

Fujitsu PRIMEHPC FX100 Features and Performance

PRIMEHPC FX100 Design

Highly scalable, high performance supercomputer system

Introducing cutting edge technologies

High application productivity

Strong hardware/software for application development and tuning

Highly reliable, available and operable system

Implementing/facilitating Fujitsu's long HPC experience

PRIMEHPC FX100 Features

Improved CPU & interconnect from the K computer & FX10

- General purpose CPU architecture for application productivity
- Hardware barrier synchronization, sector cache, etc.

Introduced technologies for next-generation computing

HPC-ACE2, assistant cores, HMC, Tofu interconnect 2

	FX100	FX10	K computer
Double precision flops / CPU	Over 1TF (x8)	236.5 GF (x2)	128 GF (1)
Single precision flops / CPU	Over 2 TF (x16)	236.5 GF (x2)	128 GF (1)
# of cores	32 (x4)	16 (x2)	8 (1)
SIMD width	256 bit (x2)	128 bit (x1)	128 bit (1)
Byte per flop	0.4 ~ 0.5		
Interconnect	Tofu 6D mesh/torus		

Software Stack: Technical Computing Suite

Applications can exploit maximum performance with Fujitsu software stack

Balanced Enhancement of FLOPS and Memory FUITSU

- Over 1 TFLOPS and 480 GB/s memory bandwidth per chip
- PRIMEHPC series shows high performance for both HPL and HPCG

Comparison Using Highly-tuned App. Kernels

- Performance of application kernels in fusion plasma codes^[1]
 - GYSELA: semi-Lagrangian scheme, compute-intensive
 - GT5D: finite-difference scheme, memory-intensive

<u>Fusion plasma turbulence in 5D phase space</u> (By courtesy of JAEA)

FX100 realizes both high efficiency and ease-of-coding

[1] Asahi et al., submitted to IEEE TPDS

Node Performance and Node Scalability

- Performance of magnetohydrodynamic simulations^[1]
 - Modified leap frog method, memory-intensive

[1] Fukazawa et al., HPDC'16 poster 07

■ FX100 shows higher performance per node and good node scalability

Production Runs on FX100 in JAXA[†]

Simulations for acoustic design of clustered supersonic jets^[1]

LS-FLOW-HO: flux reconstruction method, memory-intensive

[1] Haga et al., 48th Fluid Dynamics Conference /34th Aerospace Numerical Simulation Symposium, 2C07†: Japan Aerospace Exploration Agency

(By courtesy of Dr. Haga @ JAXA)

Real High System Utilization Rate

- High system utilization on RIKEN's HOKUSAI GreatWave (1,080 nodes/34,560 cores)[1]
- Semi-rectangular node allocation achieves 94% utilization

Node allocation on 6D mesh/torus network

- a. Rectangular node allocation (conventional)
 - Best for MPI performance
 - Fragmentation decreases utilization rate
- b. Semi-rectangular node allocation (introduced in FX100)
 - Good for MPI performance
 - Very high utilization rate

[1] RIKEN symposium 2016 "Supercomputer HOKUSAI and Shoubu"

Toward Next Generation HPC

■ FX100 achieves high performance on various applications through continuously improving HPC technologies

■ This technological evolution is advancing toward Post-K

development

K computer

PRIMEHPC FX10

PRIMEHPC FX100

shaping tomorrow with you