
1Fujitsu Technical Review

File System and Power Management
Enhanced for Supercomputer Fugaku

Hideyuki Akimoto Takuya Okamoto Takahiro Kagami Ken Seki
Kenichirou Sakai Hiroaki Imade Makoto Shinohara Shinji Sumimoto

1. Introduction
RIKEN and Fujitsu are developing the supercom-

puter Fugaku as the successor to the K computer and
are planning to begin public service in FY2021.

The Fugaku is composed of various kinds of
system software for supporting the execution of su-
percomputer applications. Figure 1 shows the system
software components in the Fugaku. While the OS and

application development environment are taken up in
separate articles [1, 2], this article focuses on the file
system and operations management software. The
file system provides a high-performance and reliable
storage environment for application programs and as-
sociated data. The operations management software
mainly provides system management functions and
job management functions.

RIKEN and Fujitsu are jointly developing the supercomputer Fugaku as the successor to
the K computer with a view to starting public use in FY2021. While inheriting the software
assets of the K computer, the plan for Fugaku is to make improvements, upgrades, and
functional enhancements in various areas such as computational performance, efficient
use of resources, and ease of use. As part of these changes, functions in the file system
have been greatly enhanced with a focus on usability in addition to improving performance
and capacity beyond that of the K computer. Additionally, as reducing power consumption
and using power efficiently are issues common to all ultra-large-scale computer systems,
power management functions have been newly designed and developed as part of the up-
grading of operations management software in Fugaku. This article describes the Fugaku
file system featuring significantly enhanced functions from the K computer and introduces
new power management functions.

Figure 1
Fugaku software stack (configuration).

System hardware

OS: Linux OS / McKernel

System management functions

Job management functions

XcalableMPFEFS
(Fujitsu Exabyte Filesystem)

LLIO
(Lightweight Layered

IO-Accelerator)

OpenMP, Coarray

Debug functions

MPI
(Open MPI, MPICH)

Compiler
(C, C++, Fortran)

Operations Software

Fujitsu Technical Computing Suite and RIKEN-developed system software

Application Development EnvironmentFile System

Script language,
math library

Application

2

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

While inheriting the software assets of the K com-
puter, the goal with Fugaku was to provide even higher
computational performance and to use resources more
efficiently. Furthermore, to broaden the range of supercom-
puter use, improvements and upgrades were undertaken
in each of the software components shown in Figure 1
with a focus on flexible operation and ease of use.

In the file system, the Lightweight Layered IO-
Accelerator (LLIO) was designed and developed as a
new dedicated file system for the job execution area
based on the Fujitsu Exabyte File System (FEFS) [3]
developed for the K computer. LLIO aims to improve the
usability of hierarchical storage and optimize applica-
tion file I/O. Next, in operations management software,
in addition to improving system monitoring and job
scheduling performance, the application programming
interface (API) for job scheduling and other tasks was
enhanced and operations-customization functions for
system managers were expanded [4]. Furthermore, to
reduce system power consumption and promote the
efficient use of power, which are issues common to all
ultra-large-scale systems, power management func-
tions in operations management software were newly
designed and developed to enhance functionality.

This article describes the Fugaku file system
featuring greatly enhanced functions centered about
usability and introduces newly designed and developed
power management functions as a functional enhance-
ment of operations management software.

2. File system
To achieve a large-capacity, high-performance

storage system, the Fugaku adopts hierarchical stor-
age the same as the K computer [3]. In addition to
providing high computing performance, the Fugaku is a
system that envisions a broad range of users as a mat-
ter of policy. Its storage system must likewise satisfy this
policy, and to this end, in addition to improving the us-
ability of hierarchical storage, a function is needed for
performance optimization according to file-access char-
acteristics that differ from one application to another.

With these requirements in mind, we developed
the LLIO as a new dedicated file system for the job ex-
ecution area. LLIO provides three types of areas to an
application according to file use thereby improving the
usability of hierarchical storage and enabling the opti-
mization of application file I/O.

In this section, we first present an overview of
the Fugaku storage system. We then describe improve-
ment in the usability of hierarchical storage through
three types of LLIO areas and the optimization of tem-
porary-file I/O. Finally, we present the results of LLIO
performance measurements.

2.1 Overview of storage system
An overview of the Fugaku storage system is

shown in Figure 2. The Fugaku hierarchical storage sys-
tem consists of three layers: the 1st layer that serves as
a dedicated high-performance area for job execution,
the 2nd layer that provides a large-capacity shared area
for use by both users and jobs, and the 3rd layer that
provides commercial cloud storage [5]. At the time of
this writing (early July 2020), the method for using
cloud storage on the 3rd layer was still in preparation,
so we here describe the Fugaku storage system with a
focus on the 1st and 2nd layers.

To begin with, 1st layer storage uses no special-
ized server nodes; rather, it uses compute & storage
I/O (SIO) nodes each equipped with an NVMe SSD that
play the role of file system servers. Here, an assistant
core [6] on the SIO node will process any file access
request from a compute node. One SIO node exists
for each bunch of blades (BoB) grouping 16 compute
nodes. The launch of a job triggers the generation of a
temporary LLIO file system that uses only the SIO node
within the BOB in which that job was allocated. This
LLIO file system is used by this job while executing and
is released when job execution completes.

As shown in Table 1, LLIO provides three types of
areas according to file use. The cache area of 2nd-layer
storage enables the use of 1st layer storage without
having to be concerned about different namespaces
between layers, inter-layer data transfers, etc. The
shared temporary area is used to store temporary files
shared between compute nodes. The node temporary
area is dedicated to storing temporary files shared only
within a compute node. These areas are described in
more detail in subsections 2.2 and 2.3 below.

Connections between layers are made via an I/O
network. Within the compute node group, compute &
global I/O (GIO) nodes are connected to the I/O network
and data transfers between layers are carried out via the
GIO node. In addition, 2nd-layer storage is configured
with multiple FEFS [3] the same as the K computer.

3

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

2.2 Improved usability of hierarchical
storage
One issue in the use of hierarchical storage is

the usability of data transfers between layers. Storage
in the K computer consists of two layers each config-
ured with an FEFS having a different namespace. For
this reason, a staging system was adopted for carrying
out data transfers between layers by explicitly specify-
ing any stored files or other files the user needs for job
execution [3]. For many users, however, appropriately
selecting the files needed for job execution is not a
trivial task, and an increase in data transfer time by
specifying many unnecessary files has been a problem.

To address this problem, we adopted a cache

system in the cache area of 2nd-layer storage in LLIO
that improves usability of hierarchical storage by auto-
matically performing data transfers between layers. The
cache area of 2nd-layer storage provides the application
with the same namespace as the 2nd-layer file system.
If the application should issue a file READ request, LLIO
will automatically read in and cache file data from 2nd
layer storage to 1st layer storage. Meanwhile, if the ap-
plication should issue a WRITE request, that data will be
buffered in 1st layer storage and LLIO will write out that
data to 2nd-layer storage asynchronously with applica-
tion execution. This mechanism enables an application
to use high-performance 1st layer storage without
having to be concerned about different namespaces
between layers, inter-layer data transfers, etc.

2.3 I/O optimization of temporary files
It is not unusual in a supercomputer applica-

tion to write intermediate results of calculations to a
temporary file that is then treated as an input file to
subsequent calculations. A temporary file may be of
a type that is shared between compute nodes or of a

Figure 2
Overview of Fugaku storage system.

BoB
(Bunch of blades)

Compute node group

. . .

I/O network (Infiniband EDR)

Job-allocation compute nodes

1st-layer storage

2nd-layer storage

Compute &
storage I/O
(SIO) node

Compute &
global I/O
(GIO) node

NVMe SSD

Compute
nodes

Can access only
SIO within BoB
of allocated job

LLIO
instance

FEFS FEFS FEFS

Table 1
Three types of areas in LLIO.

Area Namespace File Use

2nd-layer cache area 2nd-layer file system
translucency Stored file

Shared temporary area Intra-job sharing Temporary file

Node temporary area Intra-node sharing Temporary file

4

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

type that is shared only within a compute node. Such
temporary files are needed only during job execution,
so using an area specifically for saving temporary files
enables file I/O to be optimized. LLIO provides a shared
temporary area and node temporary area as areas for
saving temporary files.

The shared temporary area is used for saving
temporary files to be shared between compute nodes.
Here, the namespace of the shared temporary area is
shared between the compute nodes to which the job
has been allocated. Since no data is written to 2nd-
layer storage here, no drop occurs in performance due
to conflict between application file I/O and writing to
2nd-layer storage, which could occur in a cache area of
2nd-layer storage. In this way, the shared temporary
area enables stable file I/O.

The node temporary area, meanwhile, is used
for storing temporary files to be used only with a
compute node. Here, the namespace of the node tem-
porary area differs between compute nodes. Making
the namespace of a node temporary area in one com-
pute node independent of that of another compute
node in this way makes a dedicated metadata server
unnecessary. As a result, there is no concentration of
load at a metadata server due to numerous attempts at
file access, which enables high performance through-
put proportional to the number of compute nodes.

2.4 LLIO file I/O performance
This subsection describes LLIO file I/O perfor-

mance measured using 1,152 compute nodes in the
Fugaku.

Figure 3 shows WRITE performance and READ per-
formance for each of the three areas provided by LLIO for
I/O sizes of 64 KiB, 1 MiB, and 16 MiB when executing
the IOR [7] file-I/O performance benchmark. Looking at
the results for WRITE performance, it can be seen that
high throughput was achieved in each area regardless
of I/O size. Next, the results for READ performance show
that throughput of the cache area of 2nd layer storage
improves as I/O size increases. The reason given for this is
that a small I/O size increases software-processing over-
head in an assistant core causing bottlenecks to occur.

In the future, we plan to conduct evaluations using
multifaceted indicators in large-scale environments while
also conducting and releasing measurements in relation
to performance improvements in actual applications.

3. Power management functions
Fugaku was ranked No. 1 in the TOP500 list of the

world’s supercomputers announced at International
Supercomputing Conference (ISC) High Performance
2020 Digital held in June 2020 [8]. This achievement
verified the high program execution performance of
Fugaku [8]. The power consumption on executing this
benchmark test was 28,335 kW [9], which corresponds
to the power consumed by about 70,000 households
given a power consumption of 400 W for a typical
household. Operating the Fugaku requires a reduction
in unnecessary power consumption (enhanced power
savings) as well as the provision of maximum comput-
ing power given a limited amount of power that can be
consumed. A key element in meeting these require-
ments is operations management software.

Figure 3
LLIO I/O performance evaluation.

0

20

40

60

80

100

120

140

160

Cache area
of 2nd-layer

storage

Shared
temporary area

Node
temporary area

Th
ro

ug
hp

ut
 (G

B/
s)

WRITE performance

0

50

100

150

200

250

300

350

400

Cache area
of 2nd-layer

storage

Shared
temporary area

Node
temporary area

Th
ro

ug
hp

ut
 (G

B/
s)

READ performance

64 KiB 1 MiB 16 MiB64 KiB 1 MiB 16 MiB

5

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

In this section, we first present an overall picture
of power management functions that we have newly
designed and developed as part of the functional
enhancements being made to Fugaku operations
management software. We then describe power-
consumption measurement functions that lead to
power-control and optimization policies in Fugaku to-
gether with some measurement results.

3.1 Power management functions in
Fugaku
The design and development of the Fugaku

aimed to integrate hardware and software and enable
effective use of power in the execution of applications.

On the hardware side, we designed and imple-
mented mechanisms for dynamic power control and
power measurement for CPUs, memory devices, etc.
within compute nodes. Here, power control means

dynamically changing the state of a device from software
within a compute node according to the characteristics
of the application (job) being executed to reduce power
consumption and optimize computing performance per
unit amount of power. Power measurement, on the
other hand, aims to confirm and evaluate how power
consumption in a compute node or device actually
changed as a result of those power control measures.

Next, on the software side, we adopted Power API
[10] as a power-control API for using the above mecha-
nisms from within a compute node and designed and
implemented associated software.

As part of Fugaku’s operations management
software, we designed and implemented power man-
agement functions that use Power API to link with job
operation and control and perform power measure-
ments. Figure 4 shows the operation nodes of power
management functions and their configuration.

Figure 4
Operation nodes of power management functions and their configuration.

Command

Job
management

Job scheduler

Power
measurement

register

State
change
register

Measure Control

User

Reference job
power

Power
management

Control powerMeasure job power

Management node

Job statistical
information

(1) Job power
 consumption
 statistical
 information

(2) Power
 capping job
 scheduler

(3) Power-saving
 mode switching
 function

Power API

Software

Hardware

Software instruction

Power prediction
module

Predict job power

Collect power
information in job units

Allocate jobs taking
power into account

Control power
(job start/stop times)

Compute nodes

6

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

In Figure 4, function (1) is “job power con-
sumption statistical information” that measures and
consolidates the power consumed by a job. The power
consumption of a job is recorded as job-related statisti-
cal information together with the number of compute
nodes used, total execution time, etc. The charge
levied on each user can be calculated on the basis of
such information. This function is described in more
detail in the following subsections. Next, function (2)
is the “power capping job scheduler” [11] that controls
job execution so that system power consumption does
not exceed the target value. Finally, function (3) is the
“power-saving mode switching function” that performs
device control according to whether or not the compute
node is executing a job as a means of power control
that does not impact job execution performance. These
power management functions are described in detail in
a Fujitsu white paper [12].

3.2 Issues in measuring and evaluating
power consumption
In system design, if the processing for execut-

ing jobs is uniform throughout, it is desirable that job
execution exhibits the same performance and power
consumption. In Fugaku, however, individual differ-
ences between compute nodes and different types
of compute nodes will invariably lead to variation in
power consumption.

In a supercomputer made up of multiple compute
nodes, power consumption differs from one compute
node to another due to variations in transistor character-
istics originating in the semiconductor manufacturing
process of CPUs and memory devices, optimization of
operating voltage, etc. In addition, the typical method
of using supercomputers is to run multiple jobs simul-
taneously on the system—it is rare to execute a job that
uses all of the compute nodes in the system at one
time. As a consequence, the compute nodes to be used
whenever executing a certain job will differ depend-
ing on what compute nodes are already being used by
other jobs, which means variation in power consump-
tion each time that job executes.

In addition, some compute nodes in Fugaku serve
a dual role as a compute node and I/O node—such a
node will perform file I/O processing for storage or other
purposes in addition to computational processing.
This variability originates in the unique system design

of Fugaku in which compute & I/O nodes and ordinary
compute nodes have the following differences.
• Number of assistant cores

An ordinary compute node mounts two assis-
tant cores. On the other hand, a compute & I/O node
mounts two more to handle I/O processing for a total of
four assistant cores.
• Mounted devices

A compute & I/O node mounts a storage device
itself as well as a PCI Express (PCIe) device to connect
to external storage.

3.3 Introduction of estimated power
As described above, a job uses different compute

nodes every time it executes, so the power consumption
of a job cannot be uniquely specified due to variation in
the power consumption of compute nodes. To resolve
this issue, we are designing and introducing “estimated
power” in Fugaku as a power indicator unaffected by
variation in power consumption in addition to measured
power consumption (measured power) and promoting
its use in evaluating job power consumption by the user.
1) Requirements

Our aim in introducing estimated power is to use
it in collecting job statistical information in relation to
fair power consumption and in optimizing job power
consumption by the user based on power consumption
trends. With this in mind, the following requirements
must be met in the design of estimated power.

(a) The value of estimated power must be
determined solely on the content of pro-
cessing performed by the application
program

(a-1) It must not be affected by variation in
power consumption due to individual differ-
ences between compute nodes

(a-2) Variation in power consumption due to
different types of compute nodes must be
eliminated

 (b) Estimated power must increase/decrease
with increase/decrease in measured power

2) Design
To satisfy requirements (a-1) and (b), we check

the activity of CPU and memory circuits and calculate
estimated power based on those utilization rates. Next,
to satisfy requirement (a-2) when calculating estimated
power, we eliminate from the total value of the target

7

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

compute nodes the power consumed by any assistant
cores used in operations other than those of that job
and by PCIe devices that may or may not be mounted
depending on the type of compute node. Furthermore,
given that estimated power is calculated from the ac-
tivity of various types of circuits, it is also possible to
calculate power consumption in units of circuit blocks
within a CPU and thereby provide power information of
even higher granularity as an additional feature.

3.4 Evaluation of estimated power
We evaluated the validity of estimated power in

terms of the following two items:
• Variation in estimated power
• Relationship between estimated power and mea-

sured power
In this evaluation, we used benchmarks included

in the HPC Challenge Benchmark that measures a more
realistic level of performance in a high performance
computing (HPC) system. Since the power consumption
of a compute node is heavily affected by the utiliza-
tion rates of CPUs, memory, etc., we used the DGEMM
benchmark that performs matrix-matrix multiplication
as a routine generating high CPU load. We also used
the STREAM benchmark that measures sustainable
memory bandwidth by performing array vector op-
erations as a routine generating high memory load.
Moreover, to generate an even higher memory load in
this benchmark, we changed the MULTIPLY instructions
to XOR instructions in the SCALA operation, a vector
operation that multiplies each element of a vector by
a constant.

To evaluate change in estimated power due to
differences in CPU and memory load factors, we used

a total of 48 computing cores and varied the number
of cores for executing the DGEMM and STREAM bench-
marks. In this way, we executed programs with different
load patterns each on 192 compute nodes in parallel
and measured estimated power and measured power
per compute node. We used Power API [10] installed in
Fugaku operations management software to measure
estimated power and measured power for a CPU opera-
tion frequency of 2.0 GHz.
1) Variation in estimated power

Table 2 lists the average value and standard de-
viation of estimated power and measured power per
compute node for each load pattern. In comparison
with measured power, these results show that variation
in estimated power was kept to about 1/10 for all load
patterns. In other words, estimated power can elimi-
nate variation in compute nodes and thereby satisfy
requirement (a).
2) Relationship between estimated power and mea-

sured power
Figure 5 shows the relationship between average

estimated power and measured power across all load
patterns. Here, the correlation coefficient R is nearly
1 and estimated power and measured power have a
nearly proportional relationship. These results show
that estimated power increases/decreases with in-
crease/decrease in measured power thereby satisfying
requirement (b).

4. Conclusion
In this article, we described the file system of the

Fugaku and power management functions in opera-
tions management software as key improvements and
enhancements over the K computer.

Table 2
Load patterns and relationship between estimated power and measured power per node.

Load Pattern Estimated power per node (W) Measured power per node (W)

DGEMM No. of cores STREAM No. of cores Average Standard deviation Average Standard deviation

48 0 150.3 1.3 166.6 13.6

40 8 169.2 1.2 195.3 14.2

32 16 175.5 1.3 204.3 14.1

24 24 172.2 1.1 200.5 13.4

16 32 171.5 1.1 200.4 13.5

8 40 166.7 1.1 194.3 13.2

0 48 161.3 1.1 180.8 11.7

8

File System and Power Management Enhanced for Supercomputer Fugaku

Fujitsu Technical Review

First, for the file system, we described LLIO devel-
oped as a dedicated file system for the job execution area
with the aim of improving the usability of hierarchical stor-
age and enabling the optimization of application file I/O.
The results of evaluating LLIO performance confirmed that
this file system achieves high file I/O performance.

We then described the power management func-
tions needed to reduce system power consumption and
make efficient use of power/node resources as issues
not limited to Fugaku but common to all ultra-large-
scale computer systems. We also discussed issues in
conducting power evaluations in supercomputer systems
consisting of multiple compute nodes and described
the results of designing and introducing “estimated
power” as a solution to these issues in Fugaku. By using
estimated power, a user executing a job can evaluate
performance per unit amount of power without regard to
the compute nodes on which the job is actually executed.
Additionally, from the viewpoint of the operator, the use
of estimated power makes it possible to gather statistical
information on fair job power consumption independent
of the compute nodes used. In this capacity, estimated
power shows promise for use in actual operations.

Going forward, we will continue to make soft-
ware adjustments in an environment based on actual
use and operations with an eye to launching general
shared use of the Fugaku. In this process, the plan is to
evaluate performance and power consumption through
actual large-scale applications and to release the re-
sults of those evaluations.

All company and product names mentioned herein are trademarks or
registered trademarks of their respective owners.

References and Notes
[1] L. Zhang et al.: OS Enhancement in Supercomputer

Fugaku. Fujitsu Technical Review, No. 3, 2020.
https://www.fujitsu.com/global/about/resources/
publications/technicalreview/2020-03/article06.html

[2] K. Watanabe et al.: Application Development Environment
for Supercomputer Fugaku. Fujitsu Technical Review,
No. 3, 2020.
https://www.fujitsu.com/global/about/resources/
publications/technicalreview/2020-03/article07.html

[3] K. Sakai et al.: High-Performance and Highly Reliable
File System for the K computer. FUJITSU Sci. Tech. J., Vol.
48, No. 3, pp. 302–309 (2012).
https://www.fujitsu.com/global/documents/about/
resources/publications/fstj/archives/vol48-3/paper08.pdf

[4] A. Uno et al.: Operations Management Software of
Supercomputer Fugaku. Fujitsu Technical Review, No. 3,
2020.
https://www.fujitsu.com/global/about/resources/
publications/technicalreview/2020-03/article10.html

[5] RIKEN Center for Computational Science: Fugaku System
Configuration.
https://postk-web.r-ccs.riken.jp/spec.html

[6] R. Okazaki et al.: Supercomputer Fugaku CPU A64FX
Realizing High Performance, High-Density Packaging,
and Low Power Consumption. Fujitsu Technical Review,
No. 3, 2020.
https://www.fujitsu.com/global/about/resources/
publications/technicalreview/2020-03/article03.html

[7] GitHub: IOR.
https://github.com/hpc/ior

[8] Fujitsu: Fujitsu and RIKEN Take First Place Worldwide in
TOP500, HPCG, and HPL-AI with Supercomputer Fugaku.
https://www.fujitsu.com/global/about/resources/news/
press-releases/2020/0622-01.html

[9] Top500.org: TOP500 LIST - JUNE 2020.
https://www.top500.org/lists/top500/list/2020/06/

[10] Sandia National Laboratories: High Performance
Computing Power Application Programming Interface
(API) Specification.
https://powerapi.sandia.gov/

[11] H. Akimoto et al.: Toward Job Operations Software for
the Post-K Supercomputer Recognizing Upper Limit of
System Power Consumption. IPSJ SIG Technical Report,
Vol. 2015-HPC-152, No. 1 (2015) (in Japanese).

[12] Fujitsu: White Paper – Advanced Software for the FUJITSU
Supercomputer PRIMEHPC FX1000.
https://www.fujitsu.com/downloads/SUPER/
primehpc-fx1000-soft-en.pdf

Figure 5
Relationship between estimated power and measured power.

140

150

160

170

180

190

200

210

140 150 160 170 180

M
ea

su
re

d
po

w
er

 (W
)

Estimated power (W)

R = 0.9927

https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article06.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article06.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html
https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper08.pdf
https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-3/paper08.pdf
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html
https://postk-web.r-ccs.riken.jp/spec.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article03.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article03.html
https://github.com/hpc/ior
https://www.fujitsu.com/global/about/resources/news/press-releases/2020/0622-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2020/0622-01.html
https://www.top500.org/lists/top500/list/2020/06/
https://powerapi.sandia.gov/
https://www.fujitsu.com/downloads/SUPER/primehpc-fx1000-soft-en.pdf
https://www.fujitsu.com/downloads/SUPER/primehpc-fx1000-soft-en.pdf

9

File System and Power Management Enhanced for Supercomputer Fugaku

©2020 FUJITSU LIMITED Fujitsu Technical Review

Hideyuki Akimoto
Fujitsu Limited, Platform Software Business
Unit
Dr. Akimoto is currently engaged in the
development of power management func-
tions in operations management software
of the supercomputer Fugaku.

Makoto Shinohara
Fujitsu Limited, Platform Software Business
Unit
Mr. Shinohara is currently engaged in the
development of operations management
software for the supercomputer Fugaku.

Takahiro Kagami
Fujitsu Limited, Platform Software Business
Unit
Mr. Kagami is currently engaged in the
development of power management func-
tions in operations management software
of the supercomputer Fugaku.

Kenichirou Sakai
Fujitsu Limited, Platform Software Business
Unit
Mr. Sakai is currently engaged in the
development of the file system for the
supercomputer Fugaku.

Takuya Okamoto
Fujitsu Limited, Platform Software Business
Unit
Mr. Okamoto is currently engaged in the
development of the file system for the
supercomputer Fugaku.

Shinji Sumimoto
Fujitsu Limited, Platform Software Business
Unit
Dr. Sumimoto is currently engaged in the
development of operations management
software and language software for the
supercomputer Fugaku.

Ken Seki
Fujitsu Limited, Platform Development Unit
Mr. Seki is currently engaged in the de-
velopment of system hardware for the
supercomputer Fugaku.

Hiroaki Imade
Fujitsu Limited, Platform Software Business
Unit
Dr. Imade is currently engaged in the
development of power management func-
tions in operations management software
of the supercomputer Fugaku.

This article first appeared in Fujitsu Technical
Review, one of Fujitsu’s technical information
media. Please check out the other articles.

Fujitsu Technical Review

https://www.fujitsu.com/global/technicalreview/

https://www.fujitsu.com/global/technicalreview/

