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1. Introduction
With the explosive growth of data driven by IoT 

and advances in data analysis technology through AI, 
a data-driven society that will utilize data as a new 
resource and transform society and industry is emerg-
ing. Computing power for training AI models, which 
continue to grow in complexity and massiveness, will 
become increasingly important for advanced analy-
sis of huge amounts of data. For example, the text 
generation language model Generative Pre-trained 
Transformer 3 (GPT-3) has 175 billion parameters, and 
it is said to require 355 years to train on a single graph-
ics processing unit (GPU) [1].

To meet these increasingly complex and massive 
computational needs, Fujitsu has been conducting re-
search and development on Content-Aware Computing 
(CAC) technology [2]. CAC technology accelerates 
software processing based on analysis of processing 
content and data.

This article describes CAC technology for accel-
erating AI processing, which is becoming increasingly 
complex and massive, and some application examples.

2. Challenges toward accelerating AI 
processing
AI models are becoming increasingly complex and 

massive, and getting computers to rapidly train them 

requires computer hardware performance and software 
technology that can make the most of that perfor-
mance. In this article, we will focus on deep learning, 
a type of AI processing that requires particularly large 
amounts of computation.

In deep learning, data such as images, sounds, 
and sentences are fed to a deep (i.e. multilayered) 
neural network (DNN), and by training the system 
tasks such as classification and regression, a model is 
acquired that recognizes images and sounds, translates 
sentences, and so on.

Deep learning requires enormous computational 
complexity but not high calculation accuracy, so it is 
important to reduce computational complexity through 
optimal control of calculation accuracy. On the other 
hand, in parallel computing using multiple computers 
at the same time, it is important to perform calcula-
tions with high efficiency while maintaining accuracy. 
Furthermore, it is important to reduce the time for copy-
ing huge amounts of data from the parallel file system 
to local disks and the delay time for reading from local 
disks to memory.

3. Content-Aware Computing technology 
for accelerating AI processing
CAC technology [3] is software technology 

that accelerates processing by analyzing processing 
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content, reducing the processing amount, and optimiz-
ing the allocation of processing to computers. Figure 1 
shows an outline of CAC. For a variety of applications, 
it is possible to speed up training by up to ten times 
by analyzing the processing content and, based on the 
analysis results, automatically executing optimization 

control of computational complexity, parallel process-
ing, and I/O according to the hardware used.

In this section, CAC technology is described in the 
following order: Technology for dynamically reducing 
computational complexity, parallel training accelera-
tion technology, and I/O acceleration technology.

3.1 Technology for dynamically reducing 
computational complexity
While deep learning requires enormous computa-

tional complexity, it does not require high computational 
accuracy, so optimally controlling computational ac-
curacy to reduce computational complexity is effective 
for reducing training time. Figure 2 shows an outline of 
the technology for dynamically reducing computational 
complexity. Bit width reduction technology, Gradient 
Skip technology, pruning, and computational science 
simulation acceleration are introduced below as tech-
nologies that reduce computational complexity while 
maintaining learning accuracy.
1) Bit width reduction technology

One of the methods for speeding up numerical  
Figure 1
Outline of Content-Aware Computing.
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calculations is bit width reduction technology  
{Figure 2 (a)}. It reduces data size by using 16 bits or 
8 bits to represent numerical data, which is generally 
represented by 32 bits, to increase computation and 
communication speed.

In deep learning, the validation accuracy of DNN 
with reduced bit width may be remarkably degraded 
by careless bit width reduction. In the past, since bit 
width adjustment by an expert was required to prevent 
accuracy degradation, it was difficult to apply bit width 
reduction technology. To solve this problem, we have 
developed technology that automatically determines 
bit width that does not degrade accuracy, so that any-
one can use bit width reduction technology. We applied 
ImageNet, a typical image classification task, to the 
training of AlexNet, ResNet-18, and ResNet-50, which 
are image processing DNNs, and they were able to 
automatically determine bit width without significant 
degradation in classification accuracy. Further, AlexNet 
and ResNet-18 achieved 3.5 times faster training, and 
ResNet-50 achieved 2.5 times faster training.
2) Gradient Skip technology

A DNN is a network that consists of multiple lay-
ers. There are two types of processing during training: 
forward propagation, which outputs inferential prob-
abilities, and backward propagation, which calculates 
the amount of update (error gradient) for parameters 
(weights) in training. Weight update is not required 
in the layers where training has sufficiently advanced. 
Further, in image processing DNNs, it was found that 
parameters converge faster in input-side layers. For this 
reason, the Gradient Skip technology achieves higher 
speed by gradually stopping backward propagation 
computation starting from the input-side layers where 
training has progressed sufficiently, thereby reducing 
computational complexity {Figure 2 (b)}.

Having found from experiments that final training 
accuracy is slightly lower if weight update is stopped 
abruptly, we developed an accuracy assurance technol-
ogy that smoothly reduces the update value to zero. As 
a result, accuracy degradation due to the application of 
the Gradient Skip technology was reduced to a negli-
gible level. When we actually applied this technology 
to DeepCAM, which identifies extreme weather events 
from meteorological data (an MLPerf benchmark for 
HPC), a maximum speed increase of 1.8 times was 
achieved.

3) Pruning
The data size of DNNs continues to increase in 

order to achieve higher recognition accuracy and more 
complex pattern recognition. However, neural net-
works achieved by training include connections whose 
weight, which indicates the strength of the connections 
between neurons, can be regarded as zero. Because 
the results of operations (multiplication) for such con-
nections can be regarded as zero, these operations can 
be omitted, thereby reducing computational complex-
ity. Pruning technology [4] automatically identifies and 
deletes connections with small weight values in a DNN 
{Figure 2 (c)}.

A simple implementation would be to read the 
weights from memory and skip the operations that 
are considered to produce the value of zero. However, 
this simple implementation takes time to access the 
memory, and pruning cannot be used to increase 
speed. This is because the data whose operations 
should be skipped are only scattered, and the data size 
of the scattered data is not reduced. This time, we cal-
culated the sum of the absolute values of the groups 
(channels) with the smallest weights, and deleted the 
channels with the smallest sums to directly reduce 
the data size of DNNs. Doing so ensured that unnec-
essary memory accesses would not be generated and  
that parallel processing could be utilized to achieve 
higher speed.
4) Computational scientific simulation acceleration

In computational science simulations such 
as structural analysis, fluid analysis, and molecular 
dynamics calculation, there is a growing need for large-
scale calculations for obtaining detailed results, and for 
high-speed processing able to quickly simulate a large 
number of patterns for design automation and other 
applications.

In such calculations, it is important to set con-
vergence criteria for efficiently achieving the accuracy 
required by the user in iterative calculations. In the 
past, the setting of convergence criteria was left to 
the user. This time, by using an AI model, we have 
developed a technology to judge the achievement of 
accuracy with minimal computational cost for the data 
being calculated {Figure 2 (d)} [5].

In addition, the use of surrogate models, which 
are obtained by training the relationships between in-
puts and outputs from data obtained in the process of 
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simulation, is also making progress. By replacing simu-
lation computations with a trained surrogate model, 
results can be obtained instantly.

3.2 Parallel training acceleration 
technology
In large-scale parallel training using a large num-

ber of computers simultaneously, it is important to 
increase the degree of parallelism while maintaining 
high efficiency. Figure 3 shows an outline of the paral-
lel training acceleration technology. This sub-section 
looks at synchronization mitigation technology that 
maintains efficiency by reducing synchronization la-
tency for processes that experience processing delays, 
and model-parallel training that achieves parallelism 
beyond the limits of data parallelism.
1) Synchronization mitigation technology

Figure 3 (a) shows an outline of the synchroniza-
tion mitigation technology. In distributed training for 
deep learning, the occurrence of processes with slow 
processing speed during training means that the entire 
processing will be delayed by the synchronization wait 
time required for each training iteration. To remedy this 
delay, we developed a technology that dynamically 
separates slow processes so that the processing speed 
is always maximized, thereby enabling training while 
suppressing slowdowns [6]. In ImageNet image classi-
fication using ResNet-50, we confirmed that the system 
can be trained with 25% process reduction with almost 
the same accuracy.

2) Model-parallel training
Figure 3 (b) shows an outline of model-parallel 

training. Model parallelism is a training method in 
which one DNN model is divided into multiple parts 
and distributed to computers for training. In addition 
to improving training speed, this approach enables 
training of a large-scale DNN model that is too big to 
be accommodated by a single computer. Data paral-
lelism, in which multiple computers process different 
training data at the same time, increases the amount 
of data that can be processed at one time (batch size). 
As the batch size increases, the accuracy of the model 
obtained by training becomes lower. In the case of 
model parallelism, the batch size does not change, so 
the parallelism does not affect accuracy.

There are various model splitting methods for 
model parallelism. For example, the input data can be 
divided by spatial dimensions (height and width for 
images), or by channel (RGB for images). The type of 
communication between computers and the maximum 
number of parallelization depend on the input data, 
the DNN layers, and the splitting method, so it is neces-
sary to select the splitting method that best suits the 
situation. The application of model parallelism requires 
expert knowledge. However, combined with data paral-
lelism, it further accelerates training. We applied model 
parallelism to an MLPerf HPC benchmark described in 
Section 4 and achieved 1.8 times faster training speed 
with a 4-split model.

Figure 3
Parallel training acceleration technology.
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3.3 I/O acceleration technology
As deep learning uses a huge amount of data, I/O 

acceleration technology is required. This sub-section 
introduces the two techniques shown in Figure 4: data 
staging acceleration, which moves huge amounts of 
data from the parallel file system to local disks, and 
I/O bottleneck elimination, which conceals the time re-
quired to move data from local disks to memory during 
computing.
1) Data staging acceleration

In training using a large number of computers, 
reading data from remote storage may cause conflicts 
and delays. This can be mitigated by using instead local 
storage with data staging. For even faster staging, it 
is effective not only to use high-performance storage 
and networks to increase throughput, but also to com-
press data to reduce the amount of data transferred. In 
particular, if training data can be compressed prior to 
storage, use of a high-compression format can be ex-
pected to significantly reduce data transfer time. Data 
is decompressed and transferred concurrently, and 
also staged across many computers to parallelize the 
decompression. As a result, the decompression time is 
reduced.
2) I/O bottleneck elimination

Training data that does not fit in memory is stored 
in storage such as local HDDs and SSDs, and is read into 
memory for training as needed. However, if reading of 
training data starts only when it is needed, training 
will be interrupted until data reading is completed. 
Therefore, we implemented reading of the next train-
ing data from storage ahead of time to allow efficient 
execution of training without interruption.

4. Application examples
This section describes examples of the application 

of CAC technology.

4.1 MLPerf HPC
MLPerf HPC is an MLPerf benchmark suite for 

HPC, and is widely used as a benchmark for machine 
learning [7]. It includes CosmoFlow, which estimates 
cosmological parameters from dark matter data, and 
DeepCAM, already mentioned in Section 3.1 2). Each 
benchmark measures training time, including staging. 
We have accelerated MLPerf HPC for the AI bridging 
cloud infrastructure (ABCI), of the National Institute of 
Advanced Industrial Science and Technology (AIST) and 
the supercomputer Fugaku of RIKEN [8].

For ABCI, staging is performed with both CosmoFlow 
and DeepCAM, and data compression is used for 
CosmoFlow. As a result, staging time was reduced to 
as little as 1/12. Furthermore, by eliminating the I/O 
bottleneck, training efficiency was improved by up to 
20%. We also applied the Gradient Skip technology to 
DeepCAM to reduce training time by a further 10%.

For Fugaku, accelerated data staging and elimi-
nation of I/O bottlenecks were similarly implemented, 
but only for CosmoFlow. The performance per computer 
of Fugaku is lower than that of ABCI, but since Fugaku 
supports the use of more computers, the number of 
computers used was increased by up to 16 times, apply-
ing model parallelism in addition to data parallelism.

Through the application of CAC, ABCI achieved per-
formance 20 times and 13 times higher in CosmoFlow 
and DeepCAM, respectively, compared to other  
GPU-type systems in MLPerf HPC v0.7, and Fugaku 
achieved performance 14 times higher in CosmoFlow 

Figure 4
I/O acceleration technology.
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compared to other CPU-type systems. As a result, 
ABCI and Fugaku achieved first and second place for  
large-scale machine learning processing in the world 
{Figure 5 (a)}.

4.2 Actlyzer
Actlyzer is behavioral analysis technology devel-

oped by Fujitsu and Fujitsu R&D Center Co., Ltd. [9]. To 
increase the value of solutions that utilize this technol-
ogy, it was necessary to increase the number of cameras 
that can be processed by one computer. To this end, 
computational waste in behavior analysis was identi-
fied and computational complexity was minimized by 
integrating human detection and skeleton detection, 
which are components of Actlyzer. Furthermore, the 
number of cameras that can be processed per computer 
was increased tenfold {Figure 5 (b)} by improving com-
putation efficiency with bit width reduction technology 
for reduction from 32 bits to 8 bits and also by reducing 

the weight of the models for human and skeleton de-
tection with pruning technology.

5. Summary and future work
This article introduced CAC technology for accel-

erating AI processing, which is becoming increasingly 
complex and massive, and some application examples.

By combining acceleration technologies con-
sisting of technology for dynamic reduction of 
computational complexity, parallel training accelera-
tion technology, and I/O acceleration technology, we 
achieved the world’s top processing speed on the 
MLPerf HPC benchmarks. Further, by applying Actlyzer, 
Fujitsu’s behavior analysis technology, we increased 
the number of cameras that can be processed per com-
puter by a factor of ten.

Going forward, we will continue to perfect CAC 
technology, improve its speed and ease of use, and ex-
pand its application to various fields such as medicine, 

Figure 5
Application examples of CAC technology.

0
100
200
300
400
500
600
700

Le
ar

ni
ng

 ti
m

e
(s

ec
on

ds
)

CosmoFlow

0
20
40
60
80

100
120
140
160

DeepCAM
GPU systems CPU systems GPU systems

(a) MLPerf HPC

(b) Actlyzer

ABCI ABCI
x20 x14 x13

Number of cameras per computer increased tenfold

Determination of expression capacity required for 
behavioral analysis, and minimization of network 

configuration and computational complexity

CAC

H
um

an
 

de
te

ct
io

n

32 bits

2D
 s

ke
le

to
n 

de
te

ct
io

n

32 bits

3D
 s

ke
le

to
n 

es
tim

at
io

n

32 bits

Be
ha

vi
or

 
re

co
gn

iti
on

Number of computational bits
(= expression capacity)

...

32 bits log2

8 bits
Distribution of 
computational 
results during 

training

Redundancy

Redundancy

8 bits 8 bits 8 bits
Human 

detection
2D 

skeleton
3D 

skeleton
Behavior 

recognition

Number of computational bits
(= expression capacity)

Same recognition 
rate as for 32-bit 

computations

IntegrationGPU 
processing

CPU 
processing

TA
CC

 64
 clo

sed

Piz
 Dain

t 1
28

 clo
sed

Co
ri-G

PU
 64

 clo
sed

Piz
 Dain

t 2
56

 clo
sed

NCS
A 64

 clo
sed

ABCI 
51

2 c
los

ed

ABCI 
2,0

48
 op

en

Co
ri-K

NL 5
12

 clo
sed

Co
ri-K

NL 1
,02

4 o
pe

n

Fu
ga

ku
 51

2 c
los

ed

Fu
ga

ku
 8,

19
2 c

los
ed

Fu
ga

ku
 16

,38
4 o

pe
n

Co
ri-G

PU
 64

 clo
sed

ABCI 
1,0

24
 clo

sed

ABCI 
1,0

24
 op

en

Fugaku



7

Content-Aware Computing Technology for Accelerating Increasingly Complex and Massive AI Processing

Fujitsu Technical Review

drug discovery, materials, and logistics, thereby con-
tributing to the solution of social issues.

All company and product names mentioned herein are trademarks or 
registered trademarks of their respective owners.
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