Fujitsu Radio Unit
Fujitsu has over 15 years of radio unit (RU) expertise. Over 600K RUs have been delivered since 2004.

- **2004**: First world shipment of Fujitsu RUs
- **2014**: Fujitsu begins supplying dual and triple band RUs
- **2019**: World’s first commercial O-RAN compliant 5G deployment
- **2020**: O-RAN trials in Europe
- **2021**: First O-RAN compliant radios delivered to N. America
- **2022**: Massive MIMO RU has been commercialized in Japan Market

O-RAN commitment and leadership
Driving Open RAN ecosystem and technology
Fujitsu O-RU benefits

Performance
- High efficiency
- Contact and light weight
- Wide band
- High output power

Proven Reliability
- High MTBF
- Very low return rate
- Natural cooling
- FMEA applied

Flexibility
- LTE & NR RAT
- Dynamic Spectrum Sharing
- Hybrid M-Plane

Industry Compliance
- ORAN 7-2x
- 3GPP
- SSHv2 & TLS security compliance
- FCC / ISED / CE / Telcordia
RU Technologies
Key differentiators for RU

1. Power saving
 - High-efficient Power Amplifier by Multi-Chip-Module (MCM)
 - Power saving in operation by advanced sleep control

2. Achieving High Throughput
 - In house BFIC supporting multi-beam multiplexing for mmWave
 - High-capacity RU with small size

3. Technology toward 6G
 - Enabling 6G with developing in house wafer technology to operate at high power in Sub THz (100-300GHz) range

CO2 emission of total system to be 1/2 of today’s amount by FY2025
Fujitsu can provide lower power consumption solutions based on Systems, Products, and Module & Devices. Power consumption can be reduced by 30~50%.

- PA (power amp.) miniaturization achieves lower loss elements in module.
- Linearized techniques (DPD) for GaN save energy dissipation from power source.

Advanced PA on/off control with DPD

Conventional transmitter (1ch)

MCM (Multi-Chip-Module)
FUJITSU has mmWave devices, antenna in packaging (AiP), and multi-beam radio technologies. High performance (>10Gbps) and small size (<1/2) RU is realized by those technologies.

mmWave device technology

CMOS beam-forming IC

Multi-beam antenna technology

- Multi-panel multi-beam antenna (Conventional)
- Single-panel multi-beam antenna (Proposed)

Multi-beam Radio Unit

28GHz 8ch TRX beam-forming IC

Throughput $2.5\text{Gbps} \times 4 = 10\text{Gbps}$

Inter-beam interference suppression

This material is based on results obtained from the project, "Research and Development Project of the Enhanced infrastructures for Post-5G Information and Communication Systems" (JPNP20017), by the New Energy and Industrial Technology Development Organization (NEDO).
Technology toward 6G

To establish leading position in the market by developing the sub-THz array antennas and the world No1 high-power and high-efficient power amplifiers for 100/300GHz

1. Array antennas for beam forming
 - Element pitch: 0.7mm (0.7λ)
 - Developed array antennas (1×4 array)

2. High-power amplifiers (PAs)
 - Output power
 - Efficiency
 - Target: 100GHz 10mW, 300GHz 100mW

This work was partially supported by "The research and development project for the expansion of radio spectrum resources (JP000254)" of the Ministry of Internal Affairs and Communication, and "R&D on THz band ultra high-capacity wireless communications for beyond 5G " from the commissioned research (No.00301) by National Institute of Information and Communications Technology (NICT), Japan.

6G joint trials press release

Current FJ-PA (World record)
Thank you