
1Fujitsu Technical Review

Application Development Environment for
Supercomputer Fugaku

Kensuke Watanabe Takafumi Nose Kiyofumi Suzuki Shuichi Chiba

1. Introduction
Supercomputer Fugaku (hereafter, Fugaku) [1]

is equipped with the high performance “A64FX” CPU
that adopts and was developed with Arm Limited’s
instruction set architecture (hereafter, Arm architec-
ture), features general versatility that supports various
applications, and achieves massively parallel process-
ing through the Tofu Interconnect D (hereafter, TofuD)
described below. The development goal for Fugaku
was to achieve a system with up to 100 times greater
application performance than that of the K computer
[2]. Accomplishing this required an integrated devel-
opment environment that supports everything from
the development to the execution of applications that
extract the maximum performance from the hardware.
The developed Fugaku has demonstrated a high level
of performance by taking first place worldwide in the
four categories of TOP500 [4], HPCG [5], HPL-AI [6],
and Graph500 [7] in the high-performance comput-
ing (HPC) rankings announced at the International
Supercomputing Conference (ISC) 2020 [3].

This article introduces the application development
environment compiler targeting Fugaku, the message
passing interface (MPI) communication library, new

features of the application development support tools,
and initiatives undertaken to improve performance.

2. Compiler
This section discusses the technological develop-

ment of the compiler for Fugaku.
The compiler for Fugaku supports three lan-

guages, Fortran/C/C++. The development objectives
were to achieve up to 100 times greater application
performance than that of the K computer for applica-
tions relating to social and scientific priority issues that
should be selectively undertaken by Fugaku (hereafter,
priority issue apps) and to enable the operation of vari-
ous applications. In order to achieve these objectives,
it is necessary to understand the features of the A64FX
and to enhance the appropriate features. The following
two issues were extracted through cooperative design
(co-design) with the applications.
• Enhanced optimization to support the Arm

architecture
• Support for the increasing use of object-oriented

languages in recent years and optimization for
integer type operations
The following subsections explain the initiatives

with respect to these issues.

The objectives of developing the supercomputer Fugaku (hereafter, Fugaku) are to achieve
a system with up to 100 times greater application performance than that of the K computer
and to ensure general versatility to support the operation of a broad range of applications.
Accomplishing this required an integrated development environment that supports everything
from the development to the execution of applications that extract the maximum performance
from the hardware, but there were significant challenges in achieving this goal. First, it re-
quired development optimized for the CPU used by Fugaku and support for various applications.
Moreover, it required support for new hardware and increased memory usage due to the increase
in the total number of processes in the message passing interface (MPI) communication library.
In addition, it required improvements of the practical usability of application development sup-
port tools. This article describes such initiatives for the application development environment.

2

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

2.1 Supporting Arm architecture
Promoting the application of vector instructions

for running applications at high speed and the ap-
plication of optimizations to increase the parallelism
of instructions are essential for creating an advanced
compiler.

First, to promote the use of vector instructions,
the Scalable Vector Extension (SVE), newly adopted
by the Fugaku, was utilized. With SVE, it has become
possible to use a predicate register to specify whether
or not to execute operations on each element of the
vector instructions. As a result, this enables the vector-
ization of complex loops that include IF statements and
makes it possible to execute at high speed.

Next, software pipelining (SWP), which is a
strength of the Fujitsu compiler, is important as an op-
timization for increasing the parallelism of instructions.
While the K computer has 128 vector registers, Fugaku
has a limited 32 registers. In order to effectively run
SWP, which requires many registers even on Fugaku,
loop fission optimization was enhanced. Loop fission
is an optimization that considers the number of reg-
isters and the number of memory accesses for a loop
with many statements and fissions the statements into
loops to which SWP can be applied.

Figure 1 shows the evaluation results of the
physical process kernel and the dynamic process kernel
for NICAM [8], which is one of the priority issue apps.
The former features loop structures with a lot of com-
putational complexity and branch processing, while the

latter features a high rate of memory throughput. As we
can see, applying loop fission and SWP even for kernels
with different characteristics can achieve a performance
improvement of approximately 20%, which significantly
contributed to the goal of achieving 100 times greater
application performance of the K computer.

2.2 Supporting object-oriented languages
and integer type operations
In order to broaden the range of users with

Fugaku, the next objective became the ability to ex-
ecute applications from various fields in addition to
conventional simulation programs. Therefore, it was
necessary to enhance the optimizations for integer-
related operations and object-oriented programs.
Accordingly, the Clang/LLVM [9] open source software
(OSS) compiler was adopted, which has a proven record
of accelerating C/C++ language programs, as the base
and ported the optimization technologies for HPCs
that Fujitsu has previously cultivated. In addition, the
concurrent use of conventional functions was enabled
to ensure compatibility with programs used with the K
computer and traditional programs to make it easy to
port from the K computer.

3. Communication library
MPI is the de facto standard for the communica-

tion application programming interface (API) used with
highly parallel applications in the HPC field, and the
performance of the communication library with MPI
implemented significantly impacts the practical usabil-
ity of an HPC system. With the K computer, Open MPI
was used, which is an OSS that has implemented the
MPI standard, as the base and added unique improve-
ments to obtain a high level of performance. Fugaku
also inherited this library, but there were issues with
the support for the new hardware and memory usage
due to the increase in the number of processes.

This section discusses the communication library
initiative for Fugaku with respect to these issues.

3.1 Supporting new hardware
With the K computer, we adopted the Torus Fusion

Interconnect (hereafter, Tofu) [10] which is a node in-
terconnect with a six-dimensional mesh/torus topology
that connects many processors in higher dimensions.
The Fugaku adopted Tofu Interconnect D (hereafter,

Figure 1
Optimization effects in the NICAM kernel.

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
ra

tio
*

Physical process kernel Dynamic process kernel

Optimizations applied
to K computer

Optimizations applied
to Fugaku

* The ratio when the execution time is set to 1.0 for optimizations applied
 to the K computer.

3

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

TofuD) [11] which, in comparison with Tofu, enhances
the number of simultaneous communications, fault tol-
erance, and barrier synchronous communication, etc.

The TofuD installed in the Fugaku has an en-
hanced communication speed of 6.8 GB/s compared to
the 5 GB/s of the Tofu used in the K computer. However,
because the ratio of improvement for communication
speed does not extend to that for computing perfor-
mance, the conventional collective communication
algorithm, which performs data broadcasting and
reduction operations involving the coordination of
each rank, cannot maximally utilize the computing
performance under those conditions. Because the
number of links capable of simultaneous communica-
tion was increased from four in the K computer to six
in the Fugaku, it was important to utilize this to refine
the collective communication algorithm to fully utilize
the communication performance of the TofuD. In the
Fugaku, six instances of simultaneous communication
are transmitted via the five collective communication
functions consisting of MPI_Bcast, MPI_Reduce, MPI_
Allreduce, MPI_Allgather, and MPI_Alltoall. In particular,
because the conventional MPI_Bcast algorithm for large
message lengths is restricted to three instances of
simultaneous communication, increasing that to six

significantly improved the communication bandwidth
(Figure 2).

Moreover, the communication function used
for barrier communication [12] acceleration was en-
hanced in TofuD. By utilizing this enhancement, barrier
communication acceleration can also be applied to pat-
terns in which communications occur due to multiple
processes within a node. Compared to the K computer,
the data length that the TofuD barrier communication
(hereafter, Tofu barrier communication) can be applied
to has increased from one element to three elements
(floating-point numbers) or six elements (integers).
Due to the significant acceleration compared to a soft-
ware implementation, even in a range that exceeds
these numbers of elements supported by the hardware,
there is a range in which further communication ac-
celeration can be achieved (Figure 3) beyond a pure
software implementation by repeatedly calling the Tofu
barrier communication in the software. By adding an
optional function that repeatedly executes Tofu barrier
communication to the MPI library, users can use opti-
mization to increase the applicable data length without
modifying the program.

Figure 2
Performance of dedicated collection communication algorithm supporting six directions (Bcast).

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

1 10 100 1,000 104 105 106 107 108 109 1010

Co
m

m
un

ic
at

io
n

ba
nd

w
id

th
 (M

B/
s)

Message length (Bytes)

New algorithm on Fugaku
(6 instances of simultaneous communication)

Old algorithm on Fugaku
(3 instances of simultaneous communication)

Algorithm on K computer

4

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

3.2 Memory usage control
In the K computer, one node is equipped with

16 GiB of memory, and one process monopolizes the
entire memory space. However, while the memory
capacity for one node has been increased to 32 GiB in
the Fugaku, it has been split into four pieces through a
structure within the node called the core memory group
(CMG). Furthermore, because it is recommended to al-
locate multiple processes to a separate CMG, Fugaku
shares the 32 GiB among the four processes. Therefore,
the memory usage per process has decreased to 8 GiB.
In addition, when viewed at the scale of the number of
processes for the entire Fugaku system, because there
are 150,000 nodes that can run four processes on each
node simultaneously, we get a total of approximately
600,000 processes, which is a significant increase from
the approximately 80,000 processes of the K computer.
Generally speaking, because the management infor-
mation required within the MPI library also increases
in proportion to the number of processes that are con-
nection partners of MPI communication, an increase in
the overall system scale becomes a factor that places
a strain on memory capacity and significantly impacts
application performance.

To deal with this problem, the Fugaku MPI library
does not allocate memory for all of the communication
partners during initialization with the MPI_Init function,
but instead dynamically allocates the memory when it
first communicates with a communication partner. As a
result, it does not increase simply depending on the total
number of processes, but is improved by being able to
limit the allocation to the necessary minimum depending
on the communication pattern. Moreover, by implement-
ing a communication mode utilizing a TofuD function that
further reduces the memory consumption, it improves the
flexibility with respect to applications that require a bal-
ance between process scale and memory consumption.
In this communication mode, the maximum memory
consumption for 27,648 nodes and 110,592 processes
can be reduced by approximately 34%.

4. Application development support
tools
This section describes the application develop-

ment support tools developed for Fugaku.
The application development support tools are

composed from three types of functions according to
their purpose.

Figure 3
Accelerating barrier communication (MPI_Allreduce).

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

La
te

nc
y

(µ
s)

Number of elements

K computer (Tofu barrier communication when
there is only 1 element)

Fugaku software implementation application

Fugaku Tofu barrier communication application

H
ig

h
sp

ee
d

5

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

• An easy-to-understand display profiler that col-
lects information for performance tuning

• Debugger for Parallel Applications for supporting
the investigation of events such as deadlocks and
abnormal termination that occur in large-scale
parallel processing

• Integrated development environment that can
perform operations such as compiling and sub-
mitting jobs through a GUI
The following subsections introduce the features

and improvements for Fugaku of the most frequently
used profiler.

4.1 Supporting Fugaku
A Fugaku-compatible profiler was developed by

inheriting and expanding on the K computer’s pro-
filer, which was highly regarded from the perspective
of practical usability. As shown in Figure 4, it consists
of an “Instant Performance Profiler,” an “Advanced
Performance Profiler,” and a “CPU Performance Analysis

Report” that can perform efficient performance analysis
by using these components in a staged manner de-
pending on the situation.

4.2 Understanding performance trends with
Instant Performance Profiler
The Instant Performance Profiler collects cost

distribution information for the application with a
sampling method to support an understanding of the
outline of overall application performance by display-
ing the information at a procedure, loop, and line level.
The hot spots where the costs are concentrated can be
identified from the cost distribution.

With the K computer’s profiler, there were requests
from users who wanted to obtain the collected informa-
tion in an easy to process and general-purpose format for
creating graphs and statistical processing, etc. However,
in reality the data was only provided in text and CSV for-
mats, so supporting output formats with a high degree
of general usability was an issue with Fugaku. In the

Figure 4
Performance analysis procedure.

CPU Performance
Analysis Report

Detailed analysis of high-cost operation
regions
 • Cycle accounting, memory and cache busy
 conditions, vectorization conditions,
 instruction mix, etc.

Advanced
Performance

Profiler

Statistical data gathering
for high-cost regions
 • Transit frequency per region and
 the average time required

 • Communication frequency and
 the average message length

Instant
Performance

Profiler

Understanding the performance trends
of the overall application
 • FLOPS value, memory throughput, and
 load imbalances between threads, etc.

 • Identifying high-cost regions
 at the procedure, loop, and line levels

Beginners and users who do not
understand the high-cost regions
of applications

Users who understand
the high-cost regions
of applications

FLOPS: Floating-point operations per second

6

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

Fugaku profiler, this issue was addressed by supporting
output in XML format in both the Instant Performance
Profiler and the Advanced Performance Profiler.

4.3 Understanding detailed information
with Advanced Performance Profiler
and CPU Performance Analysis Report
The Advanced Performance Profiler and CPU

Performance Analysis Report are used to obtain more
detailed performance information for hot spots identi-
fied from the results of the Instant Performance Profiler.

The Advanced Performance Profiler collects MPI
communication cost information for specific sections
and CPU performance analysis information to enable
a detailed performance analysis of hot spots. The CPU
Performance Analysis Report displays the information
of Performance Monitoring Unit (PMU) counter, which
is built into the CPU and measures the CPU operating
conditions regarding operation performance, in a struc-
tured and easy-to-understand manner using graph
and table formats (Figure 5). Analyzing PMU counter

information makes it possible to understand the opera-
tion performance bottlenecks in detail.

A function that is similar to the Fugaku CPU
Performance Analysis Report was achieved in the K
computer with a precision PA visualization function in
Excel format. However, the application had to be run
seven times to gather the information, making the low
level of convenience an issue. Moreover, in the case of
the PRIMEHPC FX100 commercial unit that applied the
K computer technologies, the application had to be run
11 times.

With the Fugaku CPU performance analysis re-
port, a report can be created after an application is run
1 time, 5 times, 11 times, or 17 times, which means
that the volume of information increases with the num-
ber of runs. Therefore, the CPU Performance Analysis
Report can be used in a flexible manner to change the
number of runs according to the required volume of in-
formation while also utilizing the newly available types
of PMU counter information to achieve a more detailed
analysis.

Figure 5
Example of a CPU Performance Analysis Report.

Table expressing cycle accounting

Graph expressing
cycle accounting

Cache miss
rate

Performance
overview

7

Application Development Environment for Supercomputer Fugaku

Fujitsu Technical Review

5. Conclusion
This article discussed the Fugaku compiler, MPI

communication library, functions developed with the
application development support tools, and initiatives
to improve performance. Starting with the K computer
and its commercial successors such as the PRIMEHPC
FX10 and FX100 and continuing up to the Fugaku,
changes were made to the architecture and the
hardware, which required support for major software
changes every time. However, resolving these issues
by incorporating clever solutions in each software ver-
sion significantly contributed to achieving the Fugaku
development objective of reaching 100 times greater
application performance than that of the K computer.

Fugaku has taken the top spot on the TOP500 and
other categories at ISC 2020. Going forward, software
improvements will be essential in order to use Fugaku
and commercial units such as the PRIMEHPC FX700
and FX1000 as cutting-edge research and development
platforms. While placing importance on user conve-
nience, the developers of Fugaku would like to provide
high-performance functions and tie those characteris-
tics to innovative results in science and technology.

All company and product names mentioned herein are trademarks or
registered trademarks of their respective owners.

References and Notes
[1] The official name of the post-K computer decided by

RIKEN in May 2019.
[2] The official supercomputer name decided by RIKEN in

July 2011.
[3] ISC 2020.

https://www.isc-hpc.com/
[4] Ranking which takes the execution performance of the

LINPACK program for solving simultaneous linear equa-
tions with a matrix calculation as an index and uses those
results to rank the top 500 fastest computer systems.

[5] Benchmark test ranking that uses the conjugate gra-
dient method, which is a computational method for
solving simultaneous linear equations composed from
a sparse coefficient matrix and is frequently used in
actual applications.

[6] Benchmark test ranking which improves on the LINPACK
benchmark and implements it with low-precision
operations.

[7] Benchmark test ranking which involves the analysis
of large-scale graphs, which indicate the relationships
between data through peaks and branches.

[8] Abbreviation of Nonhydrostatic ICosahedral Atmospheric
Model. Adopted as a priority issue application for
Fugaku. In a dynamic process, it solves for the wind
velocity, air temperature, etc. on a grid and features
structured grid stencil calculations and a loop struc-
ture with high memory requirements. In a physical
process, it solves for cloud phase changes and other
phenomena and features a loop structure with a lot of
computation and branch processing.

[9] Clang/LLVM.
https://clang.llvm.org/

[10] Y. Ajima, et al.: “Tofu: A 6D Mesh/Torus Interconnect for
Exascale Computers.” IEEE Computer, Vol. 42, No. 11,
pp. 36–40 (2009).

[11] Y. Ajima et al.: The Tofu Interconnect D. IEEE International
Conference on Cluster Computing, pp. 646–654 (2018).

[12] Communication for the synchronization of multiple
MPI processes. With the TofuD, it not only performs
synchronization, but is also capable of simultaneously
performing small amounts of Reduce and Allreduce
operations.

Kensuke Watanabe
Fujitsu Limited, Platform Software Business
Unit
Mr. Watanabe is currently engaged in com-
piler development for the supercomputer
Fugaku.

Kiyofumi Suzuki
Fujitsu Limited, Platform Software Business
Unit
Mr. Suzuki is currently engaged in the de-
velopment of application development
support tools for the supercomputer Fugaku.

Takafumi Nose
Fujitsu Limited, Platform Software Business
Unit
Mr. Nose is currently engaged in MPI com-
munication library development for the
supercomputer Fugaku.

https://www.isc-hpc.com/
https://clang.llvm.org/

8

Application Development Environment for Supercomputer Fugaku

©2020 FUJITSU LIMITED Fujitsu Technical Review

Shuichi Chiba
Fujitsu Limited, Platform Software Business
Unit
Mr. Chiba is a manager of software de-
velopment for the supercomputer Fugaku
application development environment.

This article first appeared in Fujitsu Technical
Review, one of Fujitsu’s technical information
media. Please check out the other articles.

Fujitsu Technical Review

https://www.fujitsu.com/global/technicalreview/

https://www.fujitsu.com/global/technicalreview/

