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1.	 Introduction
The recent appearance of “deep learning” is driv-

ing a third-generation AI boom that is now making 
inroads into society.  This boom is being supported by 
advances in IoT technologies that enable the collection 
of big data and machine-learning technologies includ-
ing deep learning.

Data analysis technologies including machine 
learning are based on statistical analysis techniques 
that even today are the target of much research and de-
velopment activities.  Statistical data analysis, however, 
makes certain assumptions such as normal distribu-
tions, so it is known that expected performance cannot 
be obtained if the data does not follow well-known 
distributions or if an appropriate distribution is not 
clear.  In response to this problem, Fujitsu Laboratories 
has been researching topological data analysis (TDA) 
as a data analysis method that can capture detailed 
information by focusing on the “shape of data” without 
using statistical techniques.

Time-series data obtained from sensors or other 
devices possess the property of “chaos,” in which statis-
tical quantities such as mean and variance, frequency, 
etc., can vary greatly depending on the time of data 
collection.  With this in mind, we have been working 
to develop technology that can be applied to such 

time-series data and have developed a technology that 
combines TDA, deep learning, and anomaly detection 
technology.  We expect this technology to give birth to 
advanced AI services using sensors.

In this paper, we describe TDA and time-series data 
analysis technology using TDA and introduce bridge de-
terioration analysis as an application example.

2.	 Problem with statistical data 
analysis
In data analysis including machine learning, 

conventional statistical analysis techniques make the 
assumption that data follows some kind of distribution.  
For example, the mean and deviation of test scores are 
based on the assumption that the scores follow a nor-
mal distribution.

In actual examinations, however, it sometimes 
happens that the high-score and low-score groups be-
come polarized in a distribution.  In this way, there are 
cases where the distribution the data follows cannot be 
determined and the information included in the data 
cannot be described by the probability distribution.  
In recent years, as the collection of big data became 
possible, the above-mentioned situation became more 
frequent, and sufficient performance could not be 
demonstrated in some cases by conventional statistical 
analysis methods alone.

The commercialization of AI technology has accelerated in recent years, with a growing interest 
in various machine-learning technologies such as deep learning.  However, machine learning is 
based on statistical data analysis, and it is known today that certain information contained in 
such data is lost through analytical processes.  To make the most of such information, we have 
developed a new machine learning technology based on topological data analysis (TDA) that 
focuses on and analyses the “shapes of data.”  This paper explains TDA as a new data-analytical 
method.  As applied cases of TDA, it also describes the time-series deep learning for analyzing 
time series data and anomaly-detection technology, with an account of a bridge deterioration 
assessment in which the latter was applied.
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To solve this problem, individual analysis methods 
utilizing data-specific features need to be constructed, 
or conventional methods need to be expanded to avoid 
dropping information as much as possible when statisti-
cally analyzing a combination of multiple distributions.1)

These methods, however, require detailed knowl-
edge of the target data to obtain their unique features.  
They also require the assumption that the data follows 
certain distributions locally, which means that the loss 
of information may be inevitable.

3.	 Developed technologies in TDA
Research is progressing in the field of TDA as a 

technology that can obtain a detailed understanding 
of critical information lost to conventional statistical 
data analysis by focusing on the “shape of data.”  This 
section introduces two key technologies—Mapper and 
persistent homology—now being researched and devel-
oped mainly for TDA.

3.1	 Mapper
Mapper is a technology that presents the 

distinguishing features of a set of data as an easy-to-
understand graph.  To grasp such data features, Mapper 
groups important parts of that data as nodes and con-
nects nodes having contiguous data by lines (edges), 
thereby converting that dataset to a graph.  Mapper 
can visualize the distribution of the data by outputting 
the dataset as a 2D graph.

We can take as an example a distribution of viruses 

in the case of three sources of outbreak.  Figure 1 (a) 
shows the distribution of virus outbreak locations.  In the 
case of a single source of outbreak, the virus would be 
highly concentrated around the source of the outbreak 
with its concentration tapering off at a distance from 
the source.  However, in the case of multiple sources of 
outbreak, the distribution becomes a mixed distribution.  
Therefore, it would be difficult to tell where the sources 
are located simply from the distribution map.  In this 
case, Mapper constructs a graph by using data concen-
tration as a basis to group important locations where the 
concentration is either higher or lower than the periph-
ery into nodes, as shown in Figure 1 (b).  In this figure, 
highly concentrated nodes are shown in dark colors.

It can be seen from Figure 1 (b) that the three 
nodes indicated by the arrows have a higher concentra-
tion than the nodes to which they are connected.  This 
approach enables the user to understand that three 
sources of outbreak exist without any prior knowledge 
of that data.  This would be difficult to recognize simply 
by observing the data in Figure 1 (a).

In this way, Mapper is a technology that can easily 
grasp the shape of data that would otherwise be diffi-
cult to understand.  Mapper can capture features that 
are lost in big data and difficult to extract.  Because of 
this capability, it is starting to be applied overseas for 
a variety of purposes such as anti-money-laundering 
measures in the field of finance and discovery of as-
sociations between disparate diseases in the field of 
healthcare.2)

Figure 1
Graphing of mixed distribution by Mapper.

(a) Mixed distribution of virus locations in
      the case of three outbreak source (b) Output by Mapper
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3.2	 Persistent homology
In contrast to Mapper that can visually grasp the 

important elements of a certain set of data, persis-
tent homology3) is a technology that can numerically 
capture a data shape in detail.  It is important in data 
analysis to understand the arrangement of data, but 
there are cases in which conventional statistical quan-
tities such as mean and variance cannot convey that 
feature.

For example, the two sets of data shown in 
Figure 2 differ in data arrangement despite having the 
same mean and variance.  In this case, it would not be 
possible to determine whether a hole exists in the cen-
ter of the distribution based solely on such quantities.  
On the other hand, it has been shown that persistent 
homology will produce a different result for different ar-
rangements of data and will enable information such 
as a hole in the center to appear as a clear feature.  
Persistent homology is therefore capable of grasping 
data features in more detail than conventional statisti-
cal quantities.

Persistent homology is outlined in Figure 3.  This 

technology considers circles (or spheres in the cases 
of 3D data) centered about each point of data.  When 
each of these circles expands, the figure can take on 
a new shape as neighboring circles join up with each 
other.  At this time, the distinguishing characteristics of 
the data can be understood by observing the change in 
the number of holes included in the figure.  As machine 
learning commonly uses input data that are composed 
of equal-length vectors, persistent homology vectorizes 
the points of data as “Betti sequences.”  Figure 4 (a) is 
a graph that plots a circle’s radius along the horizontal 
axis and number of connected components (math-
ematically speaking, zero-dimensional holes) along 
the vertical axis.  Figure 4 (b) is a graph that plots the 
number of ordinary holes (mathematically speaking, 
one-dimensional holes) along the vertical axis.  Circle 
radius and feature quantities of the figure in each 
viewpoint from (A) to (D) of Figure 3 correspond to the 
results in each point of Figure 4 shown by the vertical 
lines.  This graph can be thought of as a means of ex-
pressing the arrangement of input data.

Fujitsu Laboratories has developed technology 
that enables advanced data analysis by combining 
information quantified by persistent homology with 
machine learning.  It also uses persistent homology in 

Figure 2
Example of data having the same mean and variance.

(A) (B)

(C) (D)

Figure 3
Change in number of expanded circles and holes.

(A) (B) (C) (D)
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(b) Relationship between circle radius and number of holes
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Figure 4
Visualization of Betti sequences.
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relation to technology for converting time-series data.  
These technologies are described in the next section.

4.	 Time-series machine learning using 
TDA
This section introduces two machine-learning 

technologies using TDA.  Known as “supervised learning” 
and “unsupervised learning,” these key technologies 
provide the two main learning frameworks in the field 
of machine learning.

4.1	 TDA and machine learning targeting 
time-series data
In machine learning, which is fast becoming the 

foundation for modern AI, users must shape data be-
forehand into a form that computers can comprehend.  
Fujitsu Laboratories is developing AI technologies ca-
pable of performing advanced analysis of a wide range 
of data by shaping data using TDA in combination with 
technologies like machine learning and deep learning. 

To provide some background, recent progress 
in IoT technologies is making it possible to perform 
high-performance collection of various types of data 
from sensors and other devices.  In this regard, conven-
tional learning techniques targeting time-series data 
obtained from sensors have used frequency analysis 

in addition to statistical quantities such as mean and 
variance.  However, when applying such an approach 
to intensely fluctuating time-series data, there have 
been an increasing number of cases in which sufficient 
performance cannot be achieved.  We can consider one 
cause of this to be as follows: although time-series data 
possess regularity in their generation, they may exhibit 
“chaos” in which frequency and statistical quantities 
like mean and variance are not fixed.

We have developed time-series data analysis 
technology using TDA as a high-accuracy learning tech-
nique for time-series data exhibiting chaos (Figure 5).  
The following summarizes each step.
1)	 Attractor conversion

Time-series data analysis involves the learning 
of invariant governing equations as feature quanti-
ties even in the case of time-series data having chaos.  
Governing equations are differential equations that ex-
press fluctuation in time-series data.  If the generating 
sources of two sets of time-series data are in the same 
state, the governing equations are considered to be 
the same.  This approach is therefore considered to be 
capable of high-performance analysis compared with 
conventional techniques.

Taking the above into account, we decided to 
extract information on governing equations using 

Figure 5
Time-series data analysis technology using TDA.
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attractor conversion,4) which is known in chaos theory 
as a technique for converting governing equations into 
a figure.  An attractor is a set of solutions to differen-
tial equations, so “equation analysis” and “attractor 
analysis” are synonymous.  In addition, considering 
that time-series data has a finite length in practice, an 
actual attractor would be a finite set of points.
2)	 Vectorization by persistent homology

Many techniques in machine learning assume 
that all input data are composed of equal-length vec-
tors.  An attractor configured from time-series data, 
however, is a set of points, not a vector, so it cannot be 
used as-is as input for machine learning.  For this rea-
son, we adopted persistent homology as a method for 
vectorizing while preserving the information on point 
arrangement.  Persistent homology makes vectoriza-
tion easy since it quantifies the information describing 
an arrangement of points.  A vector created in this way 
is called a “Betti sequence,” which can be used as input 
for machine learning.
3)	 Supervised learning by one-dimensional convolu-

tional neural network
Given a Betti sequence created from an attractor 

using persistent homology, a feature component often 
appears in an adjacent vector element even for time-
series data having the same governing equations.  This 
characteristic is analogous to the shifting of an object’s 
position—a feature of that object—in image recognition.  
A convolutional neural network (CNN) that is highly ef-
fective in image recognition can therefore be expected 
to be effective in the analysis of Betti sequences, so we 
constructed a CNN especially for this purpose.  While 
image data is two dimensional, a Betti sequence is a 
one-dimensional vector.  There are also cases in which 
multiple independent data sets are combined, so we 
constructed an original network that can combine mul-
tiple instances of a one-dimensional CNN.5)

4.2	 Evaluation of time-series deep learning
To evaluate time-series deep learning, we per-

formed a comparison experiment with a conventional 
technique using the following three datasets: 
1)	 Data from gyro sensors attached to both arms, 

both legs, and the chest of a subject when per-
forming 19 types of actions

2)	 Brain-wave (electroencephalogram: EGG) data when 
opening and closing the eyes

3)	 Muscle-related waveform (electromyography: EMG) 
data when performing 10 types of actions
Using these three types of data, we compared 

time-series deep learning with the conventional sup-
port vector machine (SVM) algorithm by having each 
learn feature quantities obtained by conventional 
statistical processing and feature quantities in chaos 
theory.  We found that time-series deep learning im-
proved the accuracy rate by more than 20% compared 
with the conventional technique for all of the above da-
tasets, thereby showing the effectiveness of the former 
as a learning technique for time-series data.

4.3	 Time-series anomaly detection 
technology using TDA
Time-series deep learning is effective if classifica-

tion is clear and if supervised data affixed with labels 
in accordance with class are available.  However, when 
performing time-series analysis in actuality, the crite-
ria for classification may not be clear, so the objective 
often becomes to detect when a change from a normal 
state to an abnormal state occurs or when signs of such 
a change occur.  We therefore developed anomaly de-
tection technology using TDA.

This technology obtains data from time-series 
data in fixed periods, converts each set of data to a 
Betti sequence the same as in time-series deep learn-
ing, and compares the results with reference data.  
The type of reference data used depends on the type 
of detection being performed.  For anomaly detection, 
data obtained beforehand in a normal state is used, 
and in the case of change detection, immediately pre-
vious data is used as reference data.  This algorithm 
calculates the difference between the target data 
and reference data as a detection criterion and treats 
the time at which the difference becomes large as 
the detection time point.  We have prepared multiple 
methods for calculating the difference between refer-
ence and obtained data, including methods based on 
deep learning.  This makes it possible to observe the 
changes of rules in time-series data generation in the 
source, which means that this technology is better than 
conventional techniques at detecting anomalies and 
changes due to root causes.
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4.4	 Application of anomaly detection 
technology using TDA
Fujitsu Laboratories has applied anomaly detec-

tion technology using TDA to the analysis of bridge 
deterioration.

In Japan, many bridges constructed during the 
period of rapid economic growth are aging.  As a re-
sult, the business of maintaining and managing these 
bridges is increasing dramatically, creating problems 
for society such as rising maintenance costs and an 
insufficient number of qualified technicians.  However, 
the application of ICT to the business of maintaining 
and managing social infrastructures such as bridges is 
expected to help solve these social problems.  Against 
this background, Fujitsu got involved in the Research 
Association for Infrastructure Monitoring System (RAIMS), 
where it has taken on the role of accumulating and an-
alyzing monitoring data in relation to the maintenance 
and management of social infrastructures.

Current bridge inspection work detects and 
evaluates damage on the basis of up-close visual ob-
servation or hammering tests by skilled technicians.  
However, a visual inspection can only detect deforma-
tions appearing on the surface of a structure, that is, 

it cannot obtain information on the degree of internal 
damage.

In view of this problem and with the aim of ad-
vancing inspection work through the use of ICT, we 
have undertaken the assessment of bridge damage by 
attaching sensors on the surface of a bridge decknote) 
and collecting and analyzing vibration data.  We have 
previously used vibration data to assess the degree of 
internal damage in a bridge deck by a conventional 
technique such as spectral analysis, but were unable to 
greatly improve inspection work in this way.

Consequently, to detect and assess internal dam-
age in a bridge deck, Fujitsu decided to apply anomaly 
detection technology using TDA to monitoring data 
obtained from acceleration sensors installed on the sur-
face of a bridge deck.6)  This data was obtained from a 
moving-wheel load test conducted in FY2015 by RAIMS.

Figure 6 shows the degree of anomaly calculated 
by anomaly detection technology, the degree of change 

note)	 A basic bridge element that conveys the weight 
of vehicles traversing the bridge to bridge beams, 
footing, etc.

Figure 6
Example of bridge deterioration analysis.
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calculated by change detection technology, and the 
data on internal damage (reinforcing-bar and concrete 
strain) that drive the deterioration process.  The ex-
periment also performed monitoring at some locations 
using internal strain sensors that cannot be installed 
in an actual highway bridge.  This makes it possible to 
compare the estimation by the anomaly detection tech-
nology and the degree of damage in an actual bridge.

The results of this test show that internal damage 
occurs at times when the degree of change is large.  
They also show that the degree of change in anomaly 
detection can become large at times when no change 
occurs in the values of internal strain sensors.  The rea-
son for this is thought to be that points at which no 
internal strain sensors were installed were subjected 
to damaging effects.  This result indicates that internal 
damage in a bridge can be detected at an early stage 
by applying anomaly detection technology using TDA 
to data obtained by acceleration sensors installed on 
the exterior of a bridge deck.

The above application is just one example dem-
onstrating the effectiveness of anomaly detection 
technology using TDA.  Going forward, we plan to apply 
this technology to actual bridges and to expand its 
use to detect deterioration in social infrastructures 
other than bridges.  We will also research its applica-
tion to anomaly detection in mechanical systems and 
elsewhere.

5.	 Conclusion
In this paper, we introduced TDA as a new data 

analysis technique and described time-series deep 
learning technology and time-series anomaly detection 
technology developed by Fujitsu Laboratories using 
TDA.

Going forward, we plan to improve the accuracy 
of time-series data analysis and develop detailed 
analysis techniques through joint research with the 
National Institute for Research in Computer Science 
and Automation (Institut National de Recherche en 
Informatique et en Automatique: INRIA) in France and to 
expand TDA beyond time-series analysis to other fields.
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