

3

shaping tomorrow with you

FUJITSU Supercomputer PRIMEHPC FX100

The K computer and the evolution of PRIMEHPC FUÏITSU Fujitsu has been developing supercomputers over 30 years, Postand will continue its development to deliver the best K comp application performance. 0 **C**RIKEN **PRIMEHPC FX100 PRIMEHPC FX10 K** computer

SPARC64 VIIIfx: 8 cores / 128 GF 11 PF, 2010~

SPARC64 IXfx: 16 cores / 236.5 GF 23 PF, 2012~

SPARC64 XIfx: 32 cores / over 1 TF Over 100 PF, 2015~

PRIMEHPC FX100 design concept

Designed for massively parallel supercomputer system

• High performance for a wide range of real applications

Enhance and inherit K computer features

Many-core CPU-based architecture for application productivity
 Enhanced VISIMPACT (hardware barrier synchronization, sector cache, etc.)

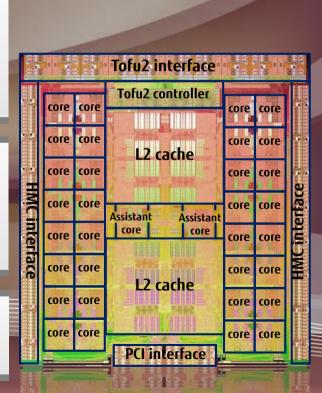
Introduce new technologies to Exascale computing

- HPC-ACE2 : Wide SIMD enhancements
- Assistant cores : Dedicated cores for non-calculation operation
- •HMC : Leading-edge memory technology

Copyright 2015 FUJITSU LIMITED

SPARC64TM XIfx

Over 1 TF high performance processor


- •32 compute cores
- •2 assistant cores: Offloading non-calculation operations
- \rightarrow Daemons, IOs, non-blocking MPI functions, etc.

HPC-ACE2: ISA enhancements

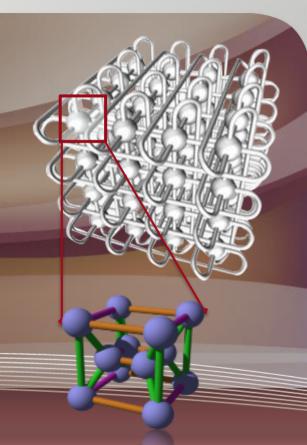
Two 256-bit wide SIMD units per core
Addressing mode (stride load/store, indirect load/store)
Cross lane operation (compress, permutation)

HMC support

•480GB/s/node of theoretical memory throughput

Tofu interconnect 2

Enhanced Tofu interconnect


Highly scalable, 6-dimensional mesh/torus topology
Increased link bandwidth by 2.5 times to 12.5GB/s

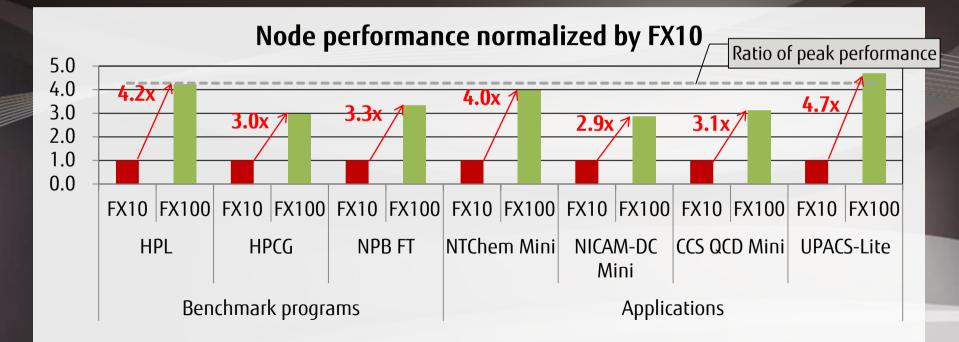
CPU-integrated interconnect controller

Reduced communication latency
Improved packaging density and energy efficiency

Optical cable connection between chassis

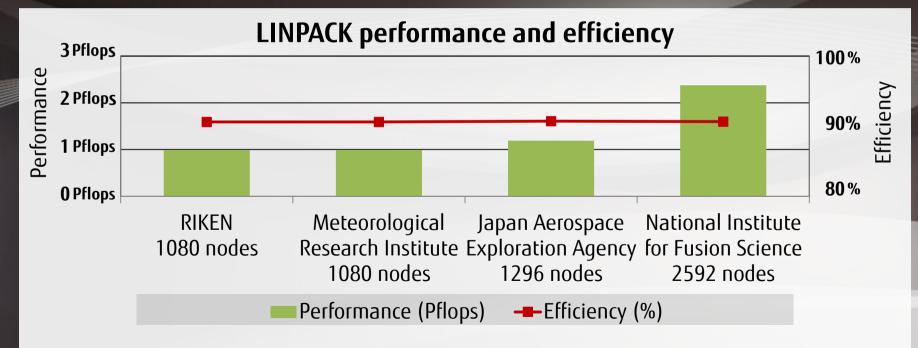
•Enable flexible installation

Technical Computing Suite

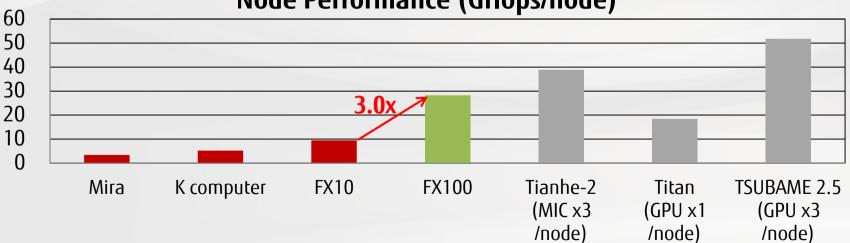

Enhanced software stack developed by FUJITSU

-	Applications	
	Technical Computing Suite	
Management software	High Performance File System FEFS	Programming Environment
System management	Lustre-based distributed file system (enhanced for FX100)	MPI, OpenMP, XPFortran
		Compilers(C,C++,Fortan) Mathematical libraries
Job management		Debugging and tuning tools
Li	nux-based OS enhanced for FX10	0
	PRIMEHPC FX100	

Performance highlights


Node performance is 2.9 to 4.7 times higher than previous generation.

Results of major benchmarks - LINPACK

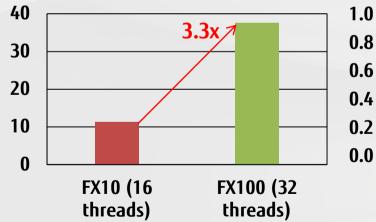


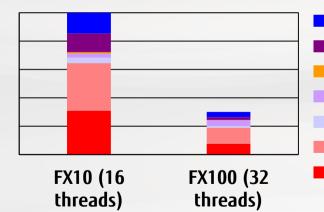
The first four FX100 systems have been delivered to customers, with >90% efficiency.

Results of major benchmarks - HPCG

Solves large sparse linear systems, using Conjugate Gradient method.
Enhanced memory bandwidth enables higher performance, keeping ease-of-use for programming.

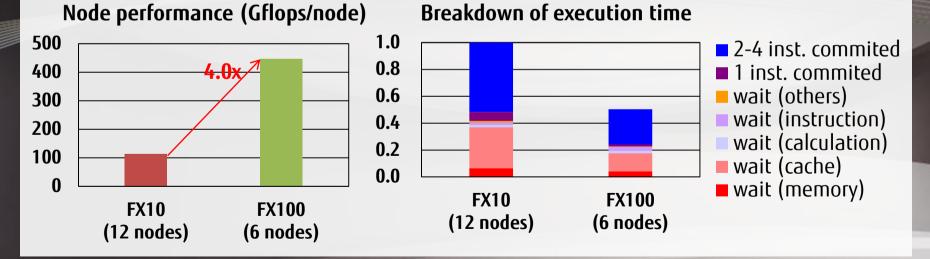
Node Performance (Gflops/node)


Results of major benchmarks – NPB FT



Solves a 3D partial differential equation using FFT.
Improved by higher cache/memory throughput, as well as increased CPU cores and SIMD width.

Node performance (Gflops/node)

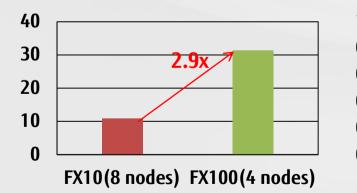


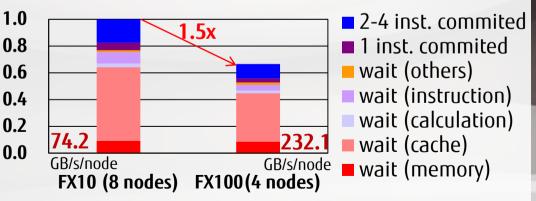
Application performance - NTChem-MINI[†]

A mini-app. of the ab-initio quantum chemistry for the molecular electronic structure calculation

4.0x faster on FX100, close to the ratio of peak performance (4.4x)

† https://github.com/fiber-miniapp/ntchem-mini

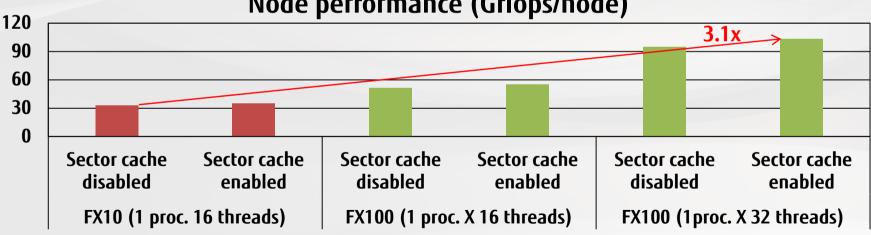

Application performance - NICAM-DC-MINI[†]


A mini-app. derived from NICAM-DC, dynamic phase of NICAM (Nonhydrostatic ICosahedral Atmospheric Model)

3.1x higher memory throughput in "Vertical Implicit" calculation speeds up 1.5x with half the number of FX10 nodes.

Node performance (Gflops/node)

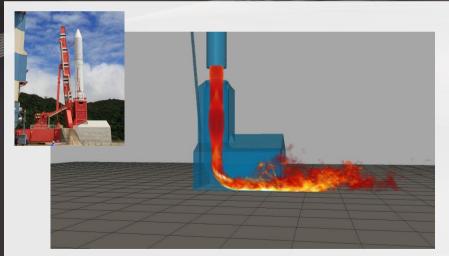
Breakdown of execution time ("vi_path2" routine)


† https://github.com/fiber-miniapp/nicam-dc-mini

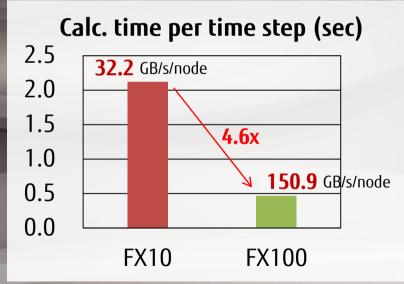
Application performance – CCS QCD-MINI[†]

A mini-app. code for a lattice QCD problem (32^4 size)

Enhanced memory bandwidth boosts the performance and Sector Cache mechanism promotes data reuse on L2\$.



Node performance (Gflops/node)


† https://github.com/fiber-miniapp/ccs-gcd

Application performance – UPACS-Lite

Calculation of compressible fluid dynamics, 160³ grid points per node Enhanced memory bandwidth and other CPU improvements boost the performance

Example: simulation for acoustic design of a launch pad

(Courtesy of Japan Aerospace Exploration Agency)

FUJITSU

shaping tomorrow with you