
64 FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, Vol. 54, No. 3, pp. 64–69 (July 2018)
Software Technologies to Support Digital Innovation

Accelerating Application Delivery in a Hybrid
World

 James Weir Alban Richard Yuzuru Ueda

1. Introduction
With the pace of business becoming faster than

ever before, businesses must evolve and adapt to meet
new customer needs with more agile and responsive
ICT without compromising governance and compliance.

While cloud computing helps provide infrastruc-
ture on demand, building and deploying applications
often remains a bespoke and largely manual process,
which has become an inhibitor to both agility and
governance.

Despite the tools already in place, application
deployment in a hybrid environment can become a
challenge, especially when manually integrating builds
from scratch for each infrastructure. Nowadays, devel-
opers are looking to automate that process, ensuring
consistent, repeatable application builds regardless of
infrastructure while ensuring full software governance.

This paper describes Agile development,1) how
it relates to DevOps, and how UForge can provide the

speed and agility needed from DevOps without sacrific-
ing control and consistency.

2. Agile development and DevOps
 To better understand the nature of Agile devel-

opment and its relation to DevOps, one of the authors
attended a workshop on Agile development to learn
about what kind of mindset is required to create a prod-
uct that would satisfy a customer's needs.

2.1 The workshop challenge
One of the challenges of the workshop was to

work as a team to reproduce a drawing (Figure 1)
provided by the instructor (playing the role of the “cus-
tomer”). The group was divided into three teams of four
people. Each team included two “designers” and two
“artists” who needed to collaborate to reproduce the
drawing. The designers were shown the picture, which
contained a set of shapes and patterns. Their job was

Today’s businesses are looking to increase ICT responsiveness with agile methodologies
and DevOps processes. But they must also ensure that governance and compliance are not
compromised. Furthermore, hybrid ICT or multi-cloud environments can exacerbate these
conflicting requirements, where different infrastructures are used for development, testing,
pre-production, and production environments. DevOps can be interpreted in many ways: there
is no common definition. It can be seen as being an environment that promotes communica-
tion and collaboration, while Agile is a method of working within the environment. DevOps
stresses effective collaboration and communication between various teams and departments
within a culture that optimizes release cycles of high-quality and thoroughly-tested end prod-
ucts. By viewing the entire delivery process holistically, DevOps helps us identify and solve
bottlenecks that traditionally happen when one role in the process is overloaded. UForge
AppCenter is a platform that follows DevOps principles and focuses on reducing manual coordi-
nation across the different stages of the application delivery life cycle to speed up the process
end to end. UForge provides native hybrid functionality to DevOps processes. Cloud-neutral
application templating enables repeatable processes that can be used across multiple clouds
or datacenters throughout development, testing, pre-production, and production. This paper
describes how UForge can provide the speed and agility needed from DevOps without sacrific-
ing control and consistency.

65

J. Weir et al.: Accelerating Application Delivery in a Hybrid World

FUJITSU Sci. Tech. J., Vol. 54, No. 3 (July 2018)
Software Technologies to Support Digital Innovation

to describe what they saw to the artists who then had
to re-draw the picture from the designers’ instructions,
all within ten minutes. However, the designers were
not allowed to speak to the artists. The author was
asked to be an artist.

The workshop instructor took the designers out
of the room to show them the picture, and the timer
started. After about six minutes, the designers from the
other teams started to arrive with a series of post-it notes
covered with instructions, which were handed to the
artists. The designers then quickly left the room. After
eight minutes, the designers from the author’s team ap-
peared with an A4 page full of detailed instructions. The
author’s team, we had only two minutes left to follow
the instructions and complete the drawing. The follow-
ing gives an idea of the written instructions on the page:
• Draw a rectangle taking up three quarters of the

page, dotted lines
• Draw a triangle on top of the rectangle
• Draw three circles in the middle

We were able to complete 20 percent of the
instructions by the time the ten minutes were up.
Unfortunately, when the instructor showed us the origi-
nal picture, we discovered that our picture, as well as
those of the other teams, did not bear any resemblance
to it.

The goal of this exercise was to demonstrate cer-
tain types of behavior when working in a team. First,
as soon as we were separated into designers and art-
ists, the team dynamic changed. The designers were
responsible for noting down the various shapes in the
picture and the artists had to try to re-draw them.

Second, the artists only started receiving require-
ments from the designers after six to eight minutes
had already passed, leaving only a few minutes for the
artists to work.

Finally, every team used the same method; a de-
signer would arrive with written instructions on a post-it
note or piece of paper, leave that with the artist, then
immediately leave the room again to collect more data.
The artists were left to themselves to try to understand
the instructions and execute on them.

From these three observations, it was clear that
the team was no longer working cohesively, but as two
sub-teams. The designers would do their job by noting
down the shapes, then hand over the responsibility to
someone else to finish the work i.e. the artist who now
had an immense amount of pressure to finish the task
in the allotted time.

Rather than the team taking collective responsi-
bility for the entire task, the responsibility was divided,
and a natural barrier —in other words, a silo— was cre-
ated. It took too long for the artists to receive the first
piece of information, and it was impossible to gather
any feedback on their interpretation of the instructions
as the designer was pre-occupied with looking for ad-
ditional data.

Once the picture was shown, the instructor asked
how long it would now take to complete. Looking at
what we had done raised the question of whether the
shapes we had drawn were within the customer's re-
quirements and how long it would take to either restart
or complete. We discovered that, during the exercise,
none of the designers had thought to ask the instruc-
tor (the customer) if any of the shapes were of higher
priority to draw than others.

The way in which the teams had worked was very
much like the traditional Waterfall method for software
development.

In Waterfall development, software applications
are delivered in a linear way, passing through different
teams in the process. Each team has certain responsi-
bilities that need to be completed prior to handing the
application off to the next team. Project managers (our
designers) receive requirements from various sources,
and the development team (our artists) interprets
those requirements then develops the software appli-
cation. The application is then sent to the testing team
to be qualified. Once qualified, the release engineering

Figure 1
Original drawing to copy as part of Agile workshop.

H
i t

he
re

**

*

From here to
there

66

J. Weir et al.: Accelerating Application Delivery in a Hybrid World

FUJITSU Sci. Tech. J., Vol. 54, No. 3 (July 2018)
Software Technologies to Support Digital Innovation

team packages the product, which is either delivered to
the customer or handed to the operations teams to de-
ploy it in production where it is monitored.

The goal of the Waterfall model is to minimize risk,
and that is where the problem lies. Using the Waterfall
method of development slows down feedback, which
requires checkpoints for teams working in isolation for
each iteration of the product. Development teams only
have one chance to get each aspect of a project right.

2.2 Meeting the challenge: Agile
development
Agile development prioritizes maximizing agil-

ity rather than minimizing risk. It limits the scope
of a project or product feature by setting a minimum
number of requirements and turning them into a de-
liverable product, and focuses on concepts such as “fast
and efficient; small; lower cost; fewer features; shorter
projects.”2)

With this information, we repeated the exercise
with a new picture. The results were significantly dif-
ferent. When the designers left to see the new picture,
the first thing they asked the instructor was which
shape had the highest priority. Within 30 seconds, all
of the designers were back with a simple instruction
on which shape to draw. Rather than leave the artists
with the instruction and go back for a second shape,
they watched the artist begin to draw the shape. They
would then write small notes (as they were still not

allowed to talk) to provide feedback and improve the
shape (for example “left a bit,” “a bit bigger,” etc.) This
helped ensure the artist was drawing the shape at the
correct size and in the correct position before going
back for a second shape.

In this way, the teams broke down the large task
of drawing the entire picture into smaller tasks, execut-
ing on them, providing feedback, and completing that
task before tackling the next one. Even though we did
not completely finish the picture, we had completed
the picture with the most important shapes. In other
words, we had a minimum viable product the customer
was happy with.

2.3 Relation to DevOps
DevOps can be interpreted in many ways. In the

authors’ opinion, DevOps is an environment that pro-
motes communication and collaboration, while Agile is
a method of working within the environment. DevOps
stresses effective collaboration and communication
between various teams and departments within a cul-
ture that optimizes release cycles of high-quality and
thoroughly-tested end products.3),4)

This release cycle, or software delivery process,
can be divided into seven phases shown in Figure 2:
• BUILD: This is the development stage of an ap-

plication. The development teams work on new
features, enhancements, and bug fixes.

• TEST: While an application is being developed,

Figure 2
Modern application lifecycle.

BUILD

TEST

PACKAGE

SHIP

DEPLOY

MONITOR

UPDATE

Implementation, compiling, bug fixing, etc.

Unit, robustness, integration, acceptance, and security testing. Provide rapid feedback to
the development cycle.

Target dependent. Once coded and tested, packaged as an archive, container, or
machine image.

Packaged artifacts shipped and stored in a “registry” enabling these artifacts to be
shared.

Create the resources required to run the application for hybrid clouds. This may be
indirectly through a container, PaaS, or server-less platform.

Monitor to ensure the application is healthy. Integrate with monitoring and logging tool
chains. Detect server-drift and enforce compliance.

Manage the running service. Update with additional features, security, and bug patches.
Optimize and self-heal on the basis of demand, performance, and cost policies.

67

J. Weir et al.: Accelerating Application Delivery in a Hybrid World

FUJITSU Sci. Tech. J., Vol. 54, No. 3 (July 2018)
Software Technologies to Support Digital Innovation

it will be tested. Unit tests are usually written
as part of the development phase, but can be
supplemented with integration, security, perfor-
mance, acceptance, and scenario testing. Testing
is critical in ensuring new developments do not
add regressions and providing feedback on the
current quality of the features. Testing usually in-
volves both development and operations teams,
but may also involve a dedicated quality assur-
ance (QA) team.

• PACKAGE: Once an application has been tested, it
must be packaged correctly to enable it to run on
the chosen target environment. The packaging
depends heavily on the technology or environ-
ment. For example, this might be a WAR file for
Tomcat, an OVF image for VMware, or a Docker
machine image for Kubernetes.

• SHIP: Once the application has been packaged, it
needs to be made available for other teams, part-
ners, or customers to consume. A registry is used
for this purpose. The type of registry depends on
the package type used. For example, a Docker
machine image may be pushed to DockerHub,
and a WAR file added to Nexus or Artifactory.

• DEPLOY: Applications require somewhere to run.
Under the layers of abstraction, there are still
computation, network, and storage resources that
must be provisioned, and the application must be
“installed” either from a machine image template
or another artifact.

• MONITOR: Running applications need to be moni-
tored to ensure they continue to run correctly and

are healthy. Configuration monitoring may also
be used to ensure there are no misconfigurations
of the system or to detect unauthorized changes.

• UPDATE: Once an application is deployed, it must
be updated over time with security patches or the
latest features. Eventually, it will be decommis-
sioned when no longer required.
Since the seven steps of delivering an applica-

tion cannot be skipped, the priority must be how to
minimize the execution of each step. If each team is
empowered to work independently, then coordination
can be reduced and individual productivity can be in-
creased, and consequently, application delivery velocity
increases. This is the essence of DevOps. To maintain
a consistent process, any tools chosen must focus on
workflows to address the technical heterogeneity that
is the reality of most organizations.

3. DevOps with UForge AppCenter
UShareSoft, a French software development com-

pany founded in 2008 to simplify application delivery,
was acquired by Fujitsu in 2015. The company is now
part of Fujitsu's Platform Software Business Unit. Its
flagship product, UForge AppCenternote) has been de-
signed to automate some of the seven steps of the
DevOps release cycle, helping to accelerate application
delivery in hybrid environments (Figure 3).

Figure 3
UForge for application delivery.

Migration
Scan and analysis of live
servers for “left and shift”

migration or re-platforming

Deployment
Provision instances directly to

supported clouds

Governance
Full governance and control over
OS, middleware, and applications

Enterprise workspaces and social
networking to share templates

across teams
Collaboration

Modeling of single-node Linux
and Windows application stacks

Templating

note) UForge AppCenter is sold as “FUJITSU Software
UForge AppCenter” by Fujitsu. Since 2015, it
has been jointly developed and sold by both
UShareSoft 5) and Fujitsu.6)

68

J. Weir et al.: Accelerating Application Delivery in a Hybrid World

FUJITSU Sci. Tech. J., Vol. 54, No. 3 (July 2018)
Software Technologies to Support Digital Innovation

It enables developers to model the complete
software stack (OS packages, middleware, application,
and configuration information), then automatically
package it to run in any infrastructure, including Fujitsu
Cloud Service K5, Amazon Web Services, Microsoft
Azure, VMware, Docker, etc. This cloud-neutral appli-
cation templating (known as “application as code”) is
unique to Fujitsu, and combined with automated de-
livery processes, dramatically accelerates application
release cycles in hybrid environments.

Application templating also enables UForge to
bring software governance into enterprise DevOps pro-
cesses by ensuring full control of applications. UForge
models;
• Native package repositories, tracking updates,

providing search features, and ensuring that
packages are kept synchronized with repositories
and updated correctly.

• The full software stack including low-level oper-
ating system parameters (keyboard, time zone,
partitioning, etc.) and operating system package
dependencies, as well as components further
up the stack: middleware, applications and con-
figuration logic. This enables transparency into
the full stack and consistent deployments across
clouds.
UForge works with other DevOps tools, including

continuous integration and delivery tools, to create an
automated, repeatable enterprise DevOps toolchain
from coding, building, and testing, to release and

deployment (Figure 4). The UShareSoft team is con-
tinuing to innovate with new modules in the DevOps
space, which includes leveraging open source software,
the latest being Apache Brooklyn6) for open standard
hybrid ICT blueprinting (Figure 5).

4. Application migration with UForge
AppCenter
As well as DevOps, UForge can also automate

application migration to enable portability between
platforms and ensure customers are not locked into
specific clouds or vendors. Enterprises can simply “lift
and shift” servers for fast migration with minimum
disruption. Alternatively, users can create a template
from live servers, enabling them to refactor applica-
tions during migration to improve governance, life cycle
management, performance, and other benefits in the
cloud.

5. Conclusion
This paper described Agile development, how

it relates to DevOps, and how UForge can provide the
speed and agility needed from DevOps without sacrific-
ing control and consistency.

By viewing the entire delivery process holistically,
DevOps helps us identify and solve bottlenecks in ap-
plication delivery that traditionally happen when one
role in the process is overloaded. UForge focuses on
reducing manual coordination across the different
stages of the DevOps life cycle to maximize the velocity

Figure 4
UForge coverage for application delivery.

BUILD

TEST

PACKAGE

SHIP

DEPLOY

MONITOR

UPDATE/REPAIR

Git, Gerrit, Jenkins, Sonar

JUnit, Cucumber, Selenium, Jasmine, etc.

UForge AppCenter

UForge AppCenter with Artifactory, Nexus, DockerHub, etc.

NEW DEVELOPMENT: UForge AppCenter (blueprinting module)

NEW DEVELOPMENT: Apache Brooklyn with Logstash, Nagios, New Relic, etc.

NEW DEVELOPMENT: Apache Brooklyn with Chef, Ansible, SaltStack, Puppet, Docker, etc.

69

J. Weir et al.: Accelerating Application Delivery in a Hybrid World

©2018 FUJITSU LIMITED FUJITSU Sci. Tech. J., Vol. 54, No. 3 (July 2018)
Software Technologies to Support Digital Innovation

of software delivery.
UForge also brings native hybrid ICT functional-

ity to DevOps processes. Cloud-neutral application
templating enables repeatable processes that can be
used across multiple clouds or datacenters throughout
development, testing, pre-production, and production,
bringing governance and control at the same time as
speed and agility.

References
1) Agile Alliance: What is Agile Software Development?
 https://www.agilealliance.org/agile101/
2) CodeProject: An Introduction to Agile Methodology.
 https://www.codeproject.com/Articles/704600/

An-Introduction-to-Agile-Methodology
3) Agile Buddha: Demystifying DevOps: Difference be-

tween Agile and DevOps.
 http://www.agilebuddha.com/agile/

demystifying-devops/
4) Atlassian: Agile and DevOps—Friends or Foes?
 https://www.atlassian.com/agile/devops
5) UShareSoft: Automate Cloud Application Delivery to

Support Your Digital Transformation.
 https://www.usharesoft.com/
6) Apache Brooklyn.
 https://brooklyn.apache.org/

Yuzuru Ueda
UShareSoft, SAS.
Project Manager

Alban Richard
UShareSoft, SAS.
Chief Executive Officer

James Weir
UShareSoft, SAS.
Chief Technology Officer

Figure 5
New blueprinting module.

AMI

FUJITSU Cloud
Service K5

VMDK

Repositories
(binaries, RPMS, DEB)

Software stacks
(appliance template)

Governance and control at stack
and solution level

Machine images
(cloud, virtual, container, physical)

Machine images to target
environment

Instances
(workloads)

To hybrid cloud targets

Blueprints

MODEL BUILD DEPLOY

https://www.agilealliance.org/agile101/
https://www.codeproject.com/Articles/704600/An-Introduction-to-Agile-Methodology
http://www.agilebuddha.com/agile/demystifying-devops/
https://www.atlassian.com/agile/devops
https://brooklyn.apache.org/
https://www.usharesoft.com/

