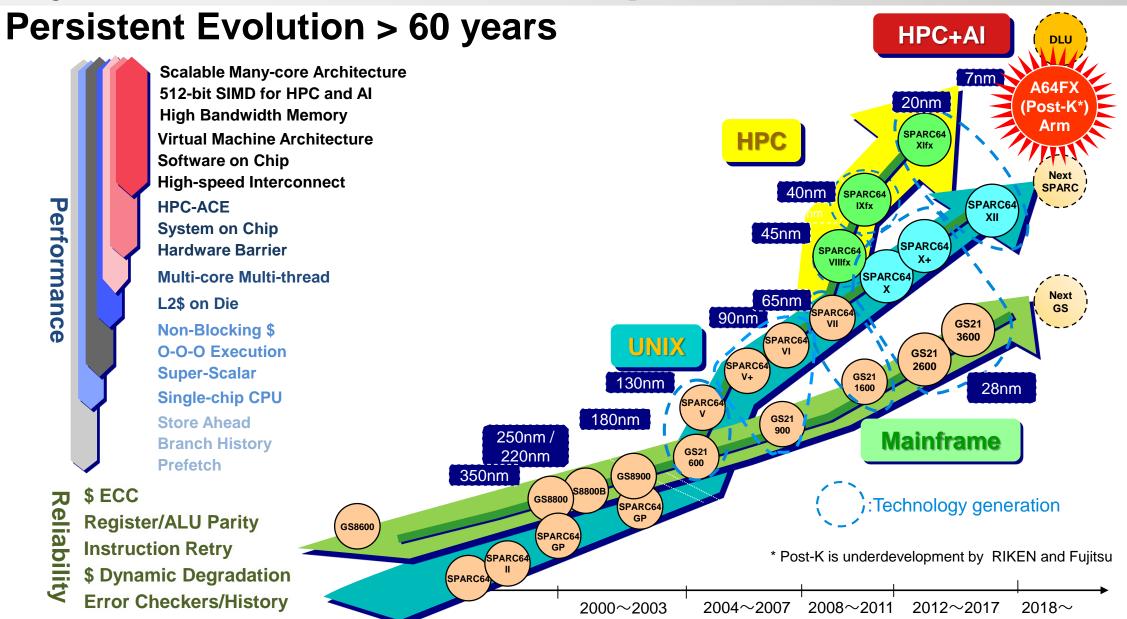


Fujitsu High Performance CPU for the Post-K Computer

August 21st, 2018 Toshio Yoshida FUJITSU LIMITED

Key Message

- ■A64FX is the new Fujitsu-designed Arm processor
 - It is used in the post-K computer
- ■A64FX is the first processor of the Armv8-A SVE architecture
 - Fujitsu, as a lead partner, collaborated closely with Arm on the development of SVE
- ■A64FX achieves high performance in HPC and AI areas
 - Our own microarchitecture maximizes the capability of SVE


Outline

- Fujitsu Processor Development
- ■A64FX
 - Overview
 - Microarchitecture
 - ■Performance
 - **■**Power Management
 - **RAS**
- ■Software Development
- Summary

Fujitsu Processor Development

DNA of Fujitsu Processors

■ A64FX inherits DNA from Fujitsu technologies used in the mainframes, UNIX and HPC servers

High reliability

Stability Integrity Continuity

High speed & flexibility

Thread performance Software on Chip Large SMP

High performance-per-watt

Execution and memory throughput

Low power

Massively parallel

CPU w/ extremely high throughput

High performance
Massively parallel
Low power
Stability and integrity

A64FX Designed for HPC/AI

A64FX = CPU with extremely high throughput

1. High Performance

HPC/Al apps. >> General purpose CPU Various data types (FP64/32/16, INT64/32/16/8)

2. High Throughput

Vector : 512-bit wide SIMD x 2 pipes /core

Memory: HBM2 (extremely high B/W)
Scalable: 48 cores, Tofu interconnect

3. High Efficiency

Performance
(D|S|H)GEMM >90%
Stream Triad >80%
Perf-per-watt >> General purpose CPU

4. Standard

Binary compatibility with Armv8.2-A + SVE + SBSA* level3

*Arm's "Server Base System Architecture"

A64FX Chip Overview

FUJITSU

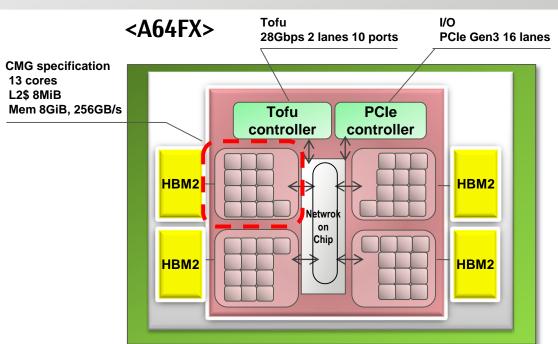
Architecture Features

- Armv8.2-A (AArch64 only)
- SVE 512-bit wide SIMD
- 48 computing cores + 4 assistant cores*

*All the cores are identical

- HBM2 32GiB
- Tofu 6D Mesh/Torus

28Gbps x 2 lanes x 10 ports


PCIe Gen3 16 lanes

7nm FinFET

- 8,786M transistors
- 594 package signal pins

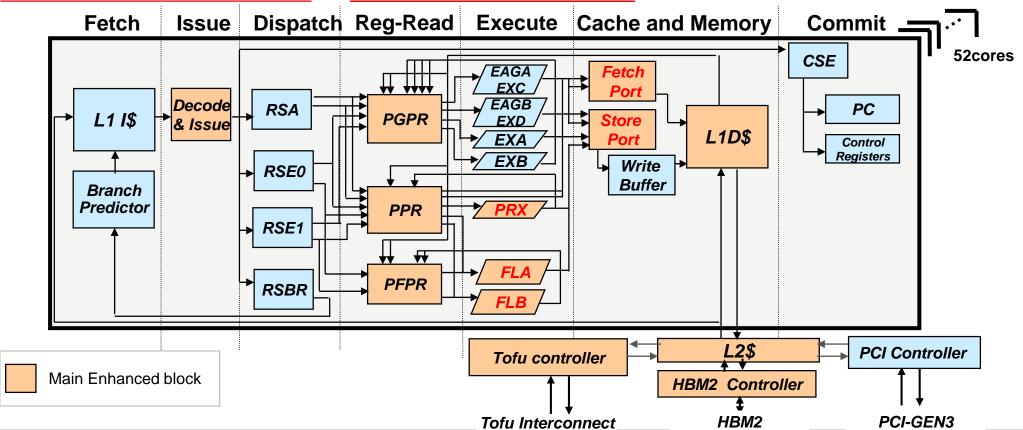
■ Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)	
ISA (Base)	Armv8.2-A	SPARC-V9	
ISA (Extension)	SVE	HPC-ACE2	
Process Node	7nm	20nm	
Peak Performance	>2.7TFLOPS	1.1TFLOPS	
SIMD	512-bit	256-bit	
# of Cores	48+4	32+2	
Memory	HBM2	НМС	
Memory Peak B/W	1024GB/s	240GB/s x2 (in/out)	

A64FX Features

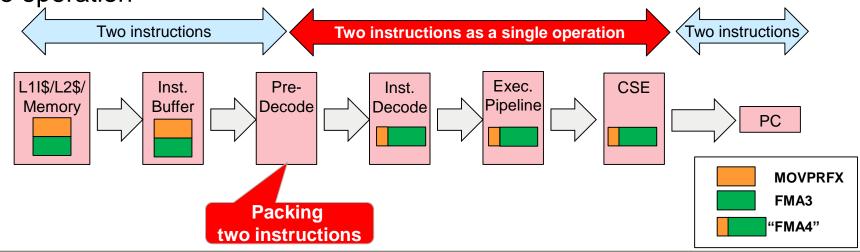
- Collaboration with Arm to develop and optimize SVE for a wide range of applications
 - FP16 and INT16/8 dot product are introduced for AI applications


	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)	SPAR64 VIIIfx (K computer)
ISA	Armv8.2-A + SVE	SPARC-V9 + HPC-ACE2	SPARC-V9 + HPC-ACE
SIMD Width	512-bit	256-bit	128-bit
Four-operand FMA	✓ Enhanced	✓	✓
Gather/Scatter	✓ Enhanced	✓	
Predicated Operations	✓ Enhanced	✓	✓
Math. Acceleration	✓ Further enhanced	✓ Enhanced	✓
Compress	✓ Enhanced	✓	
First Fault Load	✓ New		
FP16	✓ New		
INT16/ INT8 Dot Product	✓ New		
HW Barrier* / Sector Cache*	✓ Further enhanced	✓ Enhanced	✓

^{*} Utilizing AArch64 implementation-defined system registers

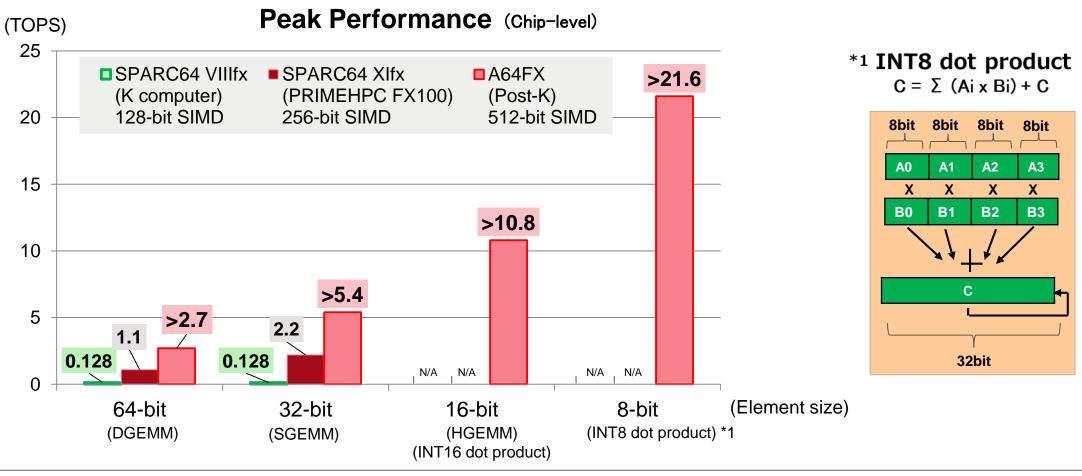
A64FX Core Pipeline

- A64FX enhances and inherits superior features of SPARC64
 - Inherits superscalar, out-of-order, branch prediction, etc.
 - Enhances SIMD and predicate operations
 - <u>2x 512-bit wide SIMD FMA</u> + <u>Predicate Operation</u> + 4x ALU (shared w/ 2x AGEN)
 - 2x 512-bit wide SIMD load or 512-bit wide SIMD store

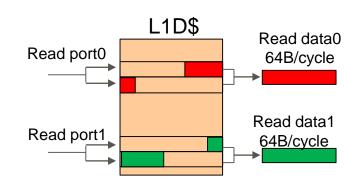


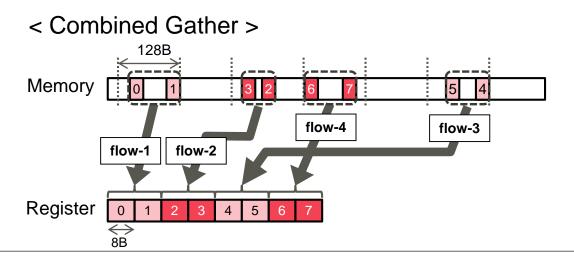
Four-operand FMA with Prefix Instruction

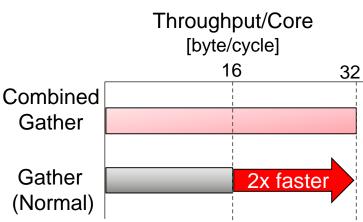
- MOVPRFX as a prefix instruction
 - For SVE, four-operand "FMA4" requires a prefix instruction (MOVPRFX) followed by destructive 3-operand FMA3


- A64FX implementation for MOVPRFX
 - A64FX hides the overhead of its main pipeline by packing MOVPRFX and the following instruction into a single operation

Execution Unit

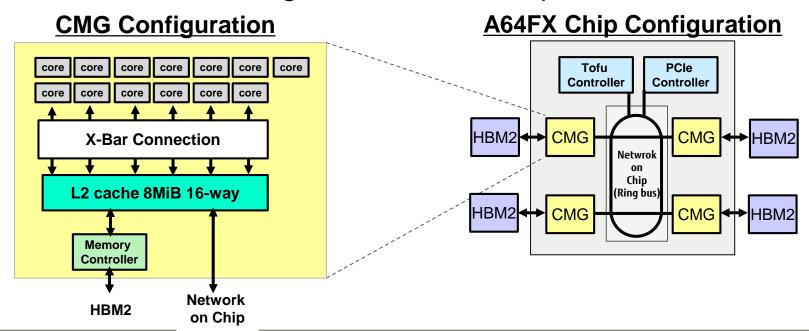

- Extremely high throughput
 - 512-bit wide SIMD x 2 Pipelines x 48 Cores
 - >90% execution efficiency in (D|S|H)GEMM and INT16/8 dot product


Level 1 Cache

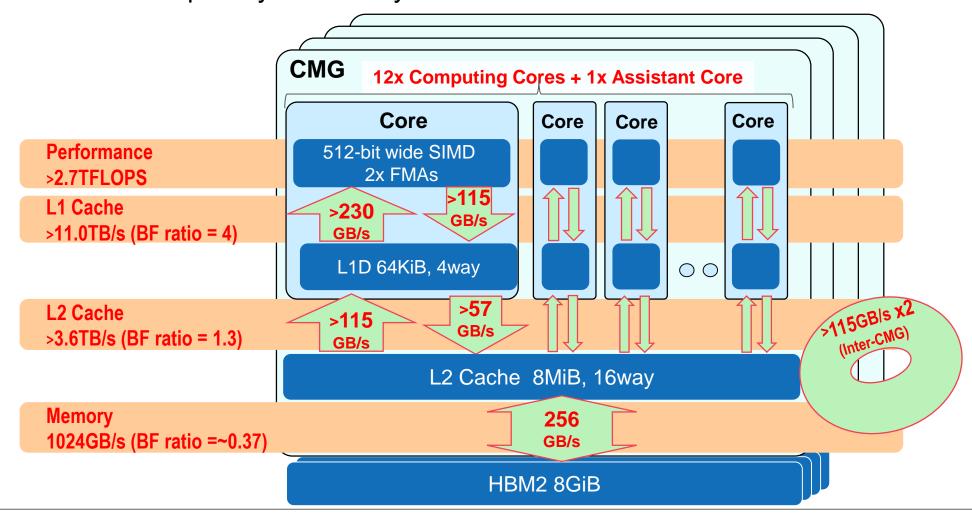


- L1 cache throughput maximizes core performance
 - Sustained throughput for 512-bit wide SIMD load
 - An unaligned SIMD load crossing cache line keeps the same throughput

- "Combined Gather" mechanism increasing gather throughput
 - Gather processing is important for real HPC applications
 - A64FX introduces "Combined Gather" mechanism enabling to return up to two consecutive elements in a "128-byte aligned block" simultaneously

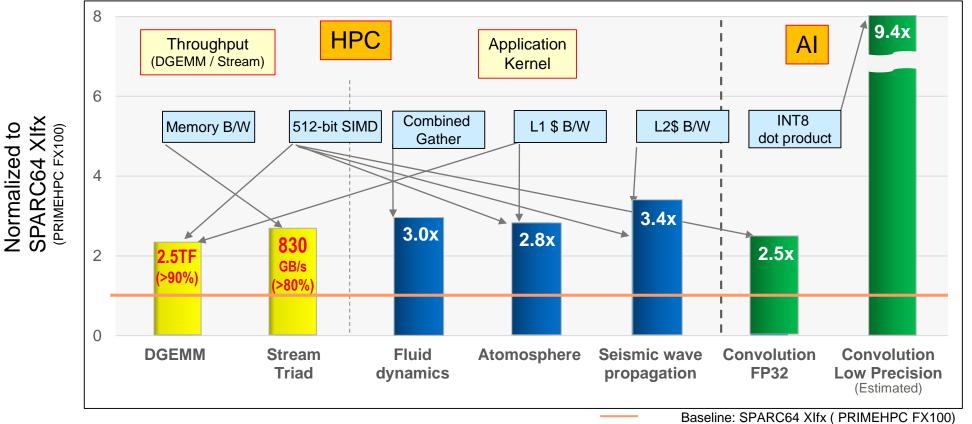


Many-Core Architecture


- A64FX consists of four CMGs (Core Memory Group)
 - A CMG consists of 13 cores, an L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
 - Four CMGs keep cache coherency by ccNUMA with on-chip directory
 - X-bar connection in a CMG maximizes high efficiency for throughput of the L2 cache
 - Process binding in a CMG allows linear scalability up to 48 cores
- On-chip-network with a wide ring bus secures I/O performance

High Bandwidth

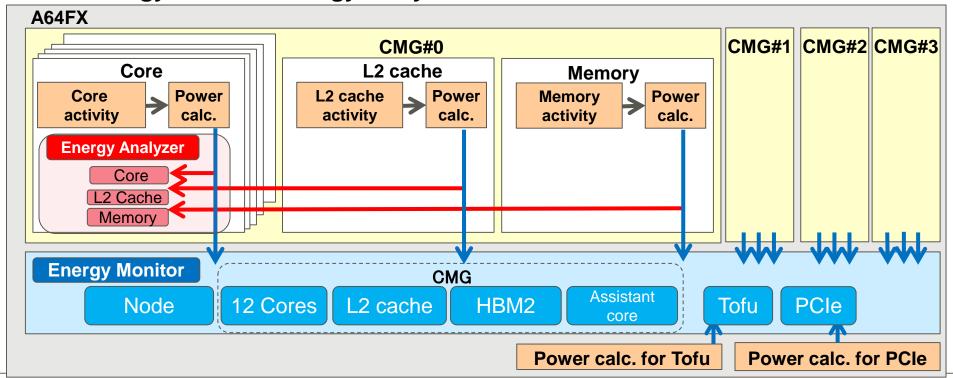
- Extremely high bandwidth in caches and memory
 - A64FX has out-of-order mechanisms in cores, caches and memory controllers.
 It maximizes the capability of each layer's bandwidth



Performance

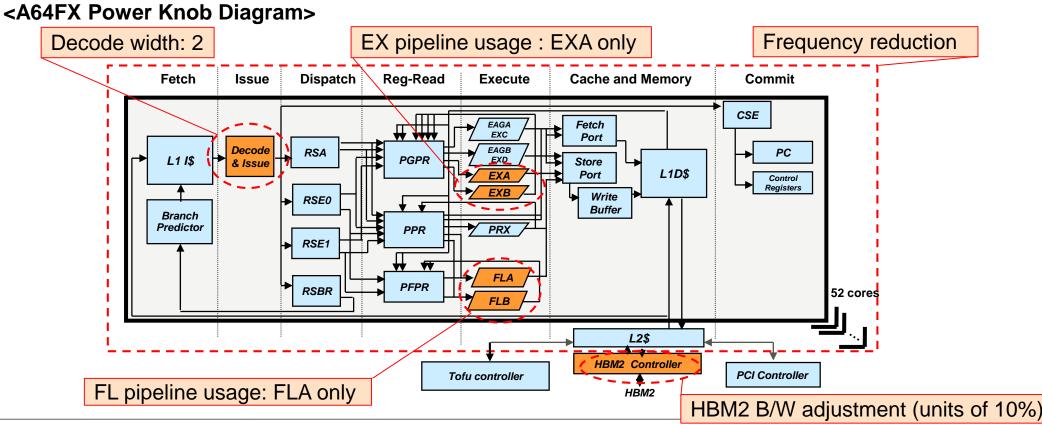
- A64FX boosts performance up by microarchitectural enhancements, 512-bit wide SIMD, HBM2 and process technology
 - > 2.5x faster in HPC/AI benchmarks than SPARC64 XIfx (Fujitsu's previous HPC CPU)
 - The results are based on the Fujitsu compiler optimized for our microarchitecture and SVE

A64FX Benchmark Kernel Performance (Preliminary results)



Power Management

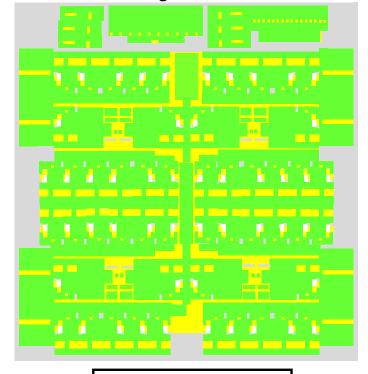
- "Energy monitor" / "Energy analyzer" for activity-based power estimation
 - ✓ Energy monitor (per chip): Node power via Power API* (~msec) *Sandia National Laboratory
 - Average power estimation of a node, CMG (cores, an L2 cache, a memory) etc.
 - ✓ Energy analyzer (per core): Power profiler via PAPI** (~nsec) ** Performance Application Programming Interface
 - Fine grained power analysis of a core, an L2 cache and a memory
 - → Enabling chip-level power monitoring and detailed power analysis of applications


<A64FX Energy monitor/ Energy analyzer>

Power Management (Cont.)

- "Power knob" for power optimization
 - A64FX provides power management function called "Power Knob"
 - Applications can change hardware configurations for power optimization
 - Power knobs and Energy monitor/analyzer will help users to optimize power consumption of their applications

Fujitsu Mission Critical Technologies

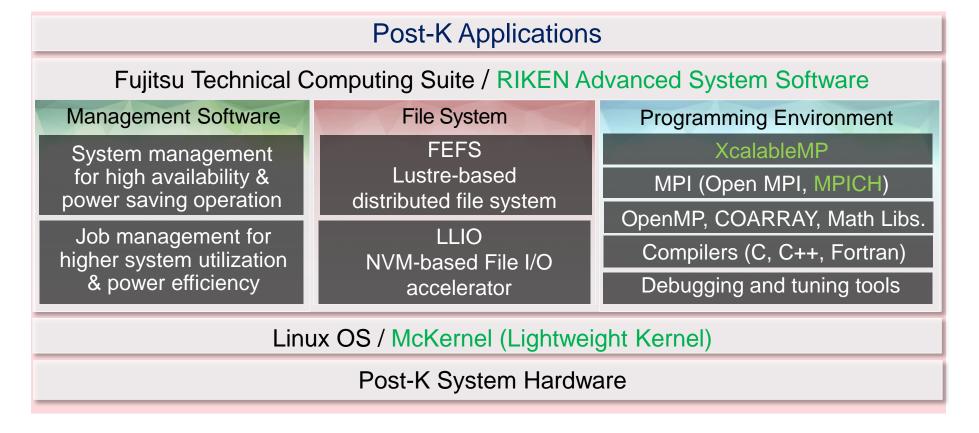

- Large systems require extensive RAS capability of CPU and interconnect
- A64FX has a mainframe class RAS for integrity and stability.

 It contributes to very low CPU failure rate and high system stability
 - ✓ ECC or duplication for all caches
 - ✓ Parity check for execution units
 - √ Hardware instruction retry
 - ✓ Hardware lane recovery for Tofu links
 - √ ~128,400 error checkers in total

<A64FX RAS Mechanism>

Units	Error Detection and Correction
Cache (Tag)	ECC, Duplicate & Parity
Cache (Data)	ECC, Parity
Register	ECC (INT), Parity(Others)
Execution Unit	Parity, Residue
Core	Hardware Instruction Retry
Tofu	Hardware Lane Recovery

<A64FX RAS Diagram>



Green: 1 bit error Correctable
Yellow: 1 bit error Detectable
Gray : 1 bit error harmless

Software Development

- RIKEN and Fujitsu are developing software stacks for the post-K computer
 - Fujitsu compilers are optimized for the microarchitecture, maximizing SVE and HBM2 performance
- We collaboratively work with RIKEN / Linaro / OSS communities / ISVs and contribute to Arm HPC ecosystem

Summary

- ■A64FX is the first processor of the Armv8-A SVE architecture. It is used for the post-K computer
- Fujitsu's proven microarchitecture achieves high performance in HPC and AI areas
- ■Fujitsu collaboratively works with partners and continuously contributes to Arm ecosystem
- ■We will continue to develop Arm processors

shaping tomorrow with you

Abbreviations

- ■A64FX
 - ■RSA: Reservation station for address generation
 - ■RSE: Reservation station for execution
 - ■RSBR: Reservation station for branch
 - ■PGPR: Physical general-purpose register
 - ■PFPR: Physical floating-point register
 - ■PPR: Physical predicate register
 - ■CSE: Commit stack entry
 - ■EAG: Effective address generator
 - ■EX : Integer execution unit
 - ■FL: Floating-point execution unit
 - ■PRX: Predicate execution unit
 - ■Tofu: Torus-Fusion