

FUJITSU Supercomputer PRIMEHPC FX100

0

Copyright 2015 FUJITSU LIMITED

0

Hardware and Software Overview

FUJITSU

FUJITSU Supercomputers

Fujitsu has been developing supercomputers nearly 40 years, and will continue its development to deliver the best application performance

PRIMEHPC FX10

Peak performance: up to 23.2 petaflops

K computer Peak performance: 11.28 petaflops

Exascale

60

0

PRIMEHPC FX100

Peak performance: over 100 petaflops

PRIMEHPC FX100 Design Concept

Designed to be a massively parallel supercomputer system

High performance for a wide range of real applications

Inherited the K computer features

- General purpose CPU architecture for application productivity
- 6D mesh/torus topology, hardware barrier synchronization, sector cache, etc.

Introducing new technologies for Exascale computing

- HPC-ACE2
 - : Wide SIMD enhancements
- HMC
- Assistant cores
 Dedicated cores for non-calculation operation
 - : Leading-edge memory technology

4

SPARC64[™] XIfx

Over 1 TF high performance processor

- 32 compute cores
- 2 assistant cores: Offloading non-calculation operations
 - \rightarrow Daemons, IOs, non-blocking MPI functions, etc.

HPC-ACE2: ISA enhancements

- Two 256-bit wide SIMD units per core
- Various SIMD instructions (stride load/store, indirect load/store, permutation, etc.)

HMC support

480GB/s/node of theoretical memory throughput

Tofu Interconnect 2

Enhanced Tofu interconnect

- Highly scalable, 6-dimensional mesh/torus topology
 Increased link bandwidth by 2.5 times to 12.5GB/s
- Added atomic memory operations

CPU-integrated interconnect controller

- Reduced communication latency
- Improved packaging density and energy efficiency

Optical cable connection between chassis

Enable flexible installation

Technical Computing Suite

Enhanced software stack developed by Fujitsu

Technical Computing Suite		
Management software	High Performance File System FEFS	Programming Environment
System management	Lustre-based distributed file system (enhanced for FX100)	MPI, OpenMP, COARRAY
		Compilers(C,C++,Fortran) Mathematical libraries
Job management		Debugging and tuning tool

PRIMEHPC FX100

The Evolution of FUJITSU Software

2011 (K computer)

Fortran, C, C++ with sophisticated optimization

Scalable MPI over 100k procs

Large–scale job scheduler (over 80k nodes)

2015 (PRIMEHPC FX100)

COARRAY in Fortran 2008, C++11 with advanced vectorization for wide SIMDs

Asynchronous MPI comm. for lowlatency and scalability

Flexible job allocation for high throughput computing

Future

Optimization strategy based on application characteristics

Scalable MPI over 1M procs

Power saving functions

FX100 Performance and the Effect of the New Technologies

PRIMEHPC FX100

PRIMEHPC FX10

The Performance Improvement of FX100

FX100 greatly improves the performance of various types of programs

Node Performance of Benchmarks and Applications

Balanced Enhancement of FLOPS and Memory Fujitsu

Over 1 TFLOPS and 480 GB/s memory bandwidth per chip

PRIMEHPC series show high performance for both HPL and HPCG

Chip Performance of HPL and HPCG

Loop Vectorization by New SIMD Instructions Fujirsu

- Vectorizing complex loops is a key to get higher performance
- FX100 introduces new SIMD instructions, such as non-continuous memory accesses, integer calculations, permutation, compression, etc.

The Effect of SIMD Compression (NPB EP)

Better Scalability by Comp. & Comm. Overlap Fujitsu

By offloading MPI processing to assistant cores, non-blocking communications are performed simultaneously with computation

Scalability Improvement by Overlapping (The Himeno Benchmark*)

MPI Remote Memory Access Performance

Fujitsu MPI now supports MPI-3.0, including RMA functions!

 Almost all FX100's RMA functions start transfer asynchronously (no remote response required)

MPI Collective Communication Performance

Fujitsu MPI provides high-bandwidth collective functions optimized for Tofu

Why are Fujitsu MPI's collectives so fast?

- High bandwidth of the Tofu interconnect 2 (peak 12.5GB/s per network engine)
- Driving 4 network engines in parallel
- Low latency communication protocol thanks to RDMA

Summary

K computer

FUjitsu

Exascale

0

FX100 achieves high performance of various applications by the new technologies and inherited features

This evolution is continuing to the next generations

C RIKEN

PRIMEHPC FX10 PRIMEHPC FX100

0

FUJITSU

shaping tomorrow with you