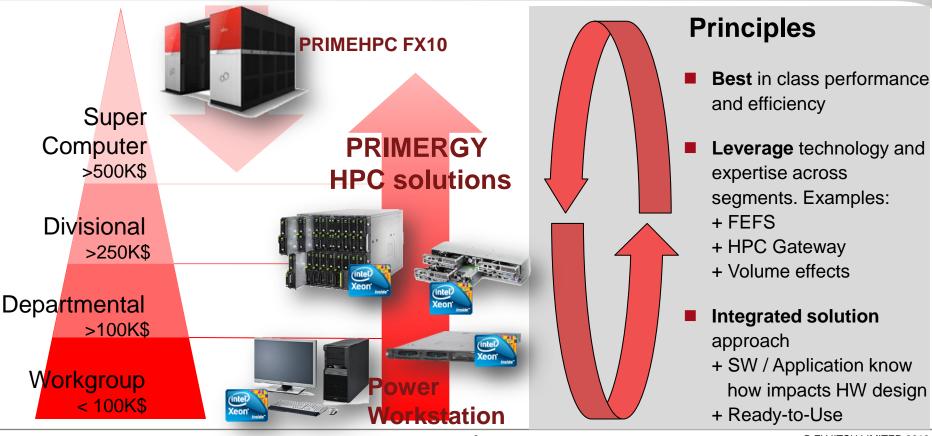
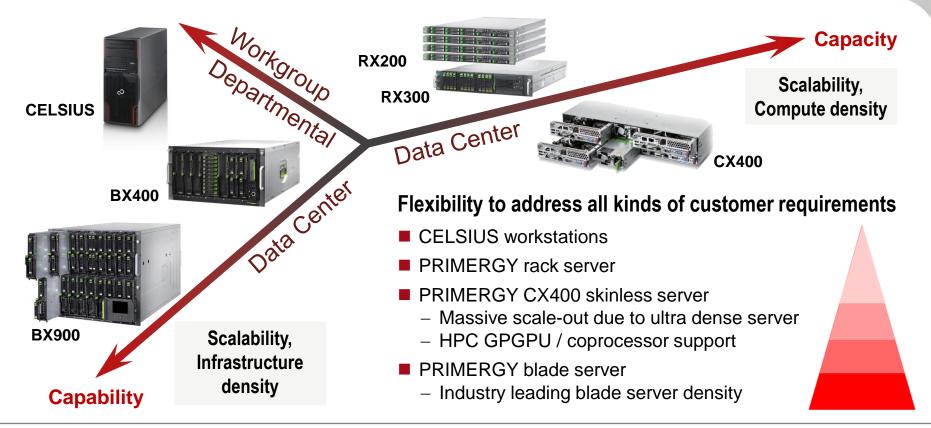


SC13, Denver November 2013

Fujitsu leading in HPC for >30 years

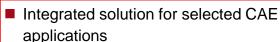


*NWT: Numerical Wind Tunnel


Fujitsu HPC solutions for each problem size

Select Best Fitting Server Technology

Small and Medium Deals


Kolbenschmidt Pierburg

- Integrated Solution selected CAE applications
 - Computational Fluid Dynamics
- Application optimized adapted to specific application requirements
 - Thin nodes for CFD
- Ready-to-Go 1+6 Ansys CFX
 - 6 x RX200 + 1 x RX300 Management Headnode

Porsche 🥞

- Computational Fluid Dynamics
- Structural Analysis
- Application optimized and adapted to specific application requirements
 - Fat nodes for structural analysis (main memory, I/O)
 - Thin nodes for CFD
- 6 x RX300

Siemens CT

 Integrated HPC infrastructure for optimal purchase decisions (BX900)

"Thanks to Fujitsu, we have a stable, predictable and scalable HPC solution that is helping us make more precise simulations of the copper and energy markets. We now know how accurate our forecasts will be and can put a percentage probability on various outcomes. This allows us to make the best decisions in a rapidly changing market."

Dr. Christoph Tietz, Senior Key Expert Engineer, Siemens AG, Corporate Technology

 Meanwhile second order received by Siemens CT, Configuration doubled

Medium and Large Deals

Maruti Suzuki

- Fujitsu qualification by
 - Integrated solution stack (server, storage, interconnect, middleware)
 - Application optimized sizing based on benchmark results
 - Competence and solution stack quality was weighted higher than possible cheapest offer (replacement of sgi)
 - Successful against SGI, HP, IBM, Dell
- Infrastructure based on BX900 (98 nodes) and Eternus storage

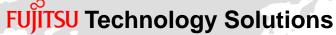
HPC Wales

Distributed HPC infrastructure

- Sophisticated tier model
 - Efficient, transparent access of users to the resources by means of Fujitsu HPC solution stack (HPC Gateway)
- Comprehensive joint engagement
 - Consulting and research collaboration
 - Joint business promotion (econo. growth)
- Infrastructure based on CX400 and BX900,
 - More that **1400 nodes**
 - Eternus and 3rd party storage (DDN)

ANU NCI

National Research Facility


- Capacity and Capability System to address fundamental problems in
 - Climate change, Ocean modeling
 - National water management research
 - Medicine, material sciences, astronomy
- Research collaborations with Fujitsu
 - Open Petascale Libraries
- Infrastructure based on CX400
 - Most powerful system in Australia
 - More that 3500 nodes,
 - non-blocking interconnect

Fujitsu's HPC competency network

FUJITSU Japan

- Global lead in High Performance Computing
- Strategy, Development, Services and Support

- PRIMERGY based HPC Ecosystem
- Services and Support

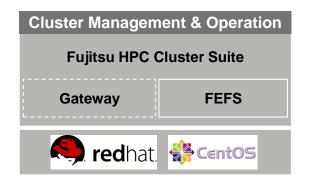
- Benchmarking

FUJITSU Laboratories

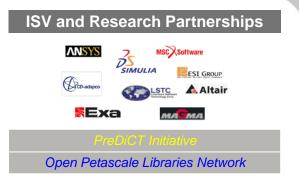
■ Research & Development | AIST

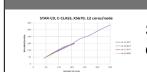
e.g. Open PetaScale Libraries Network

- HPC application champions

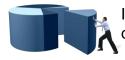

SELECT EXPERT

IIGH PERFORMANCE


Take advantage from a complete HPC offering



Consulting and Integration Services



Sizing, design

300

Proof of concept

Integration into customer environment

Certified system and production environment

Complete assembly, pre-installation and quality assurance

Ready to Operate at delivery

Ready-to-Go

Fujitsu HCS – the total solution approach

Make IT Dynamic – Business Efficiency for HPC Solutions

- Optimal system configuration based on application needs, immediate system readiness and faster deployment
- ➤ Simplifies HPC usage and management for both current and potential users of HPC ("out-of-the-box" operation)

HPC Cluster Suite

- Deployment (based on Fujitsu SVIM and Fujitsu CDM)
 - Integrates ServerView supplied drivers to the CDM repository
- Cluster Management
 - Node configuration
 - · Monitoring and Alerting
- Comprehensive software coverage
 - Flexible choice of Workload Manager
 - Libraries, Compilers
- Support for Parallel File Systems

Value Add / Differentiation by Fujitsu

HPC Gateway - Integrated intuitive interface

Provides simplicity in using the HPC Cluster and Application

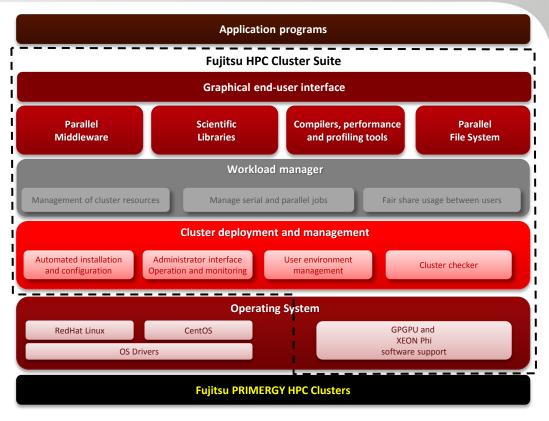
Use resources more effectively

Broaden HPC and process reuse

Share and exchange data more widely

FEFS - optional Parallel File System

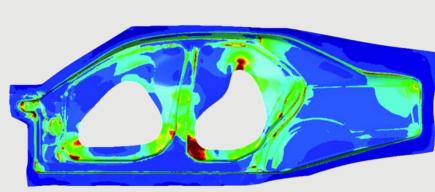
Single file namespace across all nodes Increases Storage performance


Required in large or high load I/O configurations

Fujitsu Exabyte File System - FJJ developed (Lustre based)

The Fujitsu HPC Cluster Suite (HCS)

- Comprehensive software stack for managing Fujitsu
 PRIMERGY HPC clusters
 - Easy-to-use cluster management
 - Popular workload managers
 - General HPC Open Source Software
 - Highly scalable parallel file system
 - Graphical end-user interface for simplified usage
- Alliance with leading ISVs
- Fully validated HPC solution



Leveraging expertise

High performance computing in digital manufacturing

Small manufacturers need lower cost, lower risk, and more expertise.

Source: Intersect360 Research

Case Study

Company

- Provide structural design and simulation services to automotive suppliers
- Small company (15 employees) designs tools to form (stamp) car parts
- Compute-intensive process demanding highly precise modeling (<1mm)

Challenges

- Low precision single run already takes24 hours on 8-core workstations
- Results further refined by customer using LS-DYNA software, increasing overall project time
- Not feasible to obtain same customer resolution internally; would take up to 1 week elapsed per run

Re-structure end-to-end process

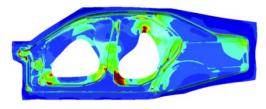
Objective

Provide better quality, more accurate, results to reduce/eliminate time for subsequent detailed simulations by customer

Solution

Running LS-DYNA code on HPC clusters reduces overall job elapsed time and creates a new more valuable and sustainable overall process

6-7 days



4 weeks

Design stamping form/tool

Optimize form/tool

Finalize design

Detailed simulation

Intel® Xeon® processor E5 PRIMERGY CX 8 nodes

5 – 6 hours

Case Study

Company

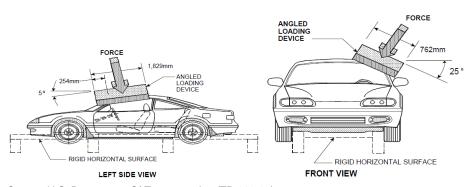
- Specialists in CAD and CAE services to automotive vendors (15 employees)
- Use a variety of application softwaredepends on customer requirements
- Focus on car body impact behaviorhighly compute-intensive activities

Challenges

- Want to offer automatic design optimization – shape, weight, variants
- Turnaround of 16-18 hours per job on current workstations make optimization studies impractical
- Now more competitors for the current basic engineering services

Innovate with new optimization studies

Objective


Design a weight-optimized rollover protection system, respecting FMVSS 216 crush test

Solution

Calculation time for multiple simultaneous load cases cut by 75% on multi-node cluster

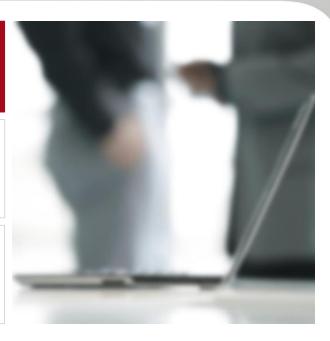
18 hours

Intel[®] Xeon[®] processor E5

PRIMERGY CX 8 nodes

Source: U.S. Department Of Transportation (TP-216-05)

Economic value


Precision upstream design increases service value and status

Differentiating services through technology leadership

D+B customers no longer refining results, saving them time and cost

OK Engineering service quality and speed raised above competition

New process is the basis for D+B to obtain preferred supplier status Service portfolio is broadened with new competences

Patterns of Expertise

Democratization

Systematic methods

Organized activity

Dynamic scale

Process-oriented

Service approach

Multi-application

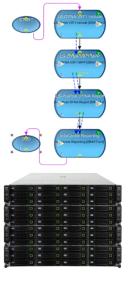
Network neutral

Common needs for individual and team approach to HPC application methods and usage.

Industrialising Expertise

Capturing process expertise

Structure and encode business processes as automated transferable workflows Allows users to focus on research and analysis – eliminates low-level actions, increases productivity


Systematic deployment of best practice and expert methods, to non-experts and other experts

PRIMERGY HPC Gateway and Application Catalogue

Pre-built workflow packages from Fujitsu Application Catalogue site

Import into your own HPC Gateway system

Productivity from first login with HPC expert processes

Deploying Expertise: Built Environment

Architect, Bureau

- Small to medium businesses, mostly local
- Graphical design workstations, potentially no HPC data centre
- Contracted to constructors, local/state government

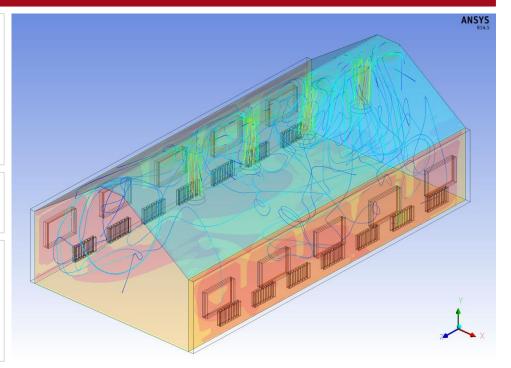
Constructor

- Large organizations, potentially multinational
- HPC can be distributed among departments
- Constructing offices, stadia, airports, stations, retail

Reference model for Solution Design

HVAC Model – Same dimensions and physics as current production workloads

Model setup


The basis of this study was a heating, ventilation and air-conditioning (HVAC) model for simulation with the ANSYS Fluent CFD code. Geometry based on a large meeting room or office floorplan. Radiators and fans are placed within the building, and a variable external load was applied.

Mesh

Cells: 7,897,612 Nodes: 9,679,421

Physics

Transient simulation with explicit time stepping for 12 hours. Full solar load model.

Target workloads

Construction type	Private House	Shopping Center	Stadium
Overall project duration	2 weeks	3 months	18 months
Model size (number of cells)	4 million	15 million	60 million
Ideal simulation phases	Effective number of jobs		
Problem set up (Steady state)	10	15	25
Design of Experiment (DoE), steady-state	80	150	200
Robust Design Optimization (RDO), steady-state	40	80	140
Transient scenarios	5	10	15
DoE (transient)	15	50	100
Estimated ideal project workload	150	305	480
	Estimated Total Computational Time		
Hours on a single node	2,335	27,780	137,800
Months on a single node	3	39	191
Tuned cluster size – number of compute nodes	8	24	56
Total elapsed hours	294	1,158	2,461
	0.4 months	1.5 months	3.4 months

Sector-Ready Solutions

Components selected for optimal price-performance matched to real models and sector workload

Higher user productivity from HPC Gateway pre-built workflow packages for ANSYS Fluent

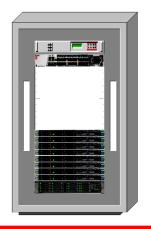
Standardized methods to helps even new HPC users to run large simulation workloads

Integrated HPC architecture with user-ready middleware – lowers acquisition risk and reduces up-front effort

Factory-installed user environment for immediate project readiness and fast-start application usage

READY High Performance Computing with HVAC workload optimized HPC Solutions

Integrated HPC cluster solution optimized for HVAC¹ applications using ANSYS® Fluent software


Configuration (1) based on

- Model size² (typical) Number of cells: 4 million
- Estimated ideal project workload²: 165 jobs

Configuration optimized for ANSYS® Fluent software

¹Heating, Ventilation and Air-Conditioning ²see White Paper for further details

At a glance

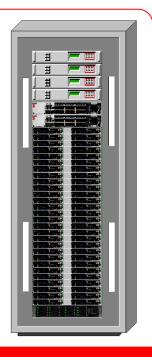
Configuration: 1HN 08CN ANSYS HVAC 04M cells

- 8x PRIMERGY RX200 S8 compute nodes, with 2x Intel Xeon processor E5-2670v2 2.5 GHz 10C/20T 8x 8GB 1866MHz, 1x SATA250GB, IB HCA 40Gb 1 port QDR
- 1x PRIMERGY RX300 S8 head node with 10TB disks for storing data
- InfiniBand interconnect
- Fujitsu HPC Cluster Suite Basic Edition, including TORQUE batch resource manager and HPC Gateway Basic Edition; option for ANSYS® CFD components from the standard Gateway application catalogue

PRIMERGY x86 HPC. Industrializing Expertise

READY High Performance Computing with HVAC workload optimized HPC Solutions

Integrated HPC cluster solution optimized for HVAC¹ applications using ANSYS® Fluent software


Configuration (3) based on

- Model size² (typical)
 Number of cells: 60 million
- Estimated ideal project workload²: 480 jobs

Configuration optimized for ANSYS® Fluent software

¹Heating, Ventilation and Air-Conditioning ²see White Paper for further details

At a glance

Configuration: 1HN 56CN ANSYS HVAC 60M cells

- 56x PRIMERGY CX250 S2 compute nodes, with 2x Intel Xeon processor E5-2670v2 2.5 GHz 10C/20T 8x 8GB 1866MHz, 1x SATA250GB, IB HCA 40Gb 1 port QDR
- 1x PRIMERGY RX300 S8 head node with 10TB disks for storing data
- InfiniBand interconnect
- Fujitsu HPC Cluster Suite Advanced Edition with full-featured PBS Professional batch resource manager and Gateway workflow development tools

PRIMERGY x86 HPC. Industrializing Expertise

shaping tomorrow with you