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1.	 Introduction
About 70 years have passed since the develop-

ment in 1949 of the electronic delay storage automatic 
calculator (EDSAC), a practical stored-program com-
puter, and today, everyone can get a computer in the 
form of a smartphone.  EDSAC was a huge computer 
using 3,000 vacuum tubes and mercury delay lines as 
memory and consuming 12 kW of electric power.  As 
basic electronic devices, these vacuum tubes eventu-
ally came to be replaced by solid electronic devices, or 
transistors, invented by W. B. Shockley et al. at around 
the same time.  This invention gave birth to many 
second-generation commercial computers in the 1950s 
and 1960s.  With the invention of monolithic inte-
grated circuit technology by J. Kilby et al., the cost of 
computers began to drop rapidly, and the development 
of high-performance computers began to accelerate 
through the effective use of even more transistors.

Today, we have Moore’s law as an empirical ap-
proach to predicting the future of integrated circuits 

(IC).  This law was originally advanced by G. Moore, 
a co-founder of Intel Corporation, who stated, “The 
complexity for minimum component (transistor) costs 
has increased at a rate of roughly a factor of two per 
year.  There is no reason to believe it will not remain 
nearly constant for at least ten years.”1)  This was later 
given theoretical support by the scaling law of R. H. 
Dennard of IBM.  Since that time, the limit to Moore’s 
law was frequently discussed, but it nevertheless drove 
the development of semiconductor microfabrication 
technology over a period of about 30 years up until 
the early 2000s.  This is because the miniaturization 
of semiconductor process dimensions simultaneously 
improved the performance and power efficiency of tran-
sistors, improved the integration density, and brought 
down costs thereby “killing three birds with one stone.”

As a result, plotting computer performance from 
the EDSAC era up to 2010 would show that it doubled 
approximately every year and a half thereby main-
taining exponential improvement,2) which means an 
improvement in performance over a 70-year period on 

Since the development of practical stored-program computers in the late 1940s, performance 
has risen amazingly by about 1012 times over a period of 70 years.  However, it is generally 
recognized that semiconductor transistor scaling is reaching its limits and that Moore’s law is 
coming to an end.  Regardless of these technical issues, the explosive increase in the amount 
of data generated in today’s IoT era is expected to continue, and it is highly anticipated that 
this data will be used to create new value and novel services.  Meeting these expectations 
will therefore require improvements in performance independent of Moore’s law.  To address 
these issues, Fujitsu Laboratories proposes domain-specific computing as a new computing 
paradigm.  The aim of domain-specific computing is to break through Moore’s law by adopting 
architecture specific to the type of processing needed in fields such as knowledge processing 
whose objective is not to obtain rigorous numerical results.  For example, in application to 
deep learning engines, high-speed image search engines, and machines dedicated to combi-
natorial optimization problems, domain-specific computing has demonstrated that it showed 
50–12,000 times higher performance than that of conventional approaches.  In this paper, we 
describe the direction of domain-specific computing as a new computing paradigm and present 
specific application examples.
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the order of 1012, a truly amazing figure.  In addition, 
the power efficiency of computers improved in about 
the same way doubling about every year and a half, 
which means an improvement in computer perfor-
mance for a device of about the same size and price.  
In other words, this spectacular improvement in com-
puter performance up to the present can be primarily 
attributed to the progress made in semiconductor mi-
crofabrication technology.

Given a generation in which an ideal scaling law 
was applicable, it was possible to improve integration 
density while keeping power density fixed.  That is to 
say, the product of power efficiency and performance 
squared is constant (Figure 1).  The value of this prod-
uct (K in the figure) is determined by the semiconductor 
microfabrication technology that can be achieved in 
any one generation, so it can be expressed by a straight 
line for that generation as shown in the figure.  What 
this means is that high performance and high power 
efficiency cannot be simultaneously achieved if their 
product falls outside that line.  In this sense, such a line 
can be called Moore’s limit line.  On the other hand, the 
value of this product becomes larger as semiconductor 
microfabrication technology progresses, so it actually 
became possible to improve both power efficiency and 
performance over time with each generation.

However, on entering the 2000s, it became dif-
ficult to ideally lower the power supply voltage, and as 
a consequence, increasing the integration density of 

transistors resulted in a dramatic increase in power 
consumption.  It was therefore difficult to improve per-
formance due to limitations in power consumption.  In 
addition, once process dimensions approach a level on 
the order of 100 times the size of an atom, it becomes 
difficult to shorten gate length, a determining factor in 
transistor performance.  From the 45-nm-node era on, 
it has become practically impossible to shorten transis-
tor gate length.  It is therefore thought that Moore’s 
limit lines have become a wall, and that relying solely 
on progress in semiconductor microfabrication tech-
nology will make it difficult to achieve any further 
improvements in performance.

Against the above background, many discus-
sions3) have taken place on the direction of research 
and development with respect to the end of Moore’s 
law and the possibility of computing beyond it and 
Moore’s limit lines.  These include the development of a 
RISC-V instruction set aimed at domain-specific comput-
ing, development by D-Wave Systems Inc. of a quantum 
annealer using superconducting circuit technology, and 
development of a tensor processing unit (TPU), an LSI 
specialized for AI applications from Google.

In this paper, we begin by explaining the concept 
of domain-specific computing.  We then introduce 
examples of applying this new approach to specific 
domains focusing on the three fields of AI, media, and 
combinatorial optimization.

2.	 Domain-specific computing
The end of Moore’s law is imminent, and from a 

technology perspective, a number of challenges exist 
involving semiconductor processes, network bandwidth, 
power consumption, and computing performance.  At 
the same time, the amount of data that needs to be 
processed continues to increase in an explosive man-
ner.  The amount of data generated by IoT is expected 
to exceed 40 zettabytes by 2020 and to reach 1 yot-
tabyte by 2030.4)  It is clear that this explosive increase 
in data will come to outpace existing ICT-based data 
processing power, and that the creation of a new form 
of information processing to find out valuable informa-
tion from within a massive amount of data will pose a 
challenge.  For example, the density of information in 
data generated by IoT devices is thin.  However, if that 
large amount of data were to be consolidated on the 
cloud and if the essence or meaning of that data were 

Figure 1
Moore’ s limit lines and improvement by 
microfabrication technology.

Moore’s limit line: power efficiency × (performance)2=K

Performance (a.u.)

Po
w

er
 e

ffi
ci

en
cy

 (a
.u

.)

K: Large 

K: Small

Improvement in semiconductor 
microfabrication technology

104

103

102

10

1
102 103 104 105



17FUJITSU Sci. Tech. J., Vol. 54, No. 5 (October 2018)
Cutting-Edge R&D

A. Inoue et al.: Innovative Computing for Solving Social Issues

to be extracted using AI, it would be possible to trans-
form that data into knowledge and intelligence, which 
could be applied to achieving advanced ICT solutions.

Computing itself must change to support such 
a new form of information processing.  While con-
ventional architecture has excelled in numerical 
processing, it must evolve into architecture applicable 
to the efficient creation of knowledge and intelligence.  
New applications and services making use of this 
knowledge and intelligence can be created by hav-
ing techniques for processing large amounts of data 
evolve in a manner complementary to the evolution of 
architecture.

The direction of computing architecture evolution 
is shown in Figure 2 (a).  If a new form of architecture 
arises in a particular field, computing power can jump 
dramatically suggesting that innovation in architecture 
can give rise to a paradigm shift.  In addition, general-
purpose computing itself can gradually incorporate 
such a paradigm shift and become stronger on the 
basis of that new architecture.  The creation of new 
applications and services requires ongoing innovation 
in architecture and the creation of paradigm shifts.  
Fujitsu Laboratories proposes domain-specific comput-
ing as one approach to this end.

Conventionally speaking, computing performance 
has been evaluated mainly by indices such as integer 
operations performance, floating-point operations 

performance, and memory bandwidth for general- 
purpose applications.  These indices are closely related 
to semiconductor performance, which means that it 
will be difficult to achieve ongoing improvements in 
performance once Moore’s law comes to an end.  On 
the other hand, by determining computing architec-
ture by narrowing down the field, that is, the domain 
targeted for processing, and by focusing on the type of 
processing frequently used in that domain, it should 
be possible to raise performance by several orders of 
magnitude beyond Moore’s law.  This approach is called 
domain-specific computing.

Architecture-specific characteristics in computing 
are shown in Figure 2 (b).  The horizontal axis repre-
sents conventional computing processing performance 
and the vertical axis shows new performance indices 
defined for specific domains according to the purpose 
of computing.  Taking, for example, the media domain, 
a new index may refer to the degree to which required 
image quality is achieved for the target usage scenario.  
This could not be measured simply on the basis of con-
ventional CPU performance indices such as operating 
frequency and numerical operations performance.

To surmount the limits in improving performance 
by semiconductor downscaling, Fujitsu Laboratories 
has been promoting improvements in processing power 
through the use of supercomputers in the horizontal di-
rection and pursuing specialization in specific domains 
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in the vertical direction of Figure 2 (b).  Computing is 
changing from its conventional emphasis on numerical 
processing to the processing of specific information, 
knowledge, and intelligence.  With this in mind, we 
are taking on the accelerator and neural computing 
domains as the first stage of domain-specific comput-
ing.  Furthermore, as next-generation architecture, we 
are focusing our attention on quantum computers and 
brain-inspired computing.

Revising architecture based on the idea of domain-
specific computing will take on a direction different 
from that of the past.  Conventional architecture as-
sumes various types of workloads and makes use of a 
general-purpose CPU designed to demonstrate a level 
of performance common to those workloads.  The goal 
here is to combine sequential processing and parallel 
processing to search for highly accurate (or uniformly 
accurate) solutions.

In contrast, the focus in domain-specific-comput-
ing architecture is on core processing essential to that 
domain.  By identifying those characteristics and set-
ting up a large number of lean and simple dedicated 
cores, highly parallel processing of a huge number of 
operations with high power efficiency becomes pos-
sible.  In addition, by pursuing accuracy suitable to 
the target domain, processing can be made efficient 
and optimal.  On the basis of these policies, the aim 
is to achieve performance and power efficiency greatly 
higher than that of conventional computing.

The computing devices used in place of a general-
purpose CPU play an important role in achieving 
domain-specific computing.  Examples include general-
purpose graphics processing units (GPGPUs) that run 
highly parallel programs and dedicated hardware such 
as field-programmable gate arrays (FPGAs) and appli-
cation specific integrated circuits (ASICs).  In addition, 
the algorithms that act as core processes in the target 
domain will undergo a transformation from algorithms 
designed for conventional general-purpose CPUs to 
algorithms that take hardware structure into account.  
The point here is that treating algorithms and hardware 
as closely linked elements and providing optimal pro-
cessing techniques can achieve greatly higher speeds.

The following section describes the following 
technologies developed by Fujitsu Laboratories as 
domain-specific computing:
1)	 deep learning (DL) dedicated engine,

2)	 media server, and
3)	 Digital Annealer.

3.	 Application examples of domain-
specific computing
Excluding data input and output, the basic opera-

tions of computing consist of control, computation, and 
storage (memory), as shown in Figure 3.  In domain-
specific computing, the architectures of each basic 
operation are tailored in accordance with their charac-
teristics, thereby obtaining high levels of performance 
not possible by past approaches.

The following presents application examples of 
domain-specific computing.

3.1	 Deep learning dedicated engine: Deep 
Learning Unit (DLU)
In contrast to successive changes in process flow 

based on conditional judgments, deep learning learns 
a little at a time by inputting training data into a fixed 
process flow and repeating that process.  Furthermore, 
in applications using AI typified by deep learning, it is 
assumed that a correct answer can be obtained above 
a certain probability given the characteristics of in-
ference in deep learning.  That is to say, obtaining a 
correct answer without fail is not basic to such AI-based 
applications.

Although high inference accuracy is associated 
with high value, training requires a massive amount 
of processing.  For this reason, achieving an inference 
accuracy that satisfies the requirements of the applica-
tion with limited resources leads to a higher value.  For 
example, training with a small amount of processing 
enables various types of training to be performed at the 

Figure 3
Basic operations of computing.
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same time.  Also, training with low power consumption 
broadens the scope of applicable domains.

Deep-learning computing originally performed 
arithmetic operations in 32-bit floating-point format 
using a CPU or GPU.  However, operations, memory, 
memory bandwidth, and power consumption have all 
been increasing as the scale of deep neural networks 
expands to improve inference accuracy.  The need has 
consequently arisen for architecture that can improve 
power performance by improving the efficiencies of the 
above elements.

The DLU is a processor similar to a CPU, but special-
ized for deep learning processing.5), 6)  It adopts original 
architecture to achieve high processing performance 
with low power consumption.  Specifically, to maintain a 
constant level of performance against a massive amount 
of training data, the control and memory equipment of 
the DLU features a mechanism for sharing and saving 
data in register files within a deep learning processing 
unit (DPU) under software control independently from 
calculation equipment (Figure 4).  It also features archi-
tecture that can perform calculations in parallel on the 

basis of large register files (Figure 5).  In deep learning 
processing by GPGPU, floating-point 32-bit (FP32) op-
erations have been standard.  However, a conversion to 
low-bit operations to improve processing performance 
has been gaining momentum as reflected by the an-
nouncements of NVIDIA’s TensorCore7) based on 16-bit 
floating-point operations and Intel’s Flexpoint8) based 
on 16-bit integer operations.  These new devices reflect 
attempts at performing learning with fewer bits while 
maintaining learning performance equivalent to FP32 
operations.

The DLU incorporates a mechanism called Deep 
Learning Integer (DL-INT) that achieves necessary ac-
curacy in operations by using statistical information 
within those operations and enables learning by 8 or 16 
bits.  This mechanism enables a maximum of four par-
allel operations for the same amount of memory and 
memory bandwidth.  Furthermore, by reducing power 
consumption by half as a result of integer operations, 
DL-INT aims to improve power performance by approxi-
mately eight times compared with FP32 operations.  
Additionally, in multichip learning using more than one 
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Figure 4
Control system and multi-DPU configuration.
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semiconductor chip, DL-INT can reduce the amount of 
data traffic between chips where bottlenecks can occur.  
This feature contributes to efficient multichip learning 
in ever expanding deep neural networks.

3.2	 Media server
A media server aims to facilitate the reuse of large 

quantities of data and to make business tasks more ef-
ficient through high-speed retrieval of media data such 
as images and audio clips.

The key features of the architecture adopted here 
to speed up media retrieval are the parallel processing of 
algorithms involved in media retrieval processing, their 
implementation in a hardware engine, and the offload-
ing of operations from CPU processing.  Using a FPGA as 
the base device, this engine raises processing efficiency 
through balanced pipeline scheduling that transfers 
stored data to high-speed memory in a timely manner.9)

Specifically, this architecture allocates hardware 
resources to 32 parallel feature calculations and 6 

parallel matching processes, thereby achieving hard-
ware-based parallel processing of algorithms.  It has 
successfully increased the speed of media retrieval by 
50 times.

3.3	 Digital Annealer
There are combinatorial optimization problems 

(such as the traveling salesman problem) that can be 
solved by conventional computing means given a small 
number of combinations.  However, as the number of 
combinations increases, the time required to obtain a 
solution can increase explosively.

Such problems lie outside the scope of conventional 
general-purpose computing, but implementing a fully 
connected Ising model in hardware and improving pro-
cessing speed dramatically have made it possible to solve 
real-world problems such as the financial portfolio opti-
mization problem (up to 500 stocks).  The architecture 
used here to speed up the processing of combinatorial 
optimization problems features high-speed processing 

DPU: Deep learning processing unit
DPE : Deep learning processing element
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of a single trial (basic processing) by implementing core 
operations in dedicated hardware and the 1,024-paral-
lel execution of that processing.  Applying the above 
together with the dynamic offset scheme as a process 
algorithm achieves an overall improvement in processing 
speed of approximately 12,000 times.10)

4.	 Conclusion
This paper described the direction and presented 

application examples of domain-specific computing, 
a new computing architecture advanced by Fujitsu for 
breaking through the limits in improving computer per-
formance by semiconductor microfabrication technology.

The demand for improved performance in com-
puting is expected to continue in the years to come.  
However, we showed in this paper that performance 
can be raised by several orders of magnitude without 
relying on improvements in device performance if the 
fields targeted for processing are narrowed down to 
those that do not necessarily require optimization, such 
as knowledge processing, and if attention is focused on 
frequently used processes.

Going forward, our plan is to develop software 
and libraries that can extract performance without hav-
ing to make major changes to applications themselves.  
We feel that achieving a mechanism that can provide 
such high-performance processing to customers at low 
cost is a key element of this endeavor.
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