

All Photonic Network Technologies

Intelligent & Automated Next-Generation Transport

Building new possibilities by connecting people, technology and ideas

Our key technologies

Computing

Network

Super Computer Cloud Native Network HPC **Photonics** Photoelectric conversion Human Sensing Quantum

Explainable AI **Trusted Al**

AI

Data & Security

Blockchain Data Trust **Digital Identity** Converging **Technologies**

Leading-edge **Digital Technology** Humanities and Social Sciences

Network Technology Roadmap

Enable end-to-end fully virtualized cloud-native networks across the world

Fujitsu Public

Fujitsu All Photonic Network Vision

- Available the publication of a groundbreaking white paper on Fujitsu's vision of the All Photonic Network (APN)
- Please visit our Web page : "Fujitsu's activities in IOWN GF" <u>fujitsu.com/global/about/research/</u> <u>technology/iown</u>

Fujitsu's activities in Open APN technical area

IOWN Global Forum creates Task Forces related to Open APN (All Photonic Network) and has been studying the next generation photonic network infrastructure.

Fujitsu has been acting as a coordinator of OAW (Open APN Wavelength Availability) Task Force and promoting the shift from the existing converged system to the new disaggregated system. Fujit leading this industry and driving the open architecture.

S The IFINITY Ultra Optical System (PDF

Japanese joint research group achieves a world record of 12Tbps for optical signal transmissic over Those data transfer in field trial

Related pages

>> 1FINITY™ Optical Networking Platform
>> The Virtuora Network Control Solution

Connecting	the borderless world	l with APN	FUĴĨTSU	
Fujitsu is developing	g future network technologies to crea	e seamless experiences and a sustair	able future	
	2023	2025	2030	
Standardization	Technology Trends Performan	Fujitsu's Advanced	Photonics Research	for APN FUJITSU
Open & Disaggregation	Wireless/Optical (Open RAN, Open AP Disag Network Visualization, Optimization (Policy-base	Scalable trat - integrated ph - the provided of the physical data - control data	Isceivers tonics entration	
Green Technology	High-frequency Millim Photoelectro SG-RAN Power Conservation		Compact & lower power consumption	Optical network automation & Optical NW digital twin - Photonics tomography - Rexibial/Adaptive optical system architecture
Note: The above is based on Fig	four correct projections and is subject to change without nr 13	Utra-wideband optical transmission - Mais band transmission - Optical signal processing	Ultra-high capacity Entry etworking	
			19	© Fujtav 2023

All Photonic Network (APN)

contributes eco-friendly AI infrastructure

All Photonic Network (APN)

contributes eco-friendly AI infrastructure

Fujitsu's AI / ML Components

AI / ML based Network Automation Requires:

AI / ML engine to analyze, conclude, recommend and activate

 Based on Fujitsu's unique convergence of Computing, Network and AI expertise

Hardware based Instrumentation Capabilities

- 1FINITY T900 State of Polarization (SOP) detection
- 1FINITY L900 & T900 Optical Parameters measurement
- 1FINITY L900 Pseudowave Lightpath Characterization

SDN Controller to collect and summarize the information

- Provides network level data collection & visibility
- Provide the automation execution

Intelligent & Automated Operations

1FINITY Ultra Optical System

Hyper-reliable optical transport platform

Extreme performance

- 1.2T now with upgrade to 1.6T
- 800G λ 's up to 2400 km
- 40% reach or capacity advantage using forward Raman

Automated & optimized operations

- Up to 93% fiber cabling reduction
- Automated system turn-up
- Automated fiber health check &

optical performance validation

Designed for sustainability & reliability

- 60% less power
- Liquid Cooling technology
- Error-free installation & turn-up
- Reduces fault localization time

from days to seconds

1FINITY T900

					31
1027	TARRENT CONTRACTOR	COLUMN TAXAB	and sufficient	1.1224	Louiser
道					
		-01			41.0

1FINITY L900

1FINITY Ultra Optical System Hyper-reliable optical transport platform

- New Optical Transport platform achieves top-level long-distance transmission capacity of 1.2Tbps
- Incorporate the latest technologies
 - A digital signal processor (DSP) LSI using latest semiconductor processes
 - Liquid cooling delivers 2x the cooling capacity
 - C+L ROADM architecture able to handle multiple wavelength bands in one product
 - Forward Raman amplification
- 60% reduction in CO2 emissions
- Support for AI/ML automation to optimize performance

1FINITY L900 terabit-optimized OLS

- Using optical backboards to reduce cable connections during initial construction
- Forward Raman amplification increase maximum transmission
- Max transmission capacity 76.8Tbps, Max 16degree

1FINITY T900/T950 extreme-performance transponder

- High Baud Rate and Compensation Technology Realize High OSNR and Long-Distance transmission
- Space saving and low power consumption by liquid cooling technology
- Max transmission capacity 1.2Tbps/Lambda, 14.4Tbps/blade

1FINITY T900/T950

sustainable network technology for eco-friendly AI infrastructure

Extends equipment life & maintenance intervals for substantial energy & cost savings

Two versions

1FINITY T900

• 2RU x 450 mm

1FINITY T950

• 2RU × 600 mm

AC or DC power

DC power

- Space saving and less power consumption by liquid cooling technology
- High Baud rate and High OSNR performance by unique compensation technology
- 5 nm CMOS technology and power-saving FEC to reduce power consumption
- Specification
 - Transmission capacity : Up to 14.4Tbps # per blade
 - Client
 - Network
 - PIU Type

: 400Gbps to 1.2Tbps : High Speed / Mixed speed

: 100GbE, OTU4, 400GbE

y y

Longer distances Less power consumed per bit

Sustainable thermal management using

Cooling plate

liquid cooling

PIU

Photonics tomography

AI technology for smart optical network monitoring

1FINITY S800 intelligent ultra-low latency network for edge AI infrastructure

iTAS technology powered by AI

- In access networks where various traffic coexists, S800 provides ultra-low latency and stable network, contributing to comfortable services
- Ultra-low Latency less than 50% compared to conventional

conventional TAS

Manual table setting and need for time sync of each device

iTAS technology Use case Fujitsu's proprietary intelligent TAS (iTAS) technology enables **jitter adjustment** and **phase alignment**

Reduce the jitter generated within the network

Synchronize data transfer timing for different traffic

Virtuora Cloud Platform AI / ML Enabled SDN Controller

AI/ML central to Fujitsu's data-driven, closed loop digital transformation capabilities

Integrated into our 5G software platform and solutions

"Open" is central to our software strategy and solutions

- Open API-based
- Open source-based orchestration and control
- Active contributor to multiple open network software initiatives

Full portfolio of modular software components and platforms for network orchestration and control

- Multi-domain transport, vRAN, 5G Core
- Multi-vendor and extendable with SDK
- Model-driven interactions

Containerized, applications

- Flexibly integrate systems and MicroApps
- DevOps development & integration model
- Scalable, secure, open platform

Root Cause Analysis (RCA) in seconds

Virtuora AX Storm Chaser microapp

- Identify and analyze the root cause of network alarm storms
- Use predictive modeling & adaptive control
- Update and train models with real-time network information

AI/ML delivers RCA on millions of alarm storms in seconds

Thank you

