

FUJITSU Supercomputer PRIMEHPC FX1000 and FX700

Toshiyuki Shimizu

Nov. 21st, 2019

FUJITSU LIMITED

Exhibitor Forum, SC19, Nov. 21, 2019

Copyright 2019 FUJITSU LIMITED

Supercomputer "Fugaku", Formerly Known as Post-K Fujirsu

High app performance using co-design approach

- The best GF/W, Green500 #1 (prototype)
- The first Armv8 + SVE CPU, A64FX

Focus	Approach
が介: Application performance	Co-design w/ application developers and Fujitsu-designed CPU core w/ high memory bandwidth utilizing HBM2
کی Power efficiency	Leading-edge Si-technology, Fujitsu's proven low power & high performance logic design, and power-controlling knobs
小 Usability	Arm [®] v8-A ISA with Scalable Vector Extension ("SVE"), and Arm standard Linux

FUJITSU Supercomputer PRIMEHPC FX1000 and FX700

New PRIMEHPC utilizes "Fugaku" technologies

Fujitsu PRIMEHPC FX1000

Fujitsu PRIMEHPC FX700

8-CPU 2U rack mountable air cool

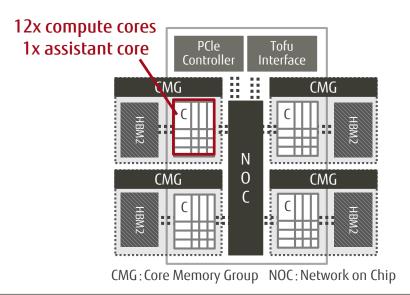
384-CPU / rack, water cool, highest performance

384-CPU / rack, water cool, highest-performance

Fugaku「富岳」

 $\mathcal{O}_{\mathcal{O}}$

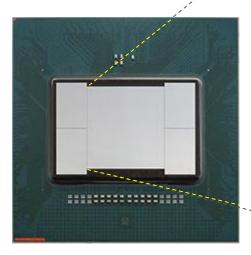
Concept and	Specifications		JITSU
	• Kuisu		
Model	FX700	FX1000	Fugaku「富岳」
Concept	Cooperation with standard technologies	Application performar and sca	
CPU	A64FX x8	A64FX x3	884 / rack
Interconnect	InfiniBand EDR	Tof	uD
Cooling	Air	Wa	ter
Dimension	2U rack mountable	Custom: 800 mm x 1,	400 mm x 2,000 mm
Software stack	OpenHPC, BCM	Fujitsu Technical	Computing Suite


A64FX CPU Summary

Arm SVE, high performance and high efficiency

- DP performance 2.7+ TFLOPS, >90%@DGEMM
- Memory BW

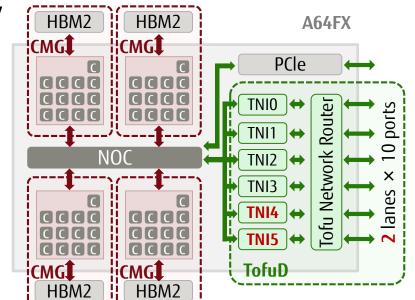
1024 GB/s, >80%@STREAM Triad



	A64FX
ISA (Base, extension)	Armv8.2-A, SVE
Process technology	7 nm
Peak DP performance	2.7+ TFLOPS
SIMD width	512-bit
# of cores	48 + 4
Memory capacity	32 GiB (HBM2 x4)
Memory peak bandwidth	1024 GB/s
PCIe	Gen3 16 lanes
High speed interconnect	TofuD integrated

A64FX Leading-edge Si-technology

- TSMC 7nm FinFET & CoWoS
 - Broadcom SerDes, HBM I/O, and SRAMs
 - 8.786 billion transistors
 - 594 signal pins

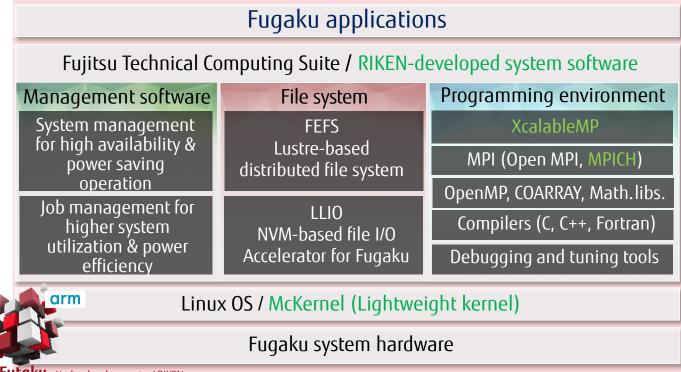


A64FX Tofu Interconnect D

Integrated w/ rich resources

- Increased TNIs achieves higher injection BW & flexible comm. patterns
- Increased barrier resources allow flexible collective comm. algorithms
- Memory bypassing achieves low latency
 Direct descriptor & cache injection

	TofuD spec.
Port bandwidth	6.8 GB/s
Injection bandwidth	40.8 GB/s
	Measured
Put throughput	6.35 GB/s
Ping-pong latency	0.49~0.54 µs
One hop latency	Approx. 80 ns



Fugaku System Software

RIKEN and Fujitsu are developing a software stack for Fugaku

FX1000 System Software

RIKEN developed system software could be used as Open Source Software

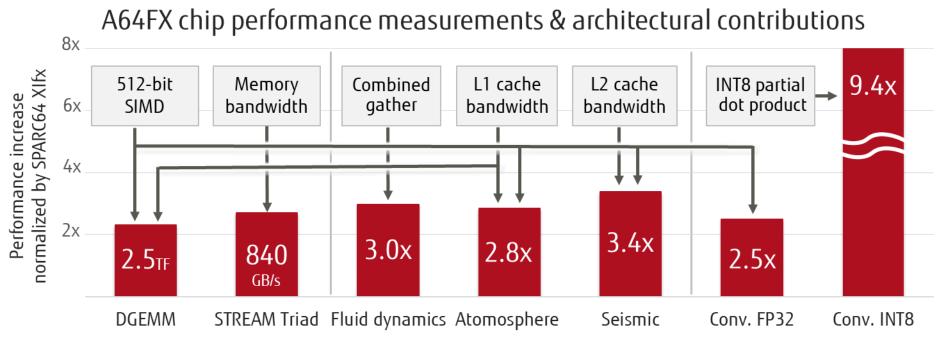
Applications								
Fujitsu Technical Co	Fujitsu Technical Computing Suite / RIKEN-developed system software							
Management software File system Programming environmen								
System management		XcalableMP						
for high availability & power saving	FEFS	MPI (Open MPI, MPICH)						
operation	Lustre-based	OpenMP, COARRAY, Math.libs.						
Job management for higher system	distributed file system	Compilers (C, C++, Fortran)						
utilization & power efficiency		Debugging and tuning tools						
Linux OS / McKernel (Lightweight kernel)								
FX1000 hardware								

PRIMEHPC FX700

- High-performance Arm server featuring the A64FX CPU
 - Same CPU as Fugaku and FX1000
 - Easy deployment and flexible configuration
 - Air-cooled, 2U rack-mountable chassis
 - From 2 to 8 CPUs per chassis

Utilize open and standard technologies

- InfiniBand EDR
- RHEL 8, OpenHPC, Bright Cluster Manager, etc.

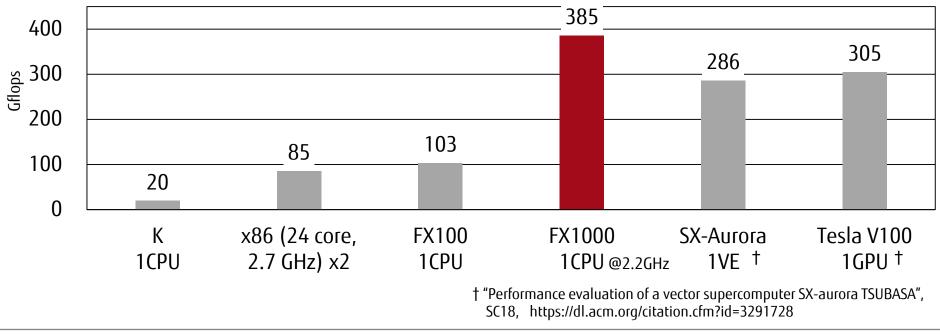

HHHL PCIe card (*option)

4 blades in 2U chassis

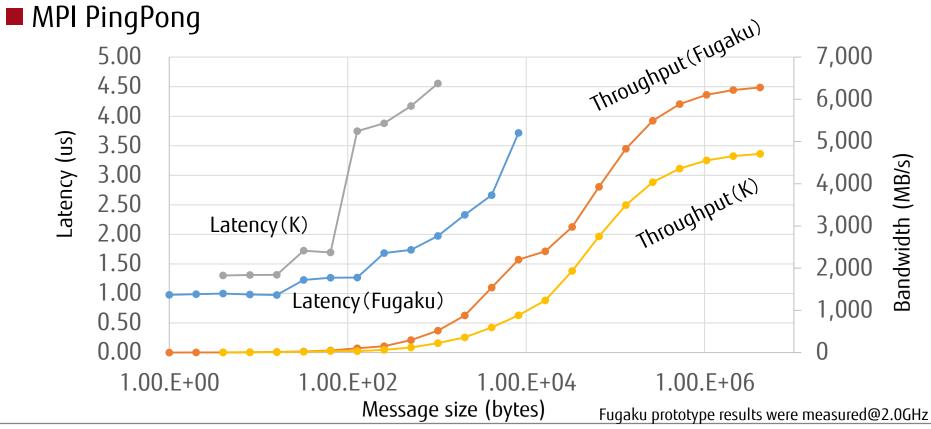
CPU package w/ heatsink

A64FX CPU Performance Evaluation (1/2)

Over 2.5x faster in HPC & AI benchmarks than SPARC64 XIfx


All benchmarks were measured@1.8GHz

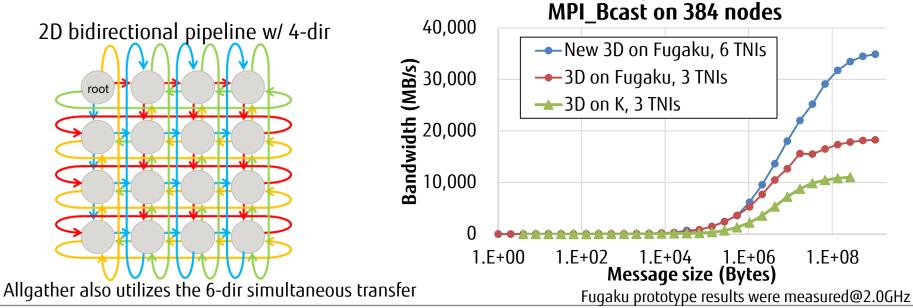
A64FX CPU Performance Evaluation (2/2)


.

Himeno Benchmark

Stencil calculation to solve Poisson's equation by Jacobi method

TofuD: MPI_Send/Receive Latency and BW

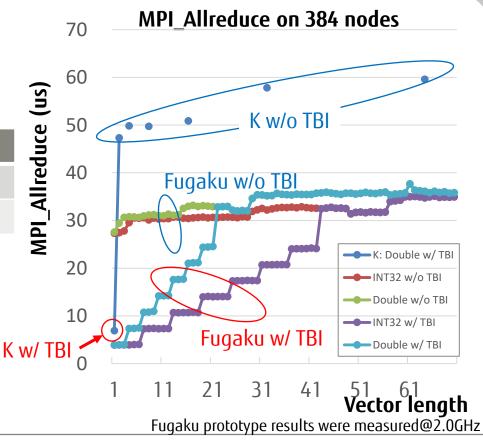


FUITSU

TofuD: MPI_Bcast Performance

New 3D bidirectional pipeline algorithm using 6 TNIs (Tofu Network IF)

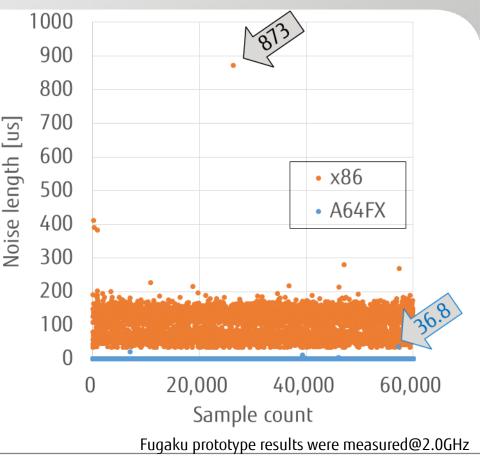
- Sends data to six, $\pm X$, $\pm Y$, $\pm Z$, directions simultaneously
- Reduces the constant overhead by up to "X+Y+Z-3" long pipelines


TofuD: MPI_Allreduce Performance

of items supported in hardware reduction, Tofu barrier interface, TBI

	K	Fugaku	Usage & func @ Fugaku
FP	1	3	Complex + Double
INT	1	6	3x w/ MAXLOC

MPI library implementation
 Choose the best algorithm for VL
 TBI, Recursive doubling, Reduce & bcast
 Multiple TBI calls (K calls TBI once)


Copyright 2019 FUJITSU LIMITED

Optimization for Extreme Scalability & Efficiency

- OS jitter reduction
 - Utilizes Tickless mode of Linux
 - Stops unneeded daemons & services
 - Offloads OS interrupts & daemons to the A64FX assistant cores

OS jitter measurement by FWQ

	Mean noise ratio	Longest noise
Fugaku	7.1E-07	37 μs
К	6.6E-5	85 μs
×86	3.7E-03	873 μs

Green500, Nov. 2019

A64FX prototype – Fujitsu A64FX 48C 2GHz ranked <mark>#1</mark> on the list

768x general purpose A64FX CPU w/o accelerators

- 1.9995 PFLOPS @ HPL, 84.75%
- 16.876 GF/W
- Power quality level 2

HOME

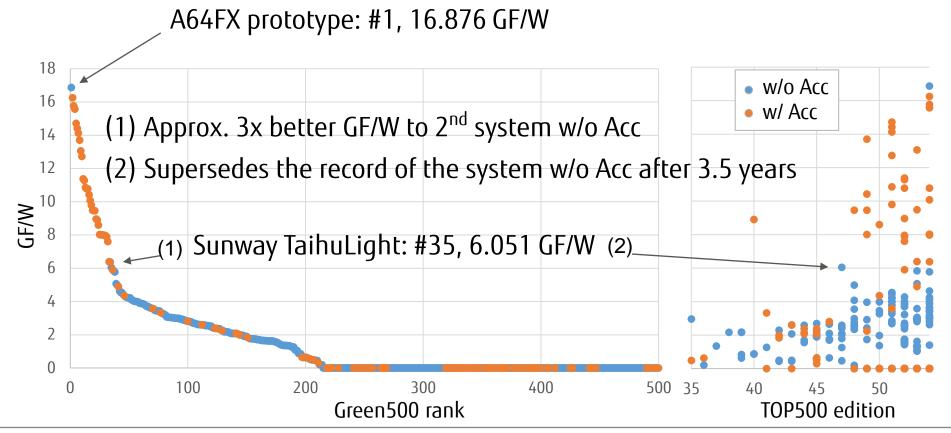
GREEN500 LISTS - RESOURCES - ABOUT - MEDIA KIT

Home / Lists / November 2019

NOVEMBER 2019

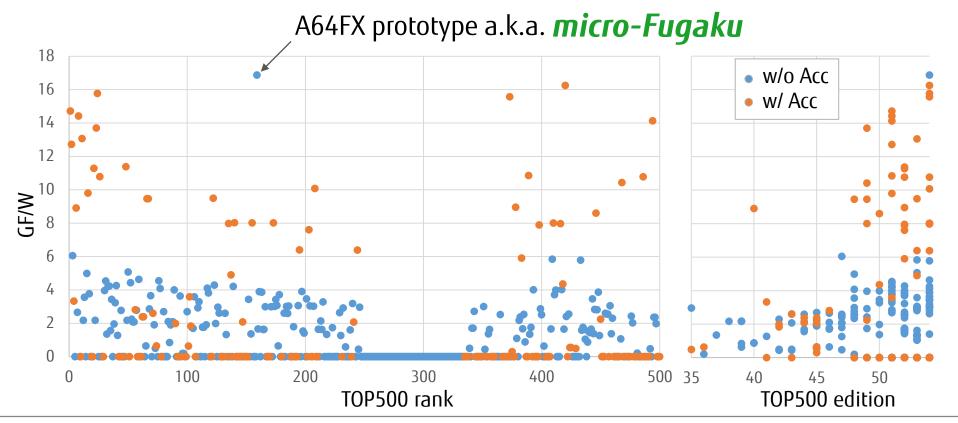
- The most energy-efficient system and No. 1 on the Green500 is a new Fujitsu A64FX prototype installed at Fujitsu, Japan. It achieved 16.9 GFlops/Watt power-efficiency during its 2.0 Pflop/s Linpack performance run. It is listed on position 160 in the TOP500.
- In second position is the NA-1 system, a PEZY Computing / Exascalar Inc. system which is currently being readied at PEZY Computing, Japan for a future installation at NA Simulation in Japan. It achieve 16.3 GETOSPXH to power efficiency. It is on position 421 in the TOP500
- The No 3 on the Green500 is AiMOS, a new IBM Power systems at the Rensselaer Polytechnic Institute Center for
 Computational Innovations ICCI), New York, USA. It achieved 15.8 GFlops/Watt and is listed at position 25 in the TOP500

Green500 List for November 2019


Listed below are the November 2019 The GreenS00's energy-efficient supercomputers ranked from 1 to 10.

Note: Shaded entries in the table below mean the power data is derived and not meassured.

	T0P500			Rmax		Power Efficiency
Rank	Rank	System	Cores	[TFlop/s]	[kW]	(GFLops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 20Hz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AIMOS - IBM Power System AC922, IBM POWER9 20C 3.456Hz, Dual-rail Mellanox EDR Infiniband, NNDLA Volta (V100, IBM Rensealear Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771
4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.46Hz, Infiniband EDR, NVIDIA Tesla V100 SXM2, IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574
5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/SC/Oak Ridge National Laboratory United States		148,600.0		
		https:	//ww	w.to	р5()0.org/



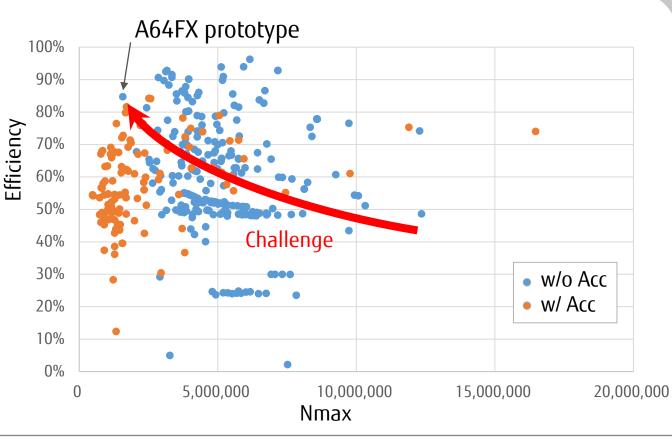
SC19 Green500 ranking and 1st appeared TOP500 edition Fujitsu

SC19 TOP500 ranking and GF/W

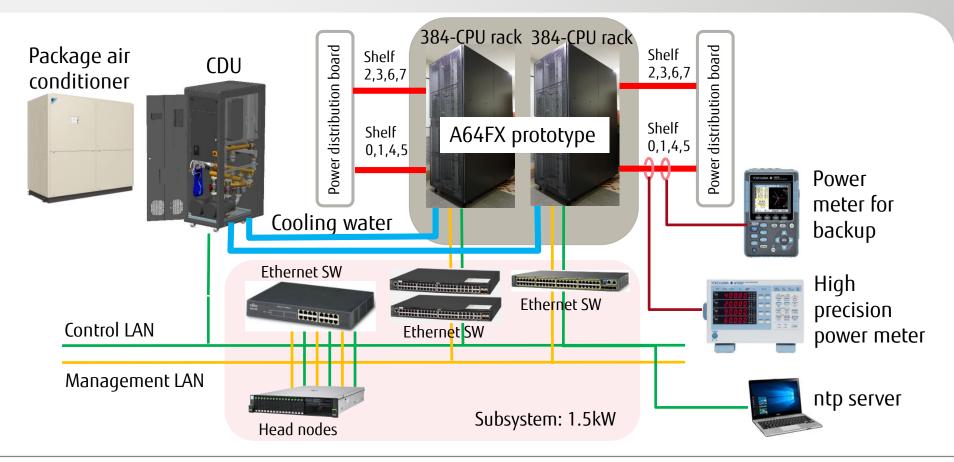
How Fujitsu worked

- Key for GF/W is {energy efficient HW} x {parallel/exec efficiency}
- A64FX is designed for energy efficient
 - Fujitsu's proven CPU microarchitecture & 7nm FinFET
 - SoC design: Tofu interconnect D integrated
 - CoWoS: 4x HBM2 for main memory integrated
- Superior parallel/exec efficiency
 - Math. libraries are tuned for application efficiency
 - Comm. libs are also tuned utilizing long experience of Tofu @ K computer
 - Performance tuning is efficiently done utilizing rich performance analyzer/monitor

SC19 TOP500 calculation efficiency



Superior efficiency 84.75% with small Nmax


Results of:

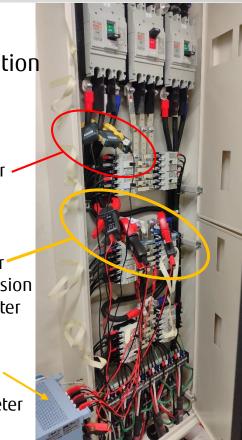
Optimized communication and math. libs

 Optimization of overlapped communication

Fujitsu Numazu Plant: A64FX prototype system

FUITSU

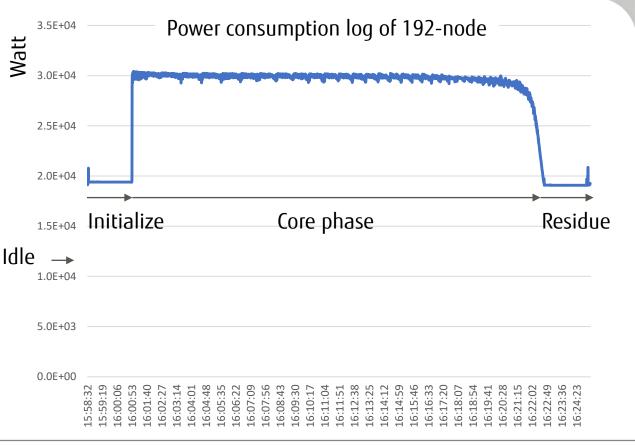
A64FX prototype @ Fujitsu Numazu Plant



Power distribution board

Clamps for • backup

Clamps for high precision power meter


High precision power meter

Power consumption of ¼ A64FX prototype system

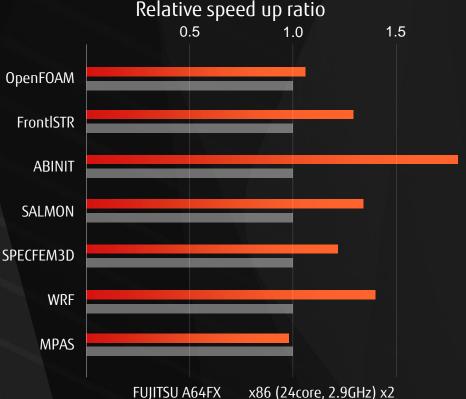
Steady and high efficient computation are observed even from the point of power consumption

 Ave. of core phase: 118.48 kW / system
 Idle power: 46.92 kW / system

Porting status @ Arm HPC Users Group (http://arm-hpc.gitlab.io/)

Application	Program	GCC	LLVM	Arm	Fujitsu	Rec
LAMMPS	C++	Modified(C)	Modified(C)	Modified(C)	Modified (C)	Alre
GROMACS	С	Modified(C)	Modified(C)	Modified(C)	Modified (C)	No
GAMESS	Fortran	Modified(C)	Modified(C)	Modified(C)	Modified (C)	
OpenFOAM	C++	Modified(C)	Modified(C)	Modified(C)	Modified (C)	
NAMD	C++	Modified(C)	Modified(C)	Modified(C)	Modified (C)	
Siesta	Fortran	Yes	No	No	Modified(C)	
WRF	Fortran	Modified(C)	Modified(C)	Modified(C)	Modified (C)	
Quantum ESPRESSO	Fortran	Yes	Yes	Yes	Yes	
NWChem	Fortran	Yes	Modified(C)	Modified(C)	Modified(S)	
ABINIT	Fortran	Yes	Modified(S)	Modified(S)	Modified(S)	
СР2К	Fortran	Yes	No	No	Modified(S)	
NEST	C++	YES	Modified(C)	Modified(C)	Modified (C)	
USQCD (MILC)	С	Yes	Modified(C)	Modified(C)	Modified (C)	Yes Mod
BLAST	C++	Yes	Modified(C)	Modified(C) Modified(C)		Mod
OpenMX	С	Yes	ongoing	ongoing	Yes	No Onac

Registered by Fujitsu Already registered Not registered

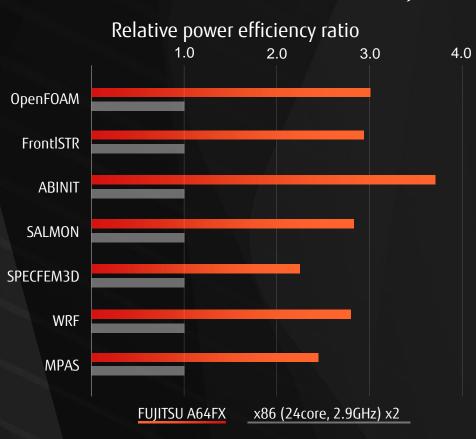

Yes : Ok in as is Modified(C): Build env. modification Modified(S): Src code modification No : Issues found Ongoing : Ongoing

Exhibitor Forum, SC19, Nov. 21, 2019

A64FX CPU Performance Evaluation for Real Apps

Open source software, Real apps on an A64FX, 2.2GHz of PRIMEHPC FX1000

- Up to 1.8x faster over the latest x86 processor (24core, 2.9GHz) x2
- High memory B/W and long SIMD length of A64FX work effectively with these applications



A64FX Superior Power Efficiency for Real Apps

FUJITSU

Performance / Energy consumption on an A64FX, 2.2GHz of PRIMEHPC FX1000

- Up to 3.7x more efficient over the latest x86 processor (24core, 2.9GHz) x2
- High efficiency is achieved by energy-conscious design and implementation

Line-up of OSS on AArch64 According to Spack Recipes

RIKEN and Fujitsu are maintaining and working to increase the number of OSS packages to be built / compiled for *aarch64*

of OSS to be built w/ compilers

Target	Fujitsu	GCC	Clang
aarch64	2,072/3,451 (60%)	2,387/3,451 (69%)	288/3,451 (8.4%)
x86	-	2,479/3,451 (72%)	768/3,574 <mark>*</mark> (21%)

Spack Version: 9/6/19, 1:15 AM GMT, *10/31/19, 11:35 PM GMT

List of Open Source Software which can be built on Fugaku

Spack will be used to manage open source software packages on Fugaku. Fugaku users can easily use preinstalled packages and built packages based on Spack recipes. The following list shows the results of buildi ng/compiling packages for aarch64 according to the Spack recipes. Note that the results in this list do not guarantee that each package will work properly.

Build success rate per compiler

- Fujitsu Compiler: 2072/3451(60.04%)
- GCC: 2387/3451(69.17%)
- Clang: 288/3450(8.35%)

		Search

Click

Last Modified:	11	./ 14/	19,	1:10	AIM	GMI
Spack Versio	n:	9/6/	19,	1:15	AM	GMT

k	YES/NO	for	further	infomation.	

Package ↓	Version	Fujitsu Compiler	GCC	Clang	
abinit	8.10.3	NO	NO	NO	
abyss	2.1.4	NO	NO	NO	
accfft	develop	NO	YES	NO	
ack	2.22	YES	YES	YES	
activeharmony	4.5	NO	NO	NO	
acts-core	0.10.1	NO	YES	YES	
adept-utils	1.0.1	NO	YES	YES	

https://postk-web.r-ccs.riken.jp/oss/public/

Summary: "Fugaku" and Fujitsu PRIMEHPC FX1000/FX700

- "Fugaku" is designed and runs applications at the highest level performance to be worthy of the name
- Arm HPC ecosystem and expanding apps portfolio are likened to the broad gradual slopes of Mt. Fuji
 - Fujitsu began production of "Fugaku", and announced PRIMEHPC FX1000 and FX700
 - Cray also announced introducing CS500 – Fujitsu A64FX Arm server

https://www.riken.jp/pr/news/2019/20190827_1/

Fujitsu PRIMEHPC

FX1000

 δ

FX700

FUJITSU

shaping tomorrow with you