAS Level3 DGEMM.

10–20% efficiency to the peak performance on PACS–CS and T2K–Tsukuba, which are large scale PC clusters

Parallelization and optimization (2/3)

What is need for an ultra-large-scale simulation on the K computer?

 parallelize by orbitals in addition to parallelization in spaces to attain sufficient parallelism

Kohn-Sham equation
$$\oint_{i}$$
: Orbitals, which are independent $\left[-\frac{1}{2}\nabla^{2} + v_{nucl}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}\right] \varphi_{i}(\mathbf{r}) = \varepsilon_{i} \varphi_{i}(\mathbf{r})$

- optimize load balance of parallel tasks and mapping to the Tofu network
- use highly-tuned DGEMM routine for the K computer
- employ a new eigensolver EIGEN optimized for massively parallel processor

Imamura el al. SNA+MC2010 (2010) cience

Parallelization and optimization (3/3)

- ✓ Global communication among all processors is needed when using only space parallelization.
- It makes communication time increasing.
- Global communication of space and orbital can be reduced by introducing 2 level parallelization of space and orbital.

CS.....

Challenge to 100,000 atoms simulation(1/2)

Measured conditions

- Measured block is "ONE" iteration of SCF
- Model is SiNW with 107,292 atoms
 - ✓ Grids: 576x576x192
 - ✓ Orbitals: 229,824
- Total number of parallel processes: 55,296
 - ✓ Spaces:18,432 x Orbitals: 3
- Total peak performance : 7.07PFLOPS
 - ✓ 55,296 nodes(442,368 cores)

Challenge to 100,000 atoms simulation(2/2)

- Sustained performance is **3.08 PFLOPS** /SCF.
- 43.6 % efficiency to the peak performance.
- Communication cost is 19.0% of all execution times.
- One iteration time of SCF is 5,500 sec. (1.5 hours)

Seism3D

 The Seism3D numerically solves the equation of motion of viscoelastic medium by massively parallelized finite difference method for the simulation of seismic wave propagation from the large earthquake in the heterogeneous earth.

Performance Improvement Result (Tentative)

- Using array fusion, loop division and loop unrolling techniques in order to improve performance in computation parts.
- As a result, 45% speed.

(<.....

In communication part, we are studying an optimal rank mapping on the Tofu interconnect.

<u>Summary</u>

Improvement of Applications Performance at RIKEN

- We are developing the K computer and have to demonstrate its performance by using real applications.
- We have improved performance for selected 6 application in terms of both single CPU and parallel performance since 2009.

Example of Performance improvement

- RSDFT: We obtained a sustained performance of 3.08 peta-flops, or 43.6% efficiency to the peak performance.
- Seism3D:45% speed up

