Digital Annealer Introduction

shaping tomorrow with you

July5, 2019

FUJITSU Quantum-Inspired Computing Digital Annealer Fujitsu Limited

Patent pending including related technology

Reaching the Limit of Moore's Law

Computers must process increasingly massive and complex data at higher and higher speeds in order to support digital transformation in society and business. Moore's Law* is approaching its limit, threatening the drastic compute performance required in the coming future.

Quantum Computing is one promising prospect as a next generation computer

*Moore's Law: An empirical rule in the semiconductor industry stating that the number of transistors in a dense integrated circuit doubles every 18~24 months.

Digital Annealer

A new architecture that solves "combinatorial optimization problems" at high speed with digital circuits inspired by quantum phenomena

Ouantum Computers

Still in the research stage ...

Difficult to maintain a quantum stateLimits in connection and expansion

Digital Annealer

Easy to apply to actual problems

Stable operation with digital circuit, and easy miniaturization

Easy mapping of more complex problems with a fully-connected architecture

Digital Annealer Positioning

- Digital Annealer makes use of the annealing method, specialized for combinatorial optimization.
- Unlike quantum computers, Digital Annealer does not require an extremely low temperature environment. Digital Annealer operates stably at room temperature.
 Development

What is the Annealing Method?

An algorithm based on the "annealing" metal processing phenomenon

Annealing Phenomenon

When brought up to high temperature then gradually cooled, the structure of metal becomes stable (low energy).

Check all combinations by moving up in order to go back down if a combination does not work

Annealing Method

Find a way to quickly fit all the pieces by first shaking the whole system, then gradually reducing the shaking

When exploring optimal solutions, first search all solutions including those far from optimal, and then gradually close in to an optimal solution.

Combinatorial Optimization Problems

Seek *combinations* or *sequences* that satisfy given constraints, with the goal of finding the best out of all available combinations

5

Solving Combinatorial Optimization Problems – An Example (1) FUITSU

Find the **shortest-distance route** (shortest path) that visits **every city exactly once** and then returns to the starting point

1. Define an Optimum Solution for the problem to be solved

Optimum Solution:

Traveling Salesman Problem

Shortest total distance route

With the Traveling Salesman Problem, the shortest route (minimum value) is defined as the optimum solution, but optimum solutions for combinatorial optimization problems can also be defined as maximum values depending on the type of problem.

NEXT Which pieces of information are combined in order to lead to the shortest route?

2. Define Variables and Constraints

In order to find the shortest route, combine the Variables:

Variables are the elements of the problem that must be defined in order to seek optimum solutions.

Define Constraints for the problem:

visit every city exactly once

NEXT After defining an optimum solution, variables & constraints, how is the problem formulated for Digital Annealer?

Solving Combinatorial Optimization Problems – An Example (2) FUITSU

Find the **shortest-distance route** (shortest path) that visits **every city exactly once** and then returns to the starting point **Traveling Salesman Problem** 3. Create a formula that can be solved with Digital Annealer ✤ 4. Use Digital Annealer to find solutions Create an Ising model for formularization Send formula to Digital Annealer to obtain optimum solution (values) Ising Model: Used to express the interactions of variables with "spins" of either 0 or 1. Cities to visit (i.j) **Objective Function** Variable City C City D City E City B City C City D City É City A City B E = Function to minimize/maximize energy City A VisitOrder (t) Here 🚺 means: visit City B first, Variables then visit City A, i i: City to visit then D. C and (X_{10}) finally E. **Constraint Terms** 2 0 X_{20} X₂₃ X_{24} Visit only one city at a time: Constraint 3 0 Visit every city exactly once: Constraint Constraints • Visit only one city at a time **Only one selection** •A bit can be 0 (in the city) or 1 (not in the city) •Visit every city exactly once per column/row • 1 represents the city to visit on the nth leg of the route (i.e. the optimum solution) • Each
represents a single bit Digital Annealer seeks solutions to this type of problem •2nd generation Digital Annealer supports up to 8,192 bits

Combinatorial Optimization Problems Across All Industries & Business FUITSU Advanced Autonomous New Material Healthcare Vehicles Development **Applicable to New Areas** Distribution Route Utilities Demand Materials & Network Config Planning Management Forecasting Compounds Management Improve Precision and Reduce Time to solve existing combinatorial optimization problems BANK Drug Portfolio Hospitality Digital Logistics Discovery Management Management Marketing Applicable Area Examples

Digital Annealer Application Cases

Search for molecular similarity

Seek overall similarity of compounds

Big Data Visualization Toolkit

Clustering of big data for visualization

Traffic Optimization

Select non-overlapping distribution routes for vehicles driving to each destination from multiple departure locations

Investment Portfolio (QHRP)

Select investment portfolio assets which are not affected by correlations

Optimizing HR Planning

Develop HR planning according to staff requests, capabilities, desired schedule, attendance conditions, etc

Optimizing Inventory Allocation

Optimize combinations parts and products to meet destination requirements

Production Planning Optimization

Optimize overall operation scheduling of multiple machines performing tasks with interrelated sequences

Optimizing Flow Line in Factory

Select optimal shelf arrangement and parts pick up routes within factories

1. High Precision Molecular Similarity Search for Drug Discovery FUJITSU

Contributing to the development of highly effective medicines

Issues

The conventional Finger Print method determines the presence or absence of an atomic group, but does not consider the molecular shape. Thus, a precise search cannot be performed.

Finger Print: A method of representing the presence or absence of an atomic group as 0 or 1 and expressing the molecule as a Boolean vector

Technique

By converting the molecular structure to a graph and handling atomic groups as nodes and bonds as edges:

- Precision is improving by considering molecular shape
- Calculations are performed at high speed by Digital Annealer

- Highly precise molecular similarity search becomes possible
- Expected to improve the efficiency of drug development leading to new highly effective medicines

2. High-Speed Clustering for Big Data Utilization

Visualizing large-scale datasets for more accurate analysis

Issues

As the importance and prevalence of big data increases, highspeed data processing is necessary to effectively derive business insights

Technique

High precision clustering with hierarchical structures is implemented by compressing high dimensional data and segmenting it into portions that can be clustered

- Clustering is accelerated from several hours with conventional methods to just a few minutes with Digital Annealer
- Large scale data sets can be visualized and analyzed
- The level of clustering can be changed to enhance analysis

3. Route Optimization to Reduce Traffic Congestion

Reduce overall travel time by distributing routes throughout a city or factory to avoid congestion

Issues

With conventional routing systems, there is a tendency to assign the shortest distance route, leading to traffic congestion in the city center

Technique

- Optimize route selection to avoid overlap
- Prioritize route options by adding conditions, such as: speed limits, number of lanes, etc.

- Reduce traffic congestion by up to 40% by dispersing traffic
- Apply to cases of iterative simulation used for road development planning
- Applicable to other routing problems, such as warehouse collection and distribution, AGV (Automated Guided Vehicles), and network traffic

4. Investment Portfolio Optimization Through Risk Diversification

Instant clustering for the correlation of 500 stocks to compose a risk-resistant portfolio

0.5

:

Issues

The commonly used Minimum Variance (MV) method for portfolio optimization is susceptible to the influence of market fluctuation

Technique

Quantum-inspired Hierarchical Risk Parity (QHRP) portfolio optimization method provides for:

- The clustering of assets into a tree diagram based on risk correlations
- Composition of risk-diversified portfolios with low correlativity

- Create portfolios with resistance to market fluctuations that continue to provide stable returns
- 60% higher Sharpe Ratio compared to MV method

5. Manpower Management

Optimize manpower management and eliminate dependencies on individual skills

ssues

- Securing correct manpower difficult due to increases in conditions to be considered
- Difficult to quickly respond to sudden changes in scheduling conditions
- Manpower management-related shift planning dependent on specialist skills

Technique

- Digital Annealer's 8192-bit scale & 64-bit gradations handle detailed requirements simultaneously: e.g. preferred dates, consecutive day work restrictions, and 5-day work week
- High-speed processing allows for prompt recalculation when staffing conditions change

Results

- Shift planning requirement reduced from 34 staff to 29 after optimization
- Work dependent on individual skills reduced, and shift planning completed quicklyApplicable to work style reform in various industries.

Use Case

Shift Planning Example

-			Мог	nday	·		Tues	sday			Saturday			Sunday					
Planne	d Workload		22	20			22	20				20	0			18	30		1
Worker ID	Capacity per day	T1	T2	T3	T4	T1	T2	T3	T4		T1	T2	T3	T4	T1	T2	Т3	T4	Work days per staff
0	(008):	×	×	×	×	×	×	O	0		×	×	×	×	×	×	×	O	4
\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	22	\mathbf{N}	\sim	$\mathbf{\tilde{x}}$	
8	(012):	×	×	×	0	×	×	0	0		0	0	0	×	×	0	×	0	0
22	\sim	\sim	\sim	\sim	Ś		\sim	\sim	2	\sim	\sim	\sim	\sim	$\delta \delta$	22	\mathbf{N}	\sim	~	~~~~
24	(005):	×	×	×	0	Õ	0	×	×		×	×	0	0	×	0	0	0	0
25	(014):	0	0	0	×	\bigcirc	×	×	×		×	0	0	\bigcirc	0	0	×	0	0
\mathcal{M}	\sim	\sim	\sim	\sim	\sim	2	\sim	\sim	\sim		\sim	\sim	\sim	\sim	22	S	Ś	Ş	\sim
32	(010):	O	×	×	×	O	0	×	×		×	0	×	O	×	O	×	×	5
33	(012):	-	O	×	0	\bigcirc	O	×	×		O	×	0	×	×	0	×	O	5
Work fro	doad (gap m plan)		221	(1)			222	2 (2)				199	(-1)			180	(0)		# of workers: 29 (-5)

©: Determined Shift, O: Preferred, ×: Not Preferred

Before: 34 Workers Required With Digital Annealer: **29** Workers Required

6. Production Control Scheduling

Process6 Machine

2

6

2

Time

3

3

iob7

job9

iob9

Optimize equipment allocation to reduce production process time

Issues

- Varied product types leads to different process times, requiring efficient utilization of equipment to reduce production times
- Allocation is time consuming as jobs are allocated manually

Technique

- High-speed processing enables instant optimization, even when sudden machine failures occur or jobs requests change
- Digital Annealer's 8192-bit scale & 64-bit gradations handle multiple jobs, varying process times, and process-combination conditions

Results

- Efficient equipment allocation leads to a 30% reduction in processing time
- Allocation plans created quickly and without the need for specialist skills
- Applicable to equipment verification and the purchasing of new eauipment
- Also applicable to various industries with scenarios consisting of the combination of multiple processes

Use Case

Iob Process Table

	Proce	ess0	Pro	cess1	Process ~
	Machine	Time	Machine	Time	
job0	4	2	6	2	
job1	1	3	4	3	
job2	3	2	5	2	
~		~	5		~
job7	6	3	2	3	
job8	1	2	5	2	
job9	3	3	0	2	
E 1 . 1					

• Each machine can process only 1 job at a time

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

job9

iob7

30% Reduction

job7

iob8

ioh7

iob9

iob8

job8

 \sim 0

Process5

Time

3

Machine

2

6

 Each job proceeds in order of process number lob processing time varies depending on machine/process

Job Allocation - Before

	1	2	3	4	5	6	7	8	9	10	11		I
Machine0					job0		job1		job5		job2		ſ
Machine1	job1			job8		job3							I
Machine2				job3		job5			job6			~	I
Machine3	job2		job5	job6		job0			job4				I
Machine4	job0		job3	job1			job2				job5		I
Machine5			job2		job4				job0				I
Machine6			job0		job7			job2					I

Job Allocation - with Digital Annealer

	1	2	3	4	5	6	7	8	9	10	11		27	28	29	30	31	32
Machine0					job9		job5		job0		job1			job7				
Machine1	job8			job1				job9			job3	~	job5					
Machine2		job5				job6			job3		job7		job2					Fr
Machine3	job5	job9			job6	job2		job4			job0		job3					
Machine4				job0		job3	job1							job6				
Machine5	job4						job9	job8		job2								
Machine6	job7					job0				job6				job4	1			
										-								

33 34 35 36 37 38 39 40 41

iob9

om 41 hours down to 29 hours

7. Inventory Allocation Optimization

Optimize parts allocation and inventory for the assembly of multiple product models

Issues

- Due to increases in product type variation, complexity growing for parts selection from inventory. Enormous time required to create production parts combinations.
- Manual optimization difficult due to complexity

Technique

Digital Annealer's 8192-bit scale & 64-bit gradations handle large variety of products, parts and production conditions
High-speed calculation enables real-time parts allocation

Results

- Real-time recognition of parts that meet conditions, improving efficiency of inventory and quality control
- Eliminate work dependent on specialist skills
- Also applicable to retail and distribution warehouses

Use Case

- Prioritize allocation to products with high unit price and profit
- Prioritize allocation to high-demand products

8.Factory Parts Pick Up Optimization

Reduce travel distance for warehouse parts pick up by up to 45% Now in use at Fujitsu IT Products

Issues

- High-mix, low-volume factory production requires a large variety of parts for each product. Time and labor required dependent on the experience level of each worker
- Inconsistent and inefficient parts pick up process

Technique

- Routes and shelf population are minimized as combinatorial optimization problems
- Correlation of frequently used shelves identified

Results

- Even inexperienced workers can realize efficient parts picking
- Travel distances reduced by up to 45% per month through route and shelf location optimization
- Optimization methods to be deployed to other factories, as well as other processes such as warehouse management

Use Case

Very complicated parts picking routes required experienced workers

Warehouse area: 1000m² Number of parts: 3000

Digital Annealer provides optimum picking routes displayed on a tablet

8. Case Study: Factory Parts Pick Up Optimization - At Fujitsu IT Products

Company Profile

Company Name	Fujitsu IT Products Limited
Company Name	Fujitsu IT Products Limited

Location 1-1, Kasajima-to, Kahoku-shi, Ishikawa, 929-1196, Japan

Capital 100 million yen (wholly owned subsidiary of Fujitsu Limited)

Establishment April 1, 2002 Employees 455 people

Industry Manufacture of servers, supercomputers, storage systems, software, etc. Source: <u>http://www.fujitsu.com/jp/group/fjit/</u> (Japanese)

Digital Annealer Project Schedule

Discussion from
September 2017PoC from
October 2017Service
in February 2018

Case Study: http://www.fujitsu.com/global/digitalannealer/case-studies/201804-fjit/

富士通してプロダム

Goal: Leverage existing operation, and create a new shelf position database to use Digital Annealer to calculate optimal pick up routes

Unique Technology Improves Optimum Solution Accuracy

Encourage escape from local solutions, leading to optimum solution

Evaluating the bit inversions for each trial in parallel, leads rapidly to the optimum solution

Specification Comparison

Applicable to real world problems with the stability and balance of scale, connectivity, and precision

	Digital Annealer (2 nd generation)	Company A	Company B		
Implementation Technology	Digital Circuit (Using existing technology)	Superconductive Circuit (Cryogenic cooling required)	Non-Linear Optical (1km ring device)		
Number of Bits	8192	2048	2048		
Amount of Coupling	Total Coupling	6 - Partly Coupled (64bit total coupling equivalent)	Total Coupling		
Evaluation Accuracy	64bit Gradations	32 Gradations	3 Gradations		

shaping tomorrow with you

Digital Annealer

Services Overview

Copyright 2019 FUJITSU LIMITED

Digital Annealer Service Overview (Japan Market) Cloud Service & Technical Service launched in May 2018 On-Premises Service launched in February 2019 Deliver high speed processing for combinatorial Support for Digital optimization problems

FUJITSU Quantum-Inspired

Computing Digital Annealer

Cloud Service

Combinatorial Optimization Problems Faced in Actual Business

FUJITSU Quantum-Inspired

Computing Digital Annealer

On-Premises Service

Annealer utilization

Digital Annealer

Technical Service

FUJITSU Quantum-Inspired Computing Digital Annealer Digital Annealer Cloud Service

General Formula Type (QUBO API)

Submit Ising model (QUBO) formulas through Web API

Solution-Specific Type (Optimization Solutions API)

Submit solution-specific data and receive optimal solution

FUJITSU Quantum-Inspired Computing Digital Annealer Optimization Solution API

Warehouse Pickup Optimization API

- A Web API service that finds the shortest distance route for picking up specified products from multiple locations within a warehouse
- A list of products to pickup is input and the optimal pickup order is output
- Supports up to 32 locations with the same priority
- Warehouse map files (coordinate data) are pre-registered in the cloud

FUJITSU

FUJITSU Quantum-Inspired Computing Digital Annealer

Cloud Service Menu (Japan Domestic Market Only)

Service Type		Fee	Remarks		
General Formula Type	Premium	Basic fee (fixed monthly)	Usage time is not limited		
(QUBO API)	Standard	Basic fee (fixed monthly) + Metered rate (by usage)	Processing time is metered (calculated in seconds; data transfer time is not included)		
Solution-Specific Type (Optimization Solutions API)	Warehouse Pickup Optimization API	Individual quotation			

FUJITSU Quantum-Inspired Computing Digital Annealer Cloud Service Web APIs

Synchronous Web API (basic) and Asynchronous Web API (optional) offerings:

The API requests calculation results synchronously. The API returns when the calculation process has completed.

The problem is processed in real time

A calculation request is issued and the API returns. A separate request is issued to obtain the calculation result.

Multiple requests can be made for large problems

FUJITSU Quantum-Inspired Computing Digital Annealer Help Desk Service

Service Details for Digital Annealer Cloud Service Subscribers:

Service Hours	Weekdays 9:00-17:00 (JST) *Closed on Japanese holidays								
Inquiry Contact Method	Email		Language		Japanese				
Acceptable Questions	 Questions a Questions,	bout specifications, sett investigation, workarour	out specifications, settings and usage of the Digital Annealer Cloud Service vestigation, workarounds when the Digital Annealer Cloud Service does not function correct						
Trouble Notification		Maintenance Noti	fication	Servi	ce Detail / Update Guide				
Detail Notification from the loccurs, functions impa	time the issue cted, etc.	Detail Notification of Dig planned or emerge date/time, function	ital Annealer Cloud Service ency maintenance ns impacted, etc.	Detail	Notification of new functionality and improvements made to the Digital Annealer Cloud Service				
Method Portal/Email		Method Portal/Email		Method	Portal/Email				

Important Notes

Inquiries received outside service hours will be processed after 9:00am on the following business day

The following inquiries are **excluded** from the Help Desk Service:

- Processing speed tuning (performance evaluation resulting from customer's APP design, implementation and operation, etc.)
- ·Consulting (advice on creation, design, implementation and operation of mathematical models)
- · Disclosure of information related to our cloud service environment and logs
- •Calculation result accuracy

Service Fee

Calculated as 5% of the Web-API usage service fee

FUJITSU Quantum-Inspired Computing Digital Annealer Digital Annealer On-Premises Service Offering

- Digital Annealer Server installed at the Customer site for a monthly subscription
- Supporting 8,192-bit full connectivity and flexible partitioning for parallel operation and scaling to match problem size and precision requirements.

Digital Annealer Technical Service Digital Annealer Technical Service - Outline FUITSU

Technical experts with advanced mathematics knowledge and data analysis capabilities support you in resolving your optimization problems

Digital Annealer Technical Service

Complete support from introduction to operation, leveraging Digital Annealer for customer business

Digital Annealer Technical Service Digital Annealer Technical Service Details

Formulation Verification	ିଙ୍ଗୁ Development Support	Implementation
Verify the customer's problem can be converted to a combinatorial optimization problem, and generate a mathematical model to solve with Digital Annealer.	PoC planning for customer Digital Annealer use. Evaluate mathematical model implementation and results. Support requirements definition for customer Digital Annealer deployment.	Develop and deploy application for use with Digital Annealer: Deploy on customer systems, establish connection to Digital Annealer, process input / output data, and perform post processing of output.
Operation	Training	🔀 Tuning Support

Digital Digital	FUJITSU				
Typical					
	Z~3 N		ζ~3 Π		
Pre-Phase	Phase 1 Technical Check	Phase 2 Select business target for PoC	Phase 3 Model Construction	Phase 4 PoC	Next Step
 Procedure Agreement Conclude NDA (As needed) 	 Pre-meeting (2-3 times) Technical Introduction Technical Verification 	 Select target business Agreement on Expectations 	 PoC Plan Agreement Formulation Ising Model Construction 	 PoC on Digital Annealer -Confirm Functions -Performance, UX, etc PoC Result Summary 	
		• • •		• • •	Premium/Standard
Available	Cloud Se	rvice: Maximui	m 6 months tr	[a] (Fee-based)	Cloud Service (Fee-based)
Services		Tech	nical Service (F	ee-based)	
		0 0 0	•	• • • • • •	

Digital Annealer Case Studies

Fujifilm Corporation

Technical verification of production lines for high-mix low-volume models in factories Mitsubishi UFJ Trust Investment Technology Institute Co., Ltd.

Technical verification of portfolio optimization in asset management

Recruit Communications Co., Ltd.

real-world business problems

GFON

Solving combinatorial optimization problems to control Automated Guided Vehicles (AGVs)

Touhoku University

New marketing technology research and development for

Fixstars Corporation

FUJITSU

A new service in the quantum computing area

Participation in the MITOU Program of METI / IPA

Factories and warehouse

Using Digital Annealer to foster talent and start-up companies in technical fields

Copyright 2019 FUJITSU LIMITED

shaping tomorrow with you

Digital Annealer

Roadmap

Copyright 2019 FUJITSU LIMITED

Digital Annealer Roadmap

Expand applications from technical verification to real-world business value

Application Areas Surpassing the Competition - 2nd Generation

Application Areas Surpassing the Competition – Next Generation

Develop further large-scale application technology

2019

Tackling Extremely Large Scale Problems

Fujitsu is developing a problem-splitting method to solve extremely large-scale problems

This method extracts a portion of a problem according to problem characteristics; processing each portion on Digital Annealer, then assembling the output from multiple calculations to derive the total optimal solution using search flow.

- This method allows a single 2nd generation (8192 bit) Digital Annealer to solve <u>100,000 bit scale</u> problems
- Further software and hardware enhancements will expand the scale to <u>1 million bits</u> (planned for CY2019)

Large scale problems split into manageable portions by software

Hardware technology links multiple Digital Annealer Units (DAUs) to execute large scale parallel processing

Accelerate the Development of Middle Molecule Medicine

Apply Digital Annealer + the problem-splitting method for simulation to find stable structure middle molecule drug candidates jointly with ProteinQure Inc.
 Effectiveness demonstrated with <u>30K bit scale</u> problem

Search for the most stable structure binding relationship within amino acids, when each amino acid is modeled and placed on a lattice point

Drug candidate search can be drastically shortened from 6 months to just a few days, accelerating the development of middle molecule medicine

Digital Annealer Global Rollout

Global service now available

On-Premises Service launched in 2019 (Global launch planned)

Cloud Service

• Technical Service Launched in FY 2019*

· Cl

*Please contact us regarding the service start date in each country.

APAC / Oceania

- Cloud Service
- Technical Service Launched in FY 2019*

Japan

- Cloud Service
- Technical Service
- On-Premises Service
 Now Available

Americas

- Cloud Service
- Technical Service
 Now Available

New Al Headquarters (Al HQ) - Established October 2018

Creating a core base in Vancouver to roll out Fujitsu's AI business and accelerate the application of AI to customers worldwide using Digital Annealer as a key technology

shaping tomorrow with you

Digital Annealer

Partnerships

Copyright 2019 FUJITSU LIMITED

Expanding Digital Annealer Applications Through Partnerships

FUJITSU

Collaborative research in cutting-edge areas

1QBit middleware implemented on Digital Annealer Confronting new issues in society

WASEDA University 早稲田大学

Promotion of combinatorial optimization as a way to solve societal issues

Expansion of application areas

Digital Annealer

Partnership with 1QBit

The world's #1 vendor of software for quantum computers
 Conducting joint business around the world
 Digital Annealer incorporated in 1QBit Cloud Service in FY2019

Partnership with University of Toronto

- World-class research university in the fields of AI and quantum computing
- New joint research center established with the University of Toronto in November, 2017: Fujitsu Co-Creation Research Laboratory at the University of Toronto
- Joint research in smart transportation, networks, finance, and healthcare fields

Joint Research with the University of Toronto - Cancer Radiation Therapy

- Huge computational load required for simulation before a treatment plan can be made.
- Current technology needs multiple hours to a few days to calculate the combinatorial optimum.
 - Digital Annealer takes only a few minutes

Huge number of irradiation patterns (number of combinations) with variations such as range, direction, and intensity of irradiation

Even when the beams are from only one direction, the number of combinations would be: 10150

In case of irradiation against a 1cm² tumor with a precision of 1mm² and 32 intensity levels from one direction

Partnership with Waseda University Comprehensive Collaborative Activity Agreement Established

- Starting in April 2019: Collaborative research using Digital Annealer to solve real-world combinatorial optimization problems
- Drawing research topics from Waseda University's entire body of research
- Joint research site opened in March 2018: *Fujitsu Co-Creation Research Laboratory at Waseda University*

Digital Annealer Reference Sites & Press Releases

FUJITSU

Digital Annealer Websites:

Japanese

English

http://www.fujitsu. com/global/digitalannealer/

YouTube

Digital Annealer public channel

http://www.youtube.com/ channel/UCo0c9YwYOHXLwJnNA_moEJQ

Press Releases http://www.fujitsu.com/global/about/resources/news/press-releases/

January 15, 2019

Fujitsu and TC3 Promote Quantum Inspired Digital Annealer Next-Generation Architecture in Topcoder Contest

September 19, 2018

Fujitsu Laboratories and Waseda University Agree to Comprehensively Collaborate on Digital Annealer Research

January 29, 2018

Fujitsu Initiates Joint Research with Recruit Communications on Marketing Technologies Using "Digital Annealer"

September 20, 2017 Fujitsu Laboratories and University of Toronto Enter Strategic Partnership

December 21, 2018

Fujitsu Launches Next Generation Quantum-Inspired Digital Annealer Service

September 18, 2018

Fujitsu Technology to Solve Combinatorial Optimization Problems for Medium-Sized Drug Discovery

September 27, 2017

Exhibited at "CEATEC JAPAN 2017"

May 16, 2017 Fujitsu and 1QBit Collaborate on Quantum Inspired AI Cloud Service

October 2, 2018

Fujitsu Drives Quantum-Inspired Project to Help Solve NatWest's Complex Optimization Challenges

May 15, 2018

Fujitsu Quantum-Inspired Digital Annealer Cloud Service to Rapidly Resolve Combinatorial Optimization Problems

September 20, 2017

Fujitsu Technology Facilitates Application of Combinatorial Optimization Methods to Real-World Problems

October 20, 2016

Fujitsu Laboratories Develops New Architecture that Rivals Quantum Computers in Utility

FUJITSU

shaping tomorrow with you