
Fujitsu's new supercomputer, delivering the next step in Exascale capability

Toshiyuki Shimizu

November 19th, 2014

Copyright 2014 FUJITSU LIMITED

Past, PRIMEHPC FX100, and roadmap for Exascale Fujitsu

K computer and PRIMEHPC FX10 in operation

Many applications running and being developed for science and industries

PRIMEHPC FX100 is ready

CPU and interconnect inherits K computer architectural concept

Towards Exascale

RIKEN selected Fujitsu as a partner for basic design of Post-K computer

PRIMEHPC FX100, design concept and approach Fujirsu

Provide steady progress for users

- Natural extent of performance profile of K computer and FX10
- Facilitate the evolution of applications

Challenge to state-of-art technologies for future generation

- 20nm CMOS technology
- HMC
- 25G optical connection

Natural extent of perf. profile of K and FX10

Original high performance CPU for wide range of real applications

Highly scalable interconnect

	FX100	FX10	K computer
Double Flops / CPU	Over 1 TF	235 GF	128 GF
Single Flops / CPU	Over 2 TF	235 GF	128 GF
Max. # of threads	32	16	8
Memory / process	32 GB	32 GB	16 GB
SIMD width	256 bit	128 bit	128 bit
Byte per flop	0.4 ~ 0.5		
Interconnect	Tofu 6D mesh/torus		
Interconnect BW	12.5 GB/s	5 GB/s	5 GB/s

Compatibility with K computer and PRIMEHPC FX10

Binary compatible and make full use of performance by recompile Compiler and libraries allow users to access new features

Features to facilitate evolution of applications

For further scalability

- Many core implementation and VISIMPACT
- Assistant cores for OS jitter reduction and offloading of house keeping tasks
- Tofu, 6D mesh/torus direct network for application optimization

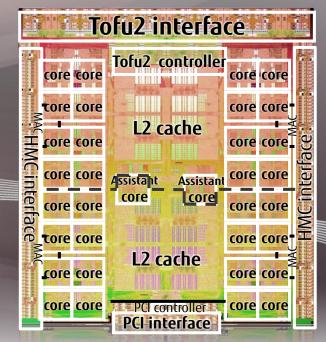
Increase opportunities of SIMDization

- Compiler support of automatic/directive based detection and SIMDization
 Stride load/store, indirect load/store
- Permutation, Concatenate

Critical enhancements and optimizations

- Increase L1 ways and capacities, also allows flexible sector cache usage
- Increase out-of-order resources
- Implement better branch prediction
- Shorten the latency of message passing by cache injection

Fujitsu designed SPARC64 XIfx


256 bit wide SIMD

2x assistant cores

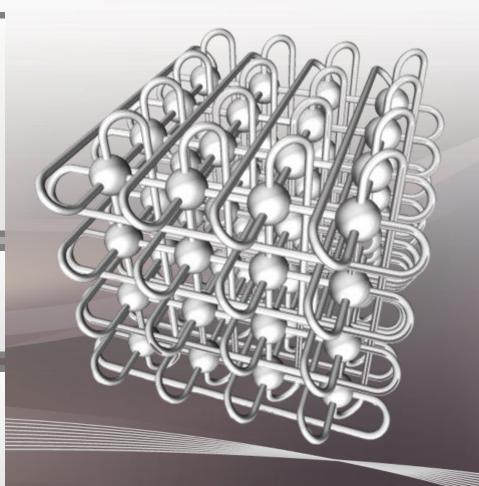
HMC support

Tofu interconnect 2 integrated

Architecture	SPARC V9 + HPC-ACE2	
# of cores	32 compute + 2 assistant cores	
Execution units	FMA x 2 (256 bit wide SIMD)	
Cache	L1 inst. cache:64 KB / core L1 data cache:64 KB / core L2 cache: 24 MB / node	
Main memory	32 GB / node	
Memory bandwidth	240 GB/s (Read) + 240 GB/s (Write)	
Technology	20nm CMOS, 3,750M Tr, 1,001 signal pins	

Tofu interconnect 2, and other features

Tofu2


- Compatible with K computer
- Low latency collective communication utilizing multiple RDMA engines
- Hardware barrier
- Optical inter chassis connection

19 inch rack mountable chassis

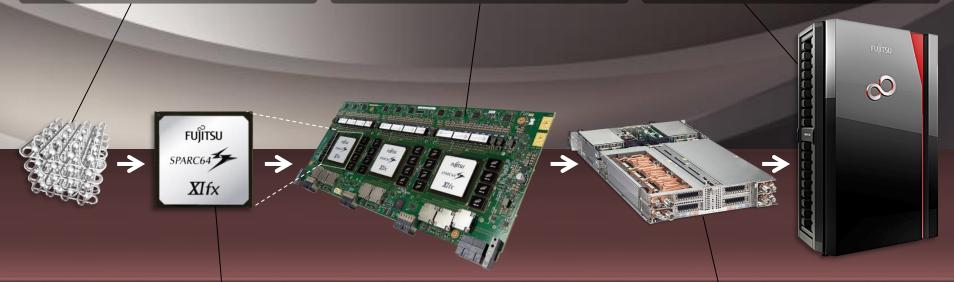
•12 nodes / 2U

Water cooling

Including CPU, memory, optical modules90% of parts are cooled by water

Feature and configuration of FX100

Tofu interconnect 2


- •12.5 GB/s×2(in/out)/link
- •10 links/node
- Optical technology

CPU Memory Board

- Three CPUs
- 3 x 8 Micron's HMCs
- •8 opt modules,
- for inter-chassis connections

Cabinet

- •Up to 216 nodes/cabinet High-density
- •100% water cooled with EXCU (option)

Fujitsu designed SPARC64 XIfx

- •1TF~(DP)/2TF~(SP)
- •32 + 2 core CPU
- •HPC-ACE2 support
- Tofu2 integrated

Chassis

- •1 CPU/1 node
- •12 nodes/2U Chassis
- Water cooled

System software for PRIMEHPC FX10 and FX100

Tuned Linux OS for HPC applications

Supports large pages and OS jitter minimization

Combination of self-developed software and customized OSS

System management software and languages are self-developed
 File system and MPI are developed based on OSS and the results were fed back to the communities

Single system images with x86 and hybrid configurations

System management portal and HPC portal

Technical Computing Suite

Management

- System management
- Single system image
- Single action IPL
- Fail safe capability
- Job management
 - Highly efficient scheduler

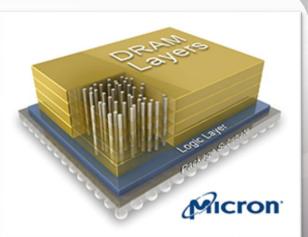
File system (FEFS)

- Lustre based
- Higher scalability (thousands of IO servers)
- Higher IO performance (1.4 TB/s)

Programing environment

- Compiler
- Fortran, XPF, C, C++
- Automatic parallelization
- SIMD support
- MPI: OpenMPI based
- Tools and math libraries

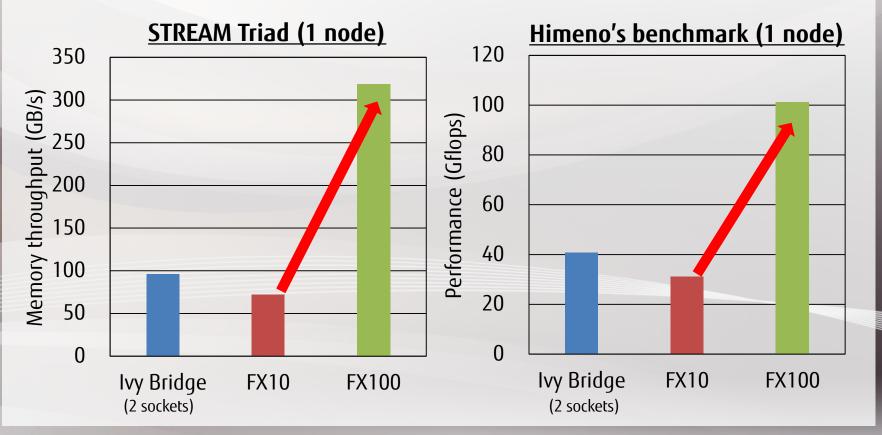
Features and evaluations


- HMC
- SIMD
- Tofu interconnect 2
- VISIMPACT
- Assistant core
- Real applications

Hybrid Memory Cube (HMC) support

HMC

- Higher density at BW
- Higher capacity and higher BW at package
- -Lower power consumption at BW

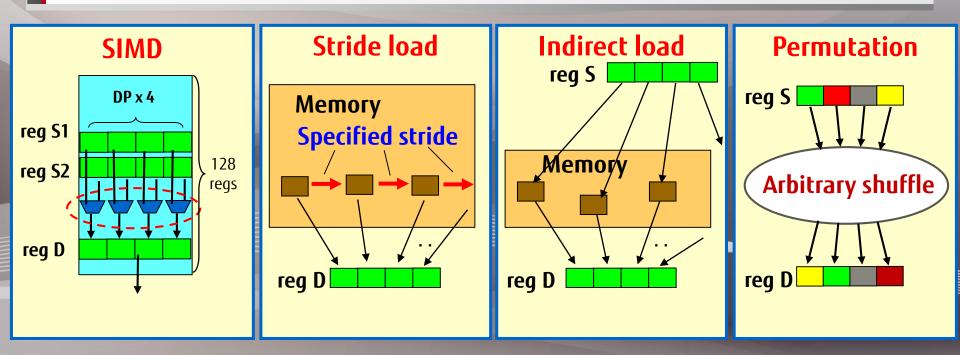


Comparable capacity and bandwidth to those of K computer and FX10

Per CPU count	Capacity	Bandwidth
HMC x 8	32GB	480GB/s
DDR4-DIMM x 8	32~128GB	154GB/s
GDDR5 x 16	8GB	320GB/s

Improving memory throughput

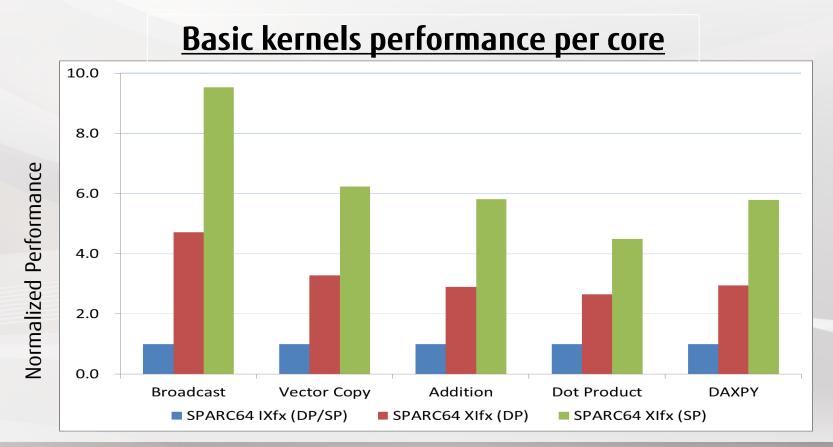
By using HMC, node memory throughput increase 3x, 4x



SIMD extension of HPC-ACE2

256-bit wide SIMD with 128 FPRs

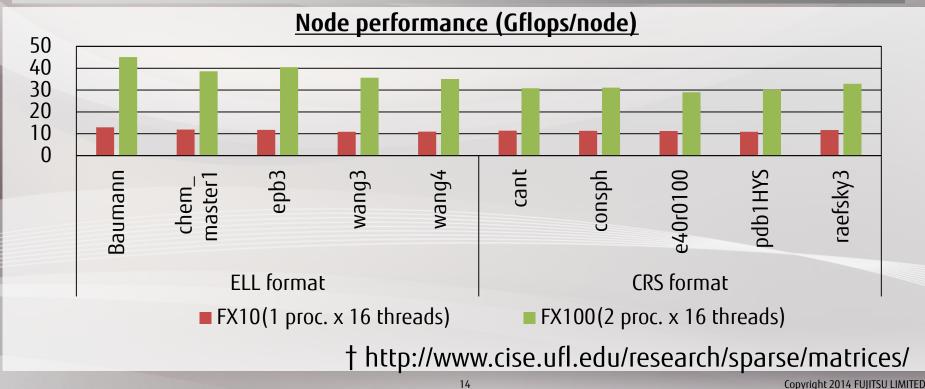
- Double precision x 4, single precision x 8, 8-byte integer x 4
- Stride Load/Store
- Indirect (list) Load/Store
- Permutation, Concatenate



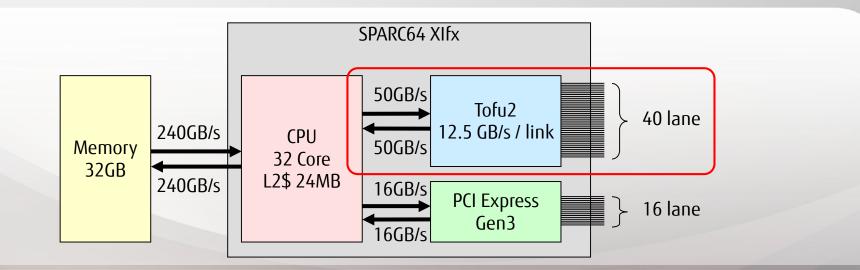
Wider SIMD extensions

DP 3x, SP 6x faster than FX10 in basic kernels

Improved L1 cache pipelines

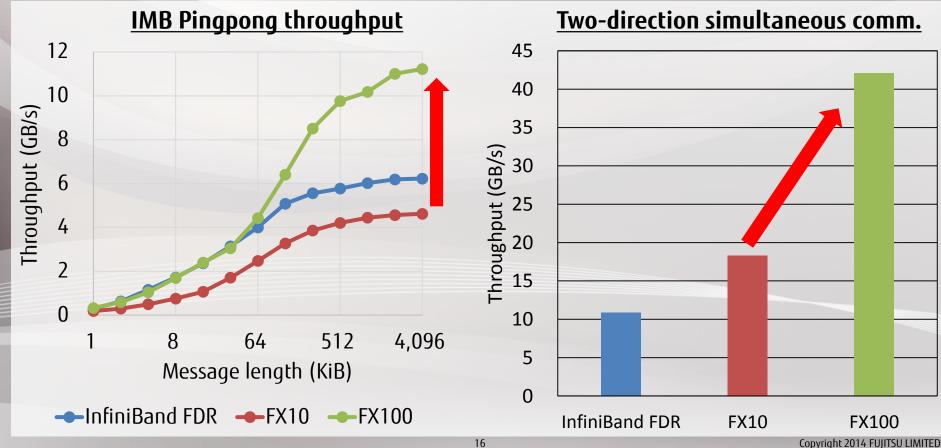

Copyright 2014 FUJITSU LIMITED

Effect of indirect LOAD


Sparse Matrix-Vector Multiplication

- 10 matrices from Florida Sparse Matrix Collection†
- •ELL (ELLPACK) format and CRS (Compressed Row Storage) format
- 3.4x faster in ELL format, 2.7x faster in CRS format
- Indirect LOAD instruction helps SIMD acceleration

Tofu2

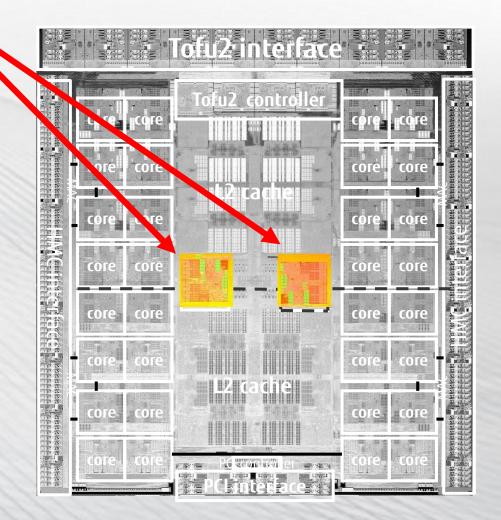


	Тоfu	Tofu2
System	K computer and FX10	FX100
CPU	SPARC64 VIIIfx/IXfx	SPARC64 XIfx
Integration	No, dedicated LSI ICC is required	Yes, integrated into the CPU chip
Тороlоду	6D mesh/torus topology	÷
Link bandwidth	5 GB/s	12.5 GB/s
	(6.25 Gbps x 8 lanes x 10 dirs)	(25 Gbps x 4 lanes x 10 dirs)
Node bandwidth	20 GB/s x in/out	50 GB/s x in/out
Other features	-	Cache injection, atomic operation Optical connection(2/3 of links are optical)

Communication performance

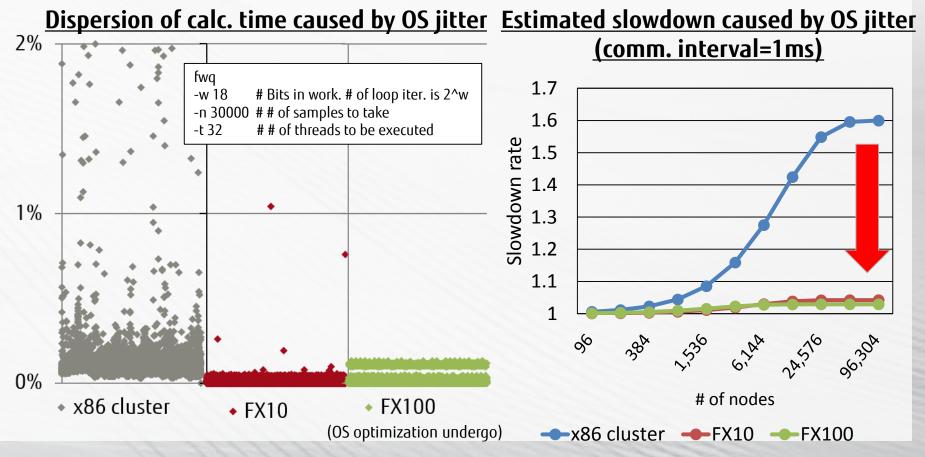
Throughput improves 2.4x higher than FX10

Good simultaneous multiple direction transfer



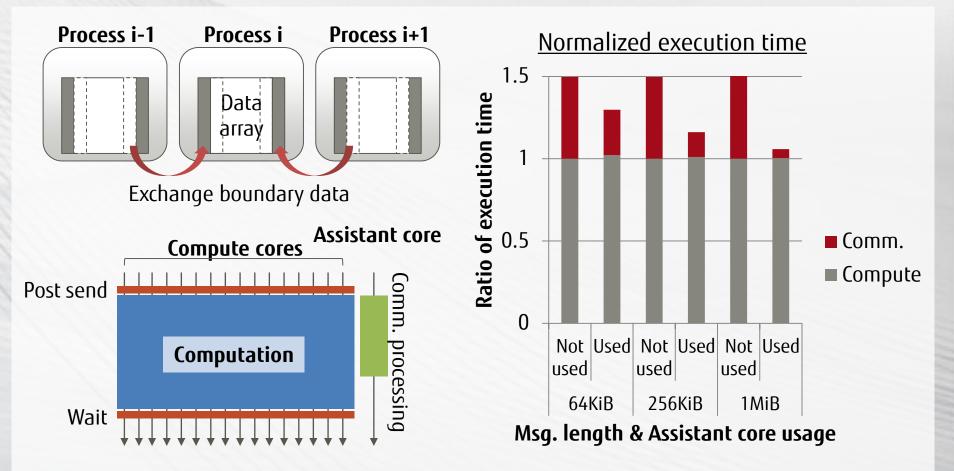
Two-direction simultaneous comm.

Assistant core


Two assistant cores available

OS jitter reduction utilizing assistant core

Offloading of daemons, IO processing, MPI asynchronous communication to the assistant core reduces OS jitter


Copyright 2014 FUJITSU LIMITED

Overlapping execution of non-blocking comm.

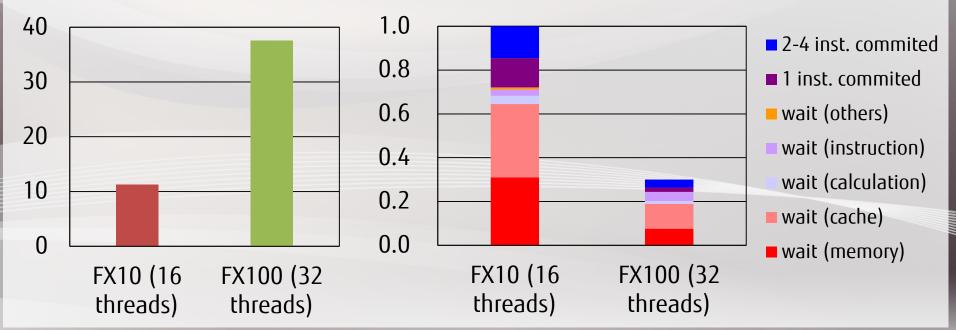
Assistant core is used in MPI library

Boundary data transfer of stencil code

Application evaluation

NAS Parallel Benchmarks FT Class C by OpenMP parallel
 CCS QCD Miniapp [†]
 NICAM-DC-MINI ^{† †}

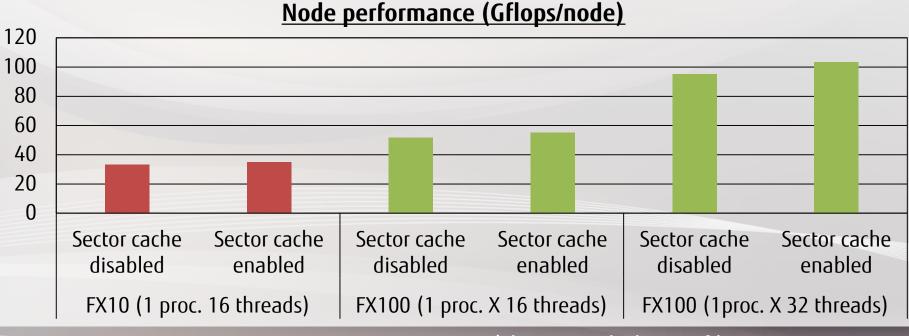
† https://github.com/fiber-miniapp/ccs-qcd † † https://github.com/fiber-miniapp/nicam-dc-mini


NAS Parallel Benchmarks FT Class C (OpenMP)

Time integration of a 3D partial differential equation using FFT (512^3)

- 3.3x faster on FX100 with 32 threads
- Node performance is enhanced by higher cache/memory throughput, as well as increased CPU cores and SIMD width

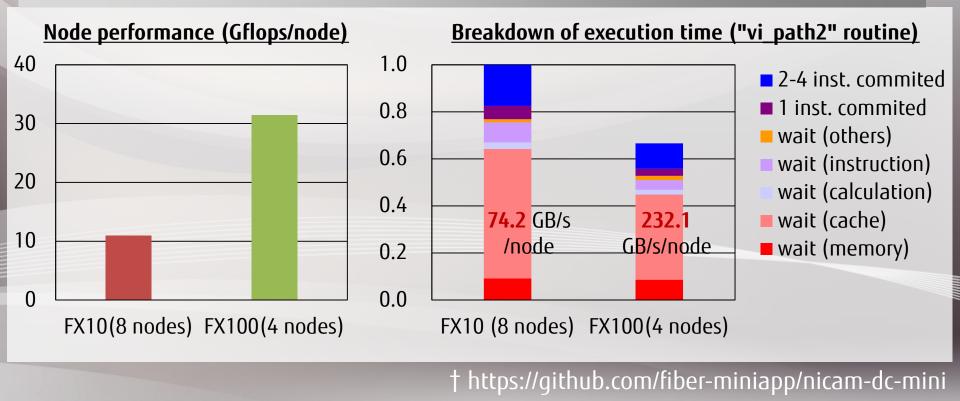
Node performance (Gflops/node)


Breakdown of execution time

CCS QCD Miniapp[†]

A linear equation solver with a large sparse coefficient matrix appearing in a lattice QCD problem (32x32x32x32)

- 1.6x faster with 16 threads, 3.0x faster with 32 threads
- Enhanced memory bandwidth boosts the performance and Sector cache mechanism promotes data reuse on L2\$



NICAM-DC-MINI[†]

A miniapp based on NICAM-DC derived from NICAM (Nonhydrostatic ICosahedral Atmospheric Model)

- 2.9x faster on FX100, including communications
- 3.1x higher memory throughput in "Vertical Implicit" calculation, speeding up 1.5x with half the number of FX10 nodes

Summary, FX100

FX100 provides steady progress for users, natural extent of perf. profile

Single CPU/node architecture for multicore
Good Byte/flop and scalability

PRIMEHPC Series

K computer

VISIMPACT SIMD extension HPC-ACE Direct network Tofu

CY2010~ **128GF, 8-core/CPU**

FX10 VISIMPACT

0

HPC-ACE Direct network Tofu

CY2012~ 236.5GF, 16-core/CPU

Leads apps toward highly scalable and introduces new technologies

Original CPU and interconnect
Support for tens of millions of cores (VISIMPACT, Collective comm. HW)

FX100

0

VISIMPACT HPC-ACE2 Tofu interconnect 2 HMC & Optical connections

0

CY2015~ **1TF~, 32-core/CPU**

Summary, FX100, and Exascale...

FLAGSHIP 2020 basic design has started

- High application perf. efficiency is our target
 Keep similar approach for application compatibility

PRIMEHPC Series

K computer

VISIMPACT SIMD extension HPC-ACE Direct network Tofu

CY2010~ 128GF, 8-core/CPU

FX10 VISIMPACT

0

HPC-ACE **Direct network Tofu**

CY2012~ 236.5GF, 16-core/CPU

FX100

0

VISIMPACT HPC-ACE2 Tofu interconnect 2 HMC & Optical connections

CY2015~ 1TF~, 32-core/CPU

Post-K computer

0

FUJTSU

shaping tomorrow with you