

FUJITSU Software Interstage Information Integrator V11

An Innovative WAN optimization solution to bring out maximum network performance

December, 2014 Fujitsu Limited

Contents

- Overview
- Key technologies
- Supported network characteristics
- Example cases and performance benchmarks
- Technical architecture
- Deployment model
- Competitive advantage
- Product lineup

Overview

- WAN optimization solution overview
- FUJITSU Software for WAN optimization

3

- Key features
- Total WAN optimization solution
- Performance benchmark

Copyright 2014 FUJITSU

WAN optimization solution overview

Challenges

- WAN's characteristics
 - Low bandwidth
 - High latency
 - Packet Loss

Issues

- Slow application performance
- Poor user experience and low productivity
- Manage servers in branch offices

Solution

WAN optimization

- Overcome both latency and packet loss problems in Wide Area Network
- Accelerate data transmission speed
- Deliver LAN-like performance to branch offices across the globe

Benefits

- Accelerate the performance of centrally hosted applications
- Improve user experience and boost productivity
- Avoid expensive WAN upgrades and reduce network costs
- Enable key IT initiatives using cloud

FUJITSU Software for WAN optimization

FUJITSU Interstage Information Integrator V11

An Innovative WAN optimization solution to bring out maximum network performance

- Software-based WAN optimization solution
 - Key optimization method: protocol conversion
 - Convert TCP to Fujitsu patented proprietary high-performance protocol
 - Random Parity Stream (RPS)
 - Universal Network Acceleration Protocol (UNAP)

Key features

- Innovative technologies
 - Random Parity Stream (RPS): patent-protected
 - Patented technology for UDP to recover missing data when packets lost
 - Universal Network Acceleration Protocol (UNAP): patent-pending
 - UDP-based high-performance protocol with proprietary technologies that control unnecessary packet retransmission
 - Reconfigurable-Transport (R-TSP):

patent-pending

- Dynamic protocol selection technology
- Support for a broad range of applications
 - File sharing, Web, Collaboration, Backup, VDI, Unified communications, etc.
- Complete network security
 - Integrated AES encryption algorithm
 - No cached data on local storage
- Quick and flexible deployment
 - Can be placed on existing server due to Software-based WAN optimization
 - No need to change network structure (No cabling)

Total WAN optimization solution

- Avoid expensive WAN upgrades and reduce network costs
- Comprehensive platform support from wireless clients to large-scale datacenters

Key technologies

- Issues with traditional TCP / UDP
- Fujitsu WAN optimization technologies
 - RPS (Random Parity Stream)
 - UNAP (Universal Network Acceleration Protocol)

- R-TSP (Reconfigurable Transport)
- Dynamic Bandwidth Control

Issues with traditional TCP

Pros: good transfer quality Cons: poor transfer speed

Issue with bulk data transfer

Issue (1)

More volume of data sent, more acknowledgements returned. This process consumes significant time.

Longer RTT (Round Trip Time) takes more time spent for acknowledgements

Issue with distant communication

Issues on traditional UDP

Pros: good transfer speed Cons: unreliable, line gets occupied

Issue with reliability of data-transfer

Issue (3)

Unlike TCP, UDP returns no acknowledgement. Therefore, the sender cannot notice any packet loss/mixed-up

Issue (4)

UDP traffic occupies whole network bandwidth. Other traffic has to wait for its data-transfer.

Fujitsu WAN optimization technologies

Туре	Technology	Description
High-performance Protocol	Random Parity Stream (RPS) patent-protected	Patented technology for UDP to recover missing data when packets lost
	Universal Network Acceleration Protocol (UNAP) patent-pending	UDP-based high-performance protocol with proprietary technologies to control unnecessary packet retransmission
	Reconfigurable-Transport (R-TSP) <pre>patent-pending</pre>	Dynamic protocol selection technology to measure and analyze network conditions in real time and dynamically select the most suitable communication method
Quality Management	Dynamic Bandwidth Control	Control consuming bandwidth dynamically
	Transmission Speed Control	Control data transmission speed
Security	Data Encryption	Encrypt data on network (AES:128bit)

RPS (Random Parity Stream)

RPS (Random Parity Stream)

patent-protected

- Patented technology for UDP
 - Create redundant data when it is encoded
 - Redundant data size is less than 10% of data
 - If the packet is lost, it can restore any data using redundant data
 - Avoid packet retransmission

UNAP (Universal Network Acceleration Protocol)

UNAP (Universal Network Acceleration Protocol)

patent-pending

- UDP-based high-performance protocol with proprietary technologies
 - Identify the reason why there may be a delay in delivery
 - packet loss, or temporary congestion on the network
 - If it determines the reason is packet loss, it will then retransmit the lost packet
 - Control unnecessary packet retransmission

UNAP (Universal Network Acceleration Protocol)

- Press release was issued by Fujitsu Laboratories on January 29, 2013
 - http://www.fujitsu.com/global/news/pr/archives/month/2013/20130129-02.html

Copyright 2014 FUJITSU

R-TSP (Reconfigurable Transport)

R-TSP (Reconfigurable Transport)

patent-pending

- Automatically selects the most suitable protocol (UNAP, UDP+RPS, TCP) based on the application and network properties (bandwidth, packet loss rate, latency, RTT, etc.)
- Guarantees the best access for each application flow and maximizes application performance

Dynamic Bandwidth Control

Dynamic Bandwidth Control

- Regularly checks the status of the network and actively controls the bandwidth
- Minimizes the impact on other important traffic and utilizes existing network bandwidth in the most efficient way

Dynamic Bandwidth Control

Without bandwidth control

Static bandwidth control

Dynamic bandwidth control

Automatically check bandwidth availability at defined interval

|| · || ||

Dynamically control bandwidth to utilize maximum bandwidth while minimizing an impact on other important traffic

Supported network characteristics

- Network type and effectiveness
- Applicable protocol diagram
- Protocol performance comparison

Network type and effectiveness

Applicable network type and technology

- Broadband internet, Wireless networks, Satellite networks, Leased line, IPsec-VPN
 - SSL-VPN is not supported

	Factor	Effectiveness of III WAN optimization			
	Factor	Low		High	
1	Round Trip Time (RTT) (ms)	40		200~	
2	Packet loss rate (%)	0.01		1.0~	
3	Bandwidth (Mbps)	3		100~	
4	Transfer data size (MB)	1		300~	
5	Application type	Chatter application with frequent communication	~	Bulk communication	

Example cases and performance benchmarks

- Applicable applications
- Backup
- Enterprise Content Management
- Secured Delivery System
- Virtual Desktop Infrastructure
- Wireless environment

Applicable application example

Туре	Application (Protocol)
File Sharing	Windows (CIFS)
Web	Web-based applications (HTTP / HTTPS) for file downloading/uploading
File Transfer Software	HULFT 7 (Japan only)
Backup / Replication	Backup and replication applications from leading vendors
CAD	FTCP Remote Desktop (Japan only)
Remote Desktop	Windows RDP, Citrix XenDesktop(*1)

*1: Citrix XenDesktop with DHCP mode is not supported

Data backup from primary datacenter to secondary datacenter

Benchmark Result

International WAN : Europe – Japan

■ Bandwidth: 100Mbps, Latency: 250ms, Loss rate: 0.1%

22x faster

	File size	Without III	With III	Results
Backup	10 GB	7 hours 20 min	20 min	22x faster

Enterprise Content Management

Delivery of Technical information and documents

Benchmark Result

■ International WAN : USA - Japan

■ Bandwidth: 15Mbps, RTT: 250ms

maximum 27x faster

	File size	Without III	With III	Results
Upload	1 MB	9 sec	1 sec	9x faster
(USA-Japan)	30 MB	180 sec	7 sec	26x faster
Download	1 MB	13 sec	1.5 sec	9x faster
(USA-Japan)	30 MB	350 sec	13 sec	27x faster

Secured Delivery System

Delivery of high-volume data file on HTTPS through III protocol

Benchmark Result

International WAN : Europe/USA - Japan

■ Bandwidth: 10Mbps, RTT: 240ms, Loss rate: 1.0%

maximum 27x faster

	File size	No. of clients	Without III	With III	Results
Upload	10 MB	1 pcs	295 sec	11 sec	27x faster
(Europe-Japan)	10 MB	5 pcs	310 sec	14 sec	22x faster
Download	10 MB	1 pcs	205 sec	11 sec	19x faster
(USA-Japan)	10 MB	5 pcs	240 sec	17 sec	14x faster

Virtual Desktop Infrastructure

Delivery of virtual desktop image hosted on datacenter to office

Benchmark Result

■ International WAN : Europe – Japan

■ Bandwidth: 50Mbps, Latency: 250ms, Loss rate: 0.1%

4.6x faster

	Without III	With III	Results
Waiting time	2.3 sec	0.5 sec	4.6x faster

25

Copyright 2014 FUJITSU

Wireless environment

Access to web application from mobile devices via wireless network

Benchmark Result

- Wireless network
 - Bandwidth: 20Mbps, Latency: 150ms, Loss rate: 0.1%

5x faster

	Without III	With III	Results
Waiting time	5 sec	1 sec	5x faster

Technical architecture

- Technical architecture
- Communication flow
- Environment setting overview
- Setting screen sample (Windows / Android)

Technical architecture

- Protocol Conversion
 - Convert TCP/IP protocol to high-performance protocol (UNAP, UDP+RPS) at lower layer
 - No need to modify applications

Communication flow

- (1) Client Application transmits data to client-side III
- (2) Client-side III converts the data from Client application into UNAP or UDP+RPS
- (3) Client-side III transmits data to server-side III
- (4) Server-side III converts the data from client-side III into TCP
- (5) Server-side III transmits data to Server Application

Environment setting overview

: TCP port number that is necessary to consider the firewall settings : UDP port number that is necessary to consider the firewall settings

Setting screen sample (Windows)

Basic Setting (client-side)

Basic Setting (server-side)

Setting screen sample (Windows)

Line Setting (Client / Server)

Setting screen sample (Android)

Menu

Setting screen sample (Android)

Service Setting

Line Setting

Deployment model

- Proxy environment
- Load balancing environment
- SSL-VPN environment

Proxy environment

- Traffic using III needs to detour the proxy server
- Client and server have to communicate without going through proxy

Load balancing environment

- Configuration requiring load balancing
 - Deploy sever-side III in front of a load-balancer

SSL-VPN environment

Reference example - Reason for no sufficient result on SSL-VPN

- III converts TCP to high-performance protocol (UNAP, UDP+RPS)
- However, SSL-VPN encapsulates UDP protocol into HTTPS protocol(TCP)
- HTTPS protocol (TCP) causes extra waiting time affecting its RTT
- For this reason, sufficient acceleration cannot be performed

Competitive advantage

■ III Characteristics

III Characteristics

- Application
 - Optimizes only the traffic of targeted application in the WAN traffic.
 - Allows you to optimize without impacting other traffics.
 - Can select the target application to be optimzed.
- Deployment
 - <u>Software-based WAN opmization solution</u>.
 - Can be deployed on virtual environment or existing server without changing any existing network configuration.
 - Configure target application to send traffic to III.

Product lineup

- License scheme
- License model example
- System requirements

Copyright 2014 FUJITSU

License scheme

Product	License scheme		Appropriate for
Interstage Information Integrator Standard Edition	 Needs to be purchased per processors One processors Licenses equal to the total nultiplied by the relevant conjunction purchased (decimals rounded) Processor type Intel (excl. Itanium) AMD 	uired per processor umber of cores pefficient must be	Datacenter Branch office
Interstage Information Integrator Client License	Needs to be purchased in line with the number of client devices (Smartphone, Tablet, Notebook)		Mobile users

License model example

Required Licenses

- Datacenter: 1x PRIMERGY RX100 (4 cores, Xeon) + 2x III Standard Edition Licenses
- Office A: 1x PRIMERGY TX120 (2 cores, Pentium) + 1x III Standard Edition License
- Office B: 1x PRIMERGY TX120 (2 cores, Pentium) + 1x III Standard Edition License
- Mobile: 10x Tablet/Smartphone/Notebook + 10x III Client Licenses

System requirements

Hardware

	Specifications
Server	Memory: more than 2GB, Disk: more than 1GB free space
Client	Memory: more than 1GB, Disk: more than 50MB free space
Smart device	Memory: more than 1GB, Disk: more than 30MB free space

Operating System

	Specifications
Windows	FUJITSU PC, PRIMERGY, PRIMEQUEST, FUJITSU Cloud IaaS Trusted Public S5, AT compatible machine
	Microsoft Windows Server 2003, 2008, 2012 Microsoft Windows Vista, 7, 8
Linux	PRIMERGY, PRIMEQUEST, FUJITSU Cloud IaaS Trusted Public S5
	Red Hat Enterprise Linux 6
Solaris	SPARC M10, SPARC Enterprise, PRIMEPOWER, S Series
	Oracle Solaris 10, 11
Android	Smart device equipped with Android
	Android OS 4.0, 4.1, 4.2

shaping tomorrow with you