

The K computer has been in operation for 7 years and was retired in August 2019
 Shipping and installation of "Fugaku" will start soon

Fugaku Project

Overview

RIKEN and Fujitsu are currently developing Japan's next-generation flagship supercomputer, the successor to the K computer, as the most advanced general-purpose supercomputer in the world.

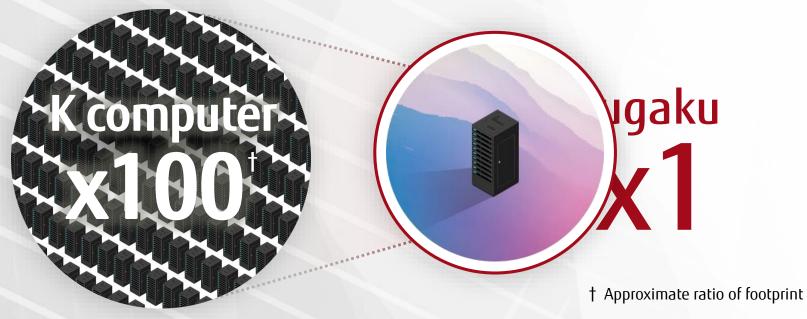
Fugaku Hardware Specifications

Compatibility

Usability

Performance

System			
Number of Nodes	150k+ nodes (Compute node and compute & I/O node)		
Storage - 1 st layer	about 1.6 TB (Total of compute & I/O node's SSD storage)		
Storage - 2 nd layer	about 150 PB		
Node			
Architecture	Armv8.2-A SVE 512bit (SVE: Scalable Vector Extension)		
Core	48 cores for compute and 2 or 4 cores for OS activities		
Memory	HBM2 32 GiB, 1024 GB/s		
Interconnect Interface	Tofu Interconnect D (28 Gbps x 2 lane x 10 port)		
1/0	PCIe Gen3 x16		
Technology	7nm FinFET		



Fugaku Ultra-dense Implementation of Hardware Allowing 1 rack to have 384 CPUs, providing 1 Peta flops

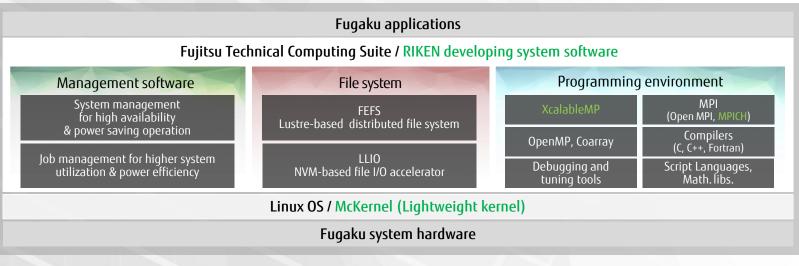
Compatibility

Usability

Performance

Copyright 2019 FUJITSU LIMITED

Fugaku System Software Stack


Usability

Performance

RIKEN and Fujitsu are developing a software stack for Fugaku

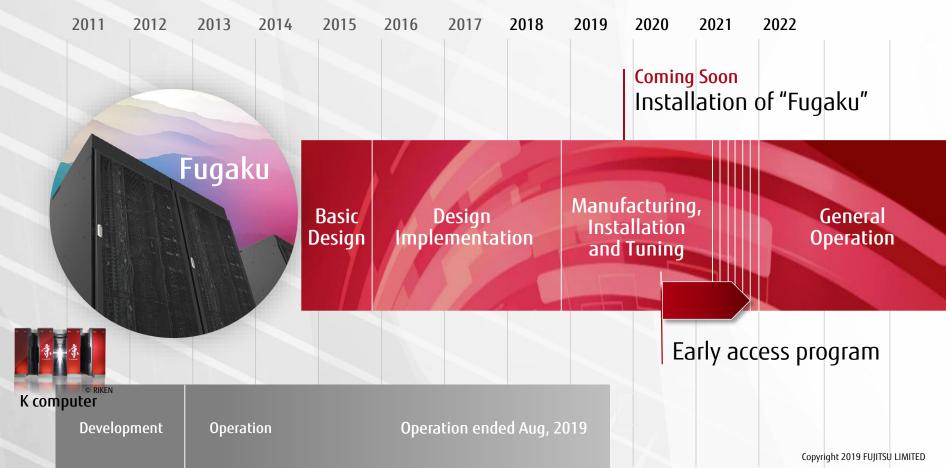
Compatibility

- Compiler optimizations exploit hardware performance, such as SVE vectorization
- The programming environment and the system software maintains continuity with the K computer

Compatibility

Fugaku Target Applications

- RIKEN announced the predicted performance
 - More than 100x faster than the K computer for GENESIS and NICAM+LETKF
 - Geometric mean of speedup over the K computer in 9 priority issues is greater than 37x


D Predicted Performance of 9 Target Applications As of 2019/05/14

				A3 0J 2015/05/14
Area	Priority Issue	Performance Speedup over K	Application	Brief description
Health and longevity	1. Innovative computing infrastructure for drug discovery	125x +	GENESIS	MD for proteins
	2. Personalized and preventive medicine using big data	8x +	Genomon	Genome processing (Genome alignment)
Disaster prevention and Environment	 Integrated simulation systems induced by earthquake and tsunami 	45x +	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)
	4. Meteorological and global environmental prediction using big data	120x +	NICAM+ LETKF	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)
Energy issue	5. New technologies for energy creation, conversion / storage, and use	40x +	NTChem	Molecular electronic simulation (structure calculation)
	6. Accelerated development of innovative clean energy systems	35x +	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)
Industrial competitiveness enhancement	 Creation of new functional devices and high-performance materials 	30x +	RSDFT	Ab-initio simulation (density functional theory)
	8. Development of innovative design and production processes	25x +	FFB	Large Eddy Simulation (unstructured grid)
Basic science	9. Elucidation of the fundamental laws and evolution of the universe	25x +	LQCD	Lattice QCD simulation (structured grid Monte Carlo)

https://postk-web.r-ccs.riken.jp/perf.html

Fugaku Schedule

FUJITSU

shaping tomorrow with you