FUJITSU Supercomputer
PRIMEHPC FX100
Hardware and Software Overview
FUJITSU Supercomputers

- Fujitsu has been developing supercomputers nearly 40 years, and will continue its development to deliver the best application performance.

K computer
Peak performance: 11.28 petaflops

PRIMEHPC FX10
Peak performance: up to 23.2 petaflops

PRIMEHPC FX100
Peak performance: over 100 petaflops

Exascale
PRIMEHPC FX100 Design Concept

- Designed to be a massively parallel supercomputer system
 - High performance for a wide range of real applications

- Inherited the K computer features
 - General purpose CPU architecture for application productivity
 - 6D mesh/torus topology, hardware barrier synchronization, sector cache, etc.

- Introducing new technologies for Exascale computing
 - HPC-ACE2: Wide SIMD enhancements
 - Assistant cores: Dedicated cores for non-calculation operation
 - HMC: Leading-edge memory technology
Over 1 TF high performance processor

- 32 compute cores
- 2 assistant cores: Offloading non-calculation operations (Daemons, IOs, non-blocking MPI functions, etc.)

HPC-ACE2: ISA enhancements

- Two 256-bit wide SIMD units per core
- Various SIMD instructions (stride load/store, indirect load/store, permutation, etc.)

HMC support

- 480GB/s/node of theoretical memory throughput
Enenhanced Tofu interconnect

- Highly scalable, 6-dimensional mesh/torus topology
- Increased link bandwidth by 2.5 times to 12.5GB/s
- Added atomic memory operations

CPU-integrated interconnect controller

- Reduced communication latency
- Improved packaging density and energy efficiency

Optical cable connection between chassis

- Enable flexible installation
Enhanced software stack developed by Fujitsu

<table>
<thead>
<tr>
<th>Management software</th>
<th>High Performance File System</th>
<th>Programming Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System management</td>
<td>lustre-based distributed file system (enhanced for FX100)</td>
<td>MPI, OpenMP, COARRAY</td>
</tr>
<tr>
<td>Job management</td>
<td></td>
<td>Compilers (C, C++, Fortran) Mathematical libraries</td>
</tr>
</tbody>
</table>

Linux-based OS enhanced for FX100

PRIMEHPC FX100
The Evolution of FUJITSU Software

<table>
<thead>
<tr>
<th>2011 (K computer)</th>
<th>2015 (PRIMEHPC FX100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran, C, C++ with sophisticated optimization</td>
<td>COARRAY in Fortran 2008, C++11 with advanced vectorization for wide SIMDs</td>
</tr>
<tr>
<td>Scalable MPI over 100k procs</td>
<td>Asynchronous MPI comm. for low-latency and scalability</td>
</tr>
<tr>
<td>Large-scale job scheduler (over 80k nodes)</td>
<td>Flexible job allocation for high throughput computing</td>
</tr>
</tbody>
</table>

Future

- Optimization strategy based on application characteristics
- Scalable MPI over 100k procs
- Power saving functions

Copyright 2015 FUJITSU LIMITED
FX100 Performance and the Effect of the New Technologies
FX100 greatly improves the performance of various types of programs

Node Performance of Benchmarks and Applications

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>FX10 (16 cores, 128-bit SIMD)</th>
<th>FX100 (32 cores, 256-bit SIMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPL</td>
<td>1.0x</td>
<td>4.2x</td>
</tr>
<tr>
<td>HPCG</td>
<td>2.0x</td>
<td>3.0x</td>
</tr>
<tr>
<td>NPB FT</td>
<td>3.0x</td>
<td>3.3x</td>
</tr>
<tr>
<td>NTChem Mini</td>
<td>4.0x</td>
<td>4.0x</td>
</tr>
<tr>
<td>NICAM-DC Mini</td>
<td>2.9x</td>
<td>3.1x</td>
</tr>
<tr>
<td>CCS QCD Mini</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPACS-Lite</td>
<td></td>
<td>4.7x</td>
</tr>
</tbody>
</table>

* Fiber miniapp suite developed by RIKEN

† Calculation of compressible fluid dynamics. Developed by JAXA
Balanced Enhancement of FLOPS and Memory

- Over 1 TFLOPS and 480 GB/s memory bandwidth per chip
- PRIMEHPC series show high performance for both HPL and HPCG

Chip Performance of HPL and HPCG
Loop Vectorization by New SIMD Instructions

- Vectorizing complex loops is a key to get higher performance.
- FX100 introduces new SIMD instructions, such as non-continuous memory accesses, integer calculations, permutation, compression, etc.

The Effect of SIMD Compression (NPB EP)

<table>
<thead>
<tr>
<th>Relative perf.</th>
<th>Scalar FX10</th>
<th>Scalar FX100</th>
<th>SIMD*</th>
</tr>
</thead>
</table>

* With a loop fission to promote vectorization

256-bit register

src1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

src2 (mask bits)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

compress

dest

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>
By offloading MPI processing to assistant cores, non-blocking communications are performed simultaneously with computation.

Scalability Improvement by Overlapping (The Himeno Benchmark*)

* A stencil code solving the Poisson’s equation solution
† Halo exchanges are overlapped
Fujitsu MPI now supports MPI-3.0, including RMA functions!

Almost all FX100’s RMA functions start transfer asynchronously (no remote response required)

MPI_Put Microbenchmark

- **Latency**
 - Message Size vs. Latency for FX10 and FX100
 - FX100 shows lower latency for all message sizes.

- **Throughput**
 - Message Size vs. Throughput for FX10 and FX100
 - FX100 shows higher throughput for all message sizes.

Legend
- FX10
- FX100

1. Request msg.
2. Waiting for a response
3. No need to wait for a response
4. Atomic one-sided operation
5. Data

Note:
- >80% lower latency
- 5x faster throughput
Fujitsu MPI provides high-bandwidth collective functions optimized for Tofu

- High bandwidth of the Tofu interconnect 2 (peak 12.5GB/s per network engine)
- Driving 4 network engines in parallel
- Low latency communication protocol thanks to RDMA

Why are Fujitsu MPI's collectives so fast?

Algorithm
- Phase 1
- Phase 2
- Phase 3

MPI_Allgather Throughput (36 nodes)

- Throughput (GB/s)
- Message Size (bytes)

<table>
<thead>
<tr>
<th>Message Size</th>
<th>FX10</th>
<th>FX100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k</td>
<td>14</td>
<td>14.9x</td>
</tr>
<tr>
<td>32k</td>
<td>25</td>
<td>28.9x</td>
</tr>
<tr>
<td>1M</td>
<td>35</td>
<td>39.9x</td>
</tr>
<tr>
<td>32M</td>
<td>40</td>
<td>43.9x</td>
</tr>
</tbody>
</table>

2.9x faster
Summary

- FX100 achieves high performance of various applications by the new technologies and inherited features.
- This evolution is continuing to the next generations.

K computer

PRIMEHPC FX10

PRIMEHPC FX100