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1.	 Introduction
Advances in AI over recent years have led to its 

application in a wider range of fields.  Above all, deep 
learning has been particularly remarkable and it has 
become more widely adopted, especially in the han-
dling of image data.  Unfortunately, because many of 
these advanced AIs function as black boxes, explain-
ing the reasons behind their decisions is problematic.  
Fujitsu Laboratories developed Deep Tensor1)-3), a tech-
nology that is capable of the highly accurate analysis of 
graph data representing connections between people 
and things.  However, explaining the reasons behind 
decisions made by Deep Tensor still posed a problem.

In response, Fujitsu Laboratories developed a 
technology for identifying the factors behind the infer-
ence result made by Deep Tensor.  This inference factor 
identification technology can specify which elements 
in graph data contributed to inference result made 
by Deep Tensor.  By doing so, this helps data experts 
to decide whether they can rationally interpret the 
inference result made by Deep Tensor, and therefore 
whether or not they can trust it.  If a rational explana-
tion of inferences can be given and the results trusted, 

then the practical use of AIs that operate on graph data 
becomes feasible even in fields like medicine and fi-
nance that demand accountability for decisions.

This paper describes inference factor identifica-
tion technology and presents examples of its use in 
medicine and finance.

2.	 Challenges in explaining inference 
results made by Deep Tensor
While technologies already existed for obtaining 

explanations of AI inference results, issues associated 
with Deep Tensor’s use of graph data meant that these 
technologies could not be used.

This section describes an overview of Deep Tensor 
and the difficulties to be overcome when seeking to 
explain the inference results made by it.

2.1	 Overview of Deep Tensor
Deep Tensor is a deep learning technology devel-

oped by Fujitsu Laboratories that works on graph data, 
where “graph data” means data representing the con-
nections among objects such as people and things.  The 
people or things being connected are called “nodes” and 

Inference results provided by AI require accountability in terms of the reasons and basis behind 
the inference.  For AI to be accepted in areas where accountability is needed, such as the medi-
cal and financial sectors in particular, the reasons and basis for an inference must be shown to 
earn sufficient trust.  Unfortunately, explaining the reasons or basis for an inference is diffi-
cult for many of the AI methods that provide highly accurate inferences, such as deep learning.  
Deep Tensor, an AI technology developed by Fujitsu Laboratories, is capable of highly accu-
rate analysis of graph data representing connections between people and things.  With Deep 
Tensor, accounting for the reasons behind inferences is still an important issue.  Accordingly, 
Fujitsu Laboratories has developed inference factor identification technology as a means of re-
solving this issue.  The technology uses feature values called core tensors generated by Deep 
Tensor to indicate which elements of graph data contributed to the results of an inference, 
thereby providing an explanation.  This paper describes inference factor identification technol-
ogy and presents examples of its application in the medical and financial sectors.
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the links between them “edges.”  The challenge when 
using learning on such graph data is to extract its im-
portant features, and Deep Tensor is a way of achieving 
this.

Figure 1 shows an overview of how Deep Tensor 
works.  The graph data is represented as a mathemati-
cal structure called a tensor.  It obtains highly accurate 
inferences (classification and regression) by using the 
proprietary technology of structure-restricted tensor 
decomposition to extract the important features from 
the graph data and then inputting these into a neural 
network.  The graph data is represented in tensor form 
that indicates whether or not edges exist between each 
pair of nodes.  This tensor data is decomposed into a 
core tensor and factor matrices.  While this is what is 
generally known as tensor decomposition, Deep Tensor 
decomposes the tensor in such a way that the core 
tensor contains important features of the graph data.  
Specifically, it introduces a target core tensor that serves 
as a criterion for tensor decomposition, decomposing the 
tensor in such a way that the core tensor approximates 
the target core tensor.

This target core tensor is not something that is 
provided in advance, rather it is obtained by learning in 
conjunction with a neural network using a proprietary 
training technology.  That is, because the target core 
tensor is trained to improve inference accuracy, the re-
sulting core tensor ends up containing the important 
features of the graph data that contributed to the infer-
ence result.  The features that turn out to be important 
vary depending on the data.  For example, sometimes 
the partial structure of the graph data is important, and 
sometimes the overall structure is important.

Thanks to this technology, Deep Tensor is able to 

make decisions about graph data with high accuracy.  
Unfortunately, because it contains a neural network 
that remains a black box, this in itself is not enough 
to relieve the difficulty of explaining inference results.  
To overcome this, a technology that enables black-box 
AI inference results to be explained was adopted and 
applied to Deep Tensor.

2.2	 LIME: A conventional technology for 
explaining inference results
Local interpretable model-agnostic explanations 

(LIME)4) is a conventional technology for explaining the 
inference results made by black-box AIs.  LIME obtains 
its explanations by attempting to approximate the 
original model using a linear regression model with 
input variables suitable for explanation.

Figure 2 shows how LIME works using the ex-
ample of an AI that assesses whether or not an input 
image shows a chicken.  The image data in question is 
first split up into small sections and multiple versions of 
the image are produced in which random regions have 
been masked out.  The AI is then used to estimate for 
each of these masked images the probability that it 
shows a chicken.  Next, a regression model is trained to 
output the AI inference result using each of the masked 
images, with binary variables indicating whether or not 
each region of the image was masked (0 = masked, 1 = 
not masked) being used as the regression model inputs.

This involves weighted learning based on the 
similarity between the binary variables for the origi-
nal image to be explained and the variables for each 
masked image.  The result is that the linear regression 
model comes to approximate the AI behavior with re-
gard to images similar to the image in question.  By 

Figure 1
Overview of Deep Tensor.
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treating the regression coefficients for each variable 
in the resulting linear regression model as indicating 
its degree of contribution to the inference result, the 
assumption that those variables with a high regres-
sion coefficient made the greatest contribution to the 
inference result can be used to explain the result.  In 
other words, they indicate which regions of the image 
in question played the largest role in inferring that it 
shows a chicken.

2.3	 Challenges in explaining inference 
results extracted from graph data
When applying LIME to Deep Tensor, the challenge 

is to prepare variables that are suitable for explaining 

graph data.  One method for approaching this chal-
lenge is to split up the graph data into small areas, 
as in the example of the image data described above.  
However, there is no obvious and appropriate way of 
splitting graph data.  Moreover, even if an expert on the 
graph data concerned considers partitioning methods 
of graph data based on their expert knowledge, such 
a method cannot always be devised.  Devising suitable 
partitioning methods from large data sets is particularly 
difficult.  If an inappropriate partitioning method is 
used, the resulting inference explanations will also be 
of poor quality.

Figure 2
Use of LIME in image analysis AI.
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3.	 Inference factor identification 
technology
This section describes the technology used to 

identify the factors behind inference results made by 
Deep Tensor.

Similar to LIME, the technology trains a linear 
regression model to determine which elements in the 
graph data contributed to the inference results made 
by Deep Tensor.  This involved using the mechanisms of 
Deep Tensor itself to overcome the issues noted in the 
preceding section.

As explained above, the core tensor generated 
by Deep Tensor contains the important features of the 
graph data.  Therefore, if the input variable of the linear 
regression model in LIME is a core tensor, it eliminates 
the need to find a way to partition the graph data.  
In this case, training the linear regression model will 
show which elements of the core tensor contributed to 
the estimated results.  Unfortunately, the core tensor 
is itself often difficult to interpret, making it difficult 
in such cases to explain an inference result in terms of 
the degrees of contribution obtained from the core ten-
sor.  Therefore, the degrees of contribution obtained for 
each element of the core tensor are transformed into 
the degrees of contribution for each element of the 
original tensor data i.e. the contribution of each edge 
in the graph data.  Doing so indicates which parts of 
the graph data played an important part in the result-
ing inference.

Figure 3 shows a diagram of inference factor iden-
tification technology.  First a linear regression model 
that outputs the Deep Tensor result using the elements 
of the core tensor as its inputs is trained in the same 
way as LIME.  As the core tensor in the diagram example 
has eight elements, the regression model has eight 
inputs.  This input variable corresponds to the x in the 
formula in Figure 3.  The training data for this linear re-
gression model consists of the core tensors of the graph 
data (hereafter, the target graph data) for which the 
inference results are to be explained, the core tensors 
of additional graph data, and the Deep Tensor infer-
ence results for these graph data.  The “additional graph 
data” in this case could be the graph data used to train 
Deep Tensor, for example.

Training this linear regression model involves 
training the core tensors of the target graph data and 
graph data with similar core tensors to approximate 

the behavior of Deep Tensor.  Specifically, the weight 
of every graph data point, including target graph data, 
is determined based on the similarity between the core 
tensors of the target graph data and the core tensors of 
all graph data.

Each regression coefficient in the trained regres-
sion model corresponds to an element in the core 
tensor and is assumed to represent the element’s con-
tribution to the inference result.  Multiplying the factor 
matrices obtained by structure-restricted tensor decom-
position by these contributions gives the contribution 
of each element in the original tensor data, which is 
to say the contribution of each edge in the graph data.

Comparing the contributions of each edge ob-
tained above indicates which parts of the graph data had 
a large influence on the inference result.  This facilitates 
rational interpretation of the result by a domain expert.

4.	 Example applications of inference 
factor identification technology
This section presents example uses of the tech-

nology in medical and finance applications.

4.1	 Medical application
This example involves use of the technology in 

assessing the toxicity of chemical compounds in drug 
development.  This example uses an open data set 
(Tox215)) to assess whether or not a compound is toxic 
based on its chemical structure.

The first step was to build the graph data for the 
compounds in the data set, treating each atom as a 
node and each inter-atomic bond as an edge, and to 
split this into separate data sets for learning and assess-
ment, respectively.  Next, Deep Tensor was trained using 
the learning data set and then run using the assessment 
data set.  Inference factor identification technology was 
then applied to the results to assess the contribution of 
each inter-atomic bond to the toxicity inference.  Finally, 
the bonds with a high degree of contribution were re-
viewed visually.

Figure 4 shows the chemical structures of two 
compounds identified by Deep Tensor as being toxic.  
The bold lines in the figure indicate those bonds that 
were determined by inference factor identification 
technology to make relatively large contributions to the 
result.  Looking at which bonds in compounds A and B 
had a large contribution shows that the same chemical 
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structure is involved in both cases.
These two compounds have similar core tensors 

in Deep Tensor.  This indicates that similarities exist 
in the chemical structures that played a large part in 
the inference result, and this chemical structure being 
present in both compounds presumably accounts for 

this similarity.  The presence of this commonality in the 
chemical structure that strongly influenced the toxicity 
assessment suggests that this structure is one that war-
rants attention when assessing toxicity.

In this way, inference factor identification tech-
nology was used to indicate which chemical structures 

Figure 3
Overview of inference factor identification.
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influenced the assessment.  A comparison of data hav-
ing similar core tensors also highlighted a chemical 
structure present in both compounds that played a large 
part in the inference result.  To the extent that these 

results have a rational interpretation, the inferences 
generated by Deep Tensor can be considered rational.

4.2	 Financial application
This example relates to credit assessment at 

a financial institution, involving the use of records 
of inter-company transactions held by the financial 
institution to assess the risk of providing finance to 
particular companies.  This is done by using these 
records to build a graph of the inter-company trans-
actions involving the company in question and using 
Deep Tensor to assess, from the features of this graph, 
whether the risk of financing the company is high or 
low.  The way this is done is fundamentally the same as 
in the toxicity example above.

Figure 5 shows two transaction graphs.  The 
graphs express the relationships between the com-
panies being assessed (Company A and Company 
B) and the between transaction counterparties, also 
taking into account when transactions took place.  
In this figure, round nodes represent counterparties 
and square nodes indicate when the transactions oc-
curred.  Although it cannot be seen in the figure, the 
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transaction graph edges also contain information 
about the monetary value of each transaction.

Although Companies A and B have a similar level 
of transactions (in terms of number of counterparties 
and monetary value), their transaction graphs have dif-
ferent characteristics.  Company A has many one-time 
customers, meaning companies with which all transac-
tions occur in only a single time period.  Company B 
in contrast has many repeat customers, meaning com-
panies with transactions across multiple time periods.  
Based on these characteristics, Deep Tensor assessed 
Company A as high risk and Company B as low risk.

Those transactional relationships that were 
identified by inference factor identification technol-
ogy as making a relatively large contribution to the 
result are highlighted in Figure 5 by dotted lines.  That 
transactions with one-time customers make a large 
contribution in the case of Company A indicates con-
cern about transactional relationships that rely on this 
type of customer.  Similarly, that transactions with re-
peat customers make a large contribution in the case 
of Company B indicates an acknowledgment that the 
company has steady transactional relationships with 
this type of customer.

In this way, use of inference factor identification 
technology highlighted the transactional relationships 
that influenced the assessments by Deep Tensor of 
companies that pose different finance risks despite 
having transaction graphs that are similar in size.  A ra-
tional interpretation was obtainable by looking at the 
characteristics of these transactional relationships.

5.	 Conclusion
This paper described the inference factor identifi-

cation technology used to explain inferences made by 
Deep Tensor and presented examples of its application.  
The technology works by training a linear regression 
model to approximate the inference results made by 
Deep Tensor based on the core tensors.  The degree to 
which each element of the core tensors contributes to 
the inference results obtained by this training is then 
transformed into the corresponding degrees of contribu-
tion of the graph data, thereby indicating the degree to 
which each edge in the graph data contributes to the 
inference results.  The technology was used in medical 
and financial applications to demonstrate that it could 
indicate which elements of the graph data contributed 

to a Deep Tensor inference result.
The “explanation” provided by the technology 

described here comes in the form of information on 
which elements contributed to an inference, but this is 
not in itself an adequate explanation.  What is needed, 
rather, to obtain a better explanation is the domain un-
derstanding to be able to tie this “explanation” to what 
it is the data actually represents.  It is only by doing so 
that it becomes possible to encourage new discoveries 
or take into account law and ethics in decisions.  Fujitsu 
Laboratories has published details of an “explainable 
AI” that combines inference factor identification tech-
nology with knowledge graphs6), this being one of the 
ways we intend to address this issue.  We intend both 
to continue developing this “explainable AI” to make it 
more useful in practice and to utilize it on the FUJITSU 
Human Centric AI Zinrai platform service for AI.7)

All company and product names mentioned herein are trademarks or 
registered trademarks of their respective owners.
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