
71FUJITSU Sci. Tech. J., Vol. 53, No. 5, pp. 71–77 (September 2017)

An Approach to Transforming Systems for
Execution on Cloud Computing Systems

 Yoshiharu Maeda Manabu Kamimura Keisuke Yano

As business digitalization continues to accelerate, adapting existing enterprise systems to
changing business practices and advances in information and communications technology
(ICT) has become a significant problem. Not only must current systems be virtualized for
execution on cloud computing systems, but software must also be restructured with higher
flexibility to meet expanding business requirements, such as coordination with other services.
However, it is typically not feasible to re-implement an entire system due to the high cost and
risk of system malfunction. In this paper, we propose an approach to transforming a system in
order to enhance its flexibility and expandability. Our approach works by extracting each part
of the system individually, analyzing its characteristics, and identifying an appropriate imple-
mentation strategy based on those characteristics. Three techniques are used to support this
approach. First, the structure of the system and the relationships between functions are visual-
ized by analyzing the program files. Next, the business logic complexity, update frequency,
etc. of each program is characterized. The feature values obtained are assigned to the heights
of their corresponding structures on a software map and are used to characterize and prioritize
functions or programs. Finally, the identified functions are analyzed using symbolic execution,
and the rules and calculation methods used in the business are extracted as decision tables in
a readable format. This approach enables an existing system, the system of record (SoR), to be
transformed by extracting its features and identifying the best solution for each feature, such
as defining it as a service, using it with a business rules management system (BRMS), or using
the program as is.

1. Introduction
As information and communications technology

(ICT), such as cloud and mobile computing, continues
to evolve, adapting existing enterprise systems to
changing business practices and new forms of ICT has
become a significant problem. Infrastructure as a ser-
vice (IaaS), an option for migrating enterprise systems
that uses virtualization, can reduce hardware and host
computer operation costs. However, improvements in
system flexibility are limited because the programs and
architecture of the system are left as is. Both the hard-
ware and software must be continuously enhanced to
provide the flexibility needed to support various types
of changes over a long period of time.

Modernizing systems presents challenges differ-
ent from those faced when developing a new system.
These challenges include (1) program complication due

to the accumulation of partial and irregular updates,
(2) unavailable documentation describing the overall
structure, including all updates and changes, although
some records may be available, and (3) few developers
with extensive knowledge of the current system.

As a result, many programs have become “black
boxes” due to limited or no knowledge of their core
functions. Since clients typically request that functions
provided by their current system also be provided in
the modernized system, the functions must be speci-
fied and their implementation clarified. Therefore,
developers must take into account current functions as
part of the modernization process, which differs from
developing a system from scratch. The implementation
method is determined after the specifications of the
current functions are clarified.1)

This paper presents an approach developed by

72 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

Fujitsu Laboratories for extracting partial components
from a complicated system and determining the best
solution for transforming each one on the basis of
its characteristics. It also presents a technique for
analyzing program fi les to facilitate their use in the
modernized system, thereby overcoming the diffi culties
mentioned above.

2. An approach for identifying an
appropriate implementation
Since modernizing the entire enterprise system

may be very costly and carry a high risk of failure, we
propose dividing the system into functional parts and
transforming each part into the best possible imple-
mentation on the basis of its characteristics (Figure 1).
For example, parts performing common business op-
erations can be transformed into a program product
or software as a service (SaaS), and parts that may not
need to be changed for a long time can continue to be
used as they are. Parts performing complicated busi-
ness operations and parts requiring frequent changes
can be transformed into a business rule management
system (BRMS), which clarifi es business rules and

supports high fl exibility for business changes. Parts
with high reusability can be transferred into services
by using an application programming interface (API),
which enables other systems or services to connect to
them.

In the following section, we will introduce our ap-
proach and describe the three transformation stages:
generating a software map, quantifying the complexity
of the business logic, and creating decision tables from
the programs.

3. Visualize entire system structure
using a software map
The fi rst hurdle in transforming software assets

that have become a black box is determining how to
divide them into parts performing different functions
and having individual characteristics. This is diffi cult
because the implemented functions are interconnected
by program dependencies, such as subroutine calls and
type references. To solve this problem, we have devel-
oped a technique for automatically creating a software
map that provides a bird’s-eye view of the system and
extracts the parts that perform the major functions of

Figure 1
Approach to transforming current system for enhanced fl exibility.

Analyze
program

Continue to use
as is

Transform into more
manageable system
(complex logic with
many changes)

Transform each part on basis of
its characteristics

Cu
rr

en
t s

ta
tu

s
ev

al
ua

tio
n

Common operation
using SaaS or PP

Current business system
Business system with high flexibility

No
OUTPUTS CONDITIONS

OUT_SEC IN_MIN IN_SEC

1
IN_HOUR * 3600

+ IN_MIN * 60
+ IN_SEC

IN_MIN <= 59 IN_SEC <= 59

2 0
IN_MIN <= 59 IN_SEC > 59

IN_MIN > 59

Extract business specifications
implemented in program in intuitive format

SoE App

Other
service

OSS
service

Mobile compatible

Service use

BRMS

App

Biz

App

Biz
Rules
of Biz

Cutting operational cost

3. Aid comprehension using decision tables2. Focus on characteristics based
 on business logic complexity

Focus on complicated areas

1. Visualize program structure
 using software map

Visualization and function extraction

Transform

Transform

Transform

Evaluate

Evaluate

Evaluate

PP: Program product
SoE: System of engagement

Cloud

Decision table

73FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

the system.2),3)

The software map technique takes the program
fi les as input and analyzes them as a graph structure
in order to extract clusters of tightly coupled programs
(in terms of their dependencies) as functions of the
system. The extracted clusters are laid out on a virtual
surface to create a map-like visualization (Figure 2).
Automatic extraction of software functions has hitherto
been diffi cult because omnipresent modules, such as
logging functions, connect various functions and ob-
scure their distinctions.

The software map technique enables a software
system to be divided into its functions automatically
by assigning smaller weights to dependencies related
to omnipresent modules. In the software map visu-
alization, programs are represented as structures in a
city block. Each city block corresponds to a software
cluster and its corresponding function, meaning the
number of city blocks represents the number of distinct
implemented functions in the system. In the map-like
visualization, the distance between city blocks refl ects
the distance between the corresponding functions.
These characteristics provide a bird’s-eye view of the
entire system and the relationships between its func-
tions (Figure 2).

4. Prioritize functions for
transformation by using business
logic complexity
The next challenge is visualizing the charac-

teristics of each extracted functional part to enable
determination of how to transform each part. The
software map technique supports visualization of the
characteristics of each program by assigning heights,
colors, and shapes to the buildings that represent the
program. This visualization technique provides intuitive
information to the analyst and enables the features of
the current system to be captured.

The characteristics of the program are the software
metrics (e.g., complexity of the program, lines of code),
the update records or frequencies, the quality informa-
tion (e.g., bug reports), the operation logs, and the
directory structures in the program. The characteristics
to be visualized are selected and can be freely swapped
for different characteristics. For example, when de-
ciding which functions should remain as they are in
accordance with the rate of change in the business, the
program update frequencies are assigned as the build-
ing heights, and buildings with low heights are focused
on as candidates for ones to remain as they are. The
complexity of the process logic implemented in a pro-
gram is referred to here as “program complexity.” It can

Figure 2
Generation of software map and example.

Software
assets

Software map

Graph analysis
(clustering with
weighted edges)

Programs

Visualization

Extract subgraphs
as functions

Unable to extract functions
due to complicated
program dependencies

City block = Function

Building = Program

74 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

be calculated by counting the number of IF statements
in the program or by counting the number of paths
in the program structure. It can also be calculated by
counting all the statements in the program.

There are two types of logic in a program: busi-
ness logic (e.g., logic for calculating fees based on
contracts) and control logic (e.g., logic for accessing
databases). It is problematic if the complexity of a
program does not match the complexity of a business.
We propose a metric for the complexity of business
logic, which quantifies the complexity of the original
business logic by identifying the business logic in the
program.4) By using this “business logic complexity
metric,” an analyst can identify functions containing
complicated business logic as well as those with a large
number of updates, and select the ones to implement
using a BRMS (Figure 3).

Business logic complexity is based on the assump-
tion that statements that directly manipulate input or
output data are related to business logic. Check logic
(e.g., checking the input character type) and database
access statements are excluded because these state-
ments are less likely to be related to business logic. The

feature value of complexity is calculated on the basis of
the size of the decision table with statements related to
business logic. Generating a precise decision table is
expensive, as will be described in the following section.
Thus, business logic complexity is calculated using
an approximate size decision table derived from “the
number of variables in the condition statements,” “the
number of cases,” and “the number of variables in the
computation statements.” This approximation enables
the value of business logic complexity of a program file
to be quickly calculated even for a program with tens of
thousands of lines of code. The characteristics of large
systems can thus be captured.

Figure 3 presents an example of visualizing
the characteristics of a function block by assigning a
feature value (e.g., business logic complexity) to the
height of a building on the software map. Comparing
these feature values enables programmers to focus on
the most significant functions and prioritize functions
for transformation.

Figure 3
Example of transforming functions on basis of business complexity.

Transform into BRMS
(complicated business logic)

Continue to use as is
(simple logic)

75FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

5. Create decision table for program
comprehension
Using the aforementioned techniques, we specify

the functional parts of the enterprise system as tran-
sitional targets and the program groups that comprise
the parts. The next problem is to analyze the business
logic of the specified programs in detail. To facilitate
this, we developed a technique for extracting the busi-
ness logic coded into a program, such as the rules and
calculations for the business, in the form of a decision
table. A decision table shows what values the program
will output on the basis of the inputs (Figure 4).

The output values of the program are displayed in
the output column of the decision table using only the
input values and constants, with all internal variables
removed. The conditions related to the outputs are
shown in the conditions columns in a logically simpli-
fied form, rather than as extensive lists of conditions
expressed by IF statements in the programs. Control
structures, such as the subroutine calls and GO TO
statements in the program, are simulated and removed
from the decision table. These features enable the
analyst to easily comprehend the business logic coded
into the program by using a simple decision table.

A decision table is created by extracting and sum-
marizing all the execution paths through the program.
This analysis is performed using symbolic execution,5)
an analysis technique that extracts executable paths
by setting variable symbolic values (not specific values
such as 10 or ABC) as the inputs for the program and
simulating the execution of the program. In a spe-
cially developed computational environment that can
handle both symbolic and specific values, the symbolic
and specific values are referenced and updated in ac-
cordance with statements in the program, and control
statements, such as LOOP statements, are executed
exactly as described in the program. Particularly when
the true–false value of the condition for an IF state-
ment cannot be evaluated because the condition
includes symbolic values, the executable branch of the
IF statement is selected in accordance with the satisfi-
ability of the condition. Both THEN and ELSE branches
in IF statements are evaluated as executables if the
original condition and the negated condition are both
satisfiable. For example, assume that the THEN branch
is selected as a candidate path. Then, when the path
reaches a stop statement or the final statement in the
program, the path backtracks to the IF statement, and

000004 LINKAGE SECTION.
000005 01 OUT_SEC PIC 9(8).
000006 01 IN_TIME.
000007 02 IN_HOUR PIC 9(4).
000008 02 IN_MIN PIC 9(2).
000009 02 IN_SEC PIC 9(2).
000010 01 RESULT_CODE PIC 9(2).
000011 WORKING-STORAGE SECTION.
000012 01 CHECK_FLAG PIC 9(2).
000013 PROCEDURE DIVISION
000014 USING OUT_SEC IN_TIME RESULT_CODE.
000015 MOVE ZERO TO OUT_SEC.
000016 MOVE ZERO TO CHECK_FLAG.
000017 PERFORM RANGE_CHECK.
000018 MOVE CHECK_FLAG TO RESULT_CODE.
000019 IF CHECK_FLAG NOT = ZERO
000020 GO TO MAIN_EXIT.
000021 COMPUTE OUT_SEC
000022 = IN_HOUR * 3600 + IN_MIN * 60 + IN_SEC.
000023 MAIN_EXIT.
000024 EXIT PROGRAM.
000025 RANGE_CHECK SECTION.
000026 IF IN_MIN > 59
000027 MOVE 1 TO CHECK_FLAG
000028 ELSE
000029 IF IN_SEC > 59
000030 MOVE 2 TO CHECK_FLAG.
000031 RANGE_CHECK_EXIT.
000032 EXIT.

Sample COBOL program
Decision table

No
OUTPUT CONDITIONS

OUT_SEC IN_MIN IN_SEC

1
IN_HOUR * 3600

+ IN_MIN * 60
+ IN_SEC

IN_MIN <= 59 IN_SEC <= 59

2 0
IN_MIN <= 59 IN_SEC > 59

IN_MIN > 59

No
OUTPUT CONDITIONS

RESULT_CODE IN_MIN IN_SEC

1 0

1

2

IN_MIN <= 59 IN_SEC <= 59

2 IN_MIN > 59

3 IN_MIN <= 59 IN_SEC > 59

Internal variable

GO TO statement

Subroutine

Create
decision
tables

Figure 4
Creation of decision tables containing program outputs.

76 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

the ELSE branch is selected as the candidate path. In
this manner, the executable paths are extracted using
symbolic execution. Here, a condition is satisfiable if it
can be made true by assigning appropriate specific val-
ues to the symbolic values in the condition. Generally,
the satisfiability of a condition can be judged by using
a tool called the Satisfiable Modulo Theories (SMT)
solver.

Although symbolic execution has been studied
academically since the 1970s, the development and
application of practical tools was very slow until the
performance of computers and the SMT solver accel-
erated in the 21st century. We developed a symbolic
execution tool called SEA4COBOL (Symbolic Executing
Analyzer for COBOL)5) and applied it to test case gen-
eration for COBOL programs.6) Another application of
SEA4COBOL is the creation of decision tables based on
COBOL programs. Although all the paths through a
program must be extracted, it is difficult to apply sym-
bolic execution to programs in real-world enterprise
systems because the number of paths through a pro-
gram increases rapidly with the size of the program and
the number of conditional branches.

We have developed a three-step technique for
overcoming this problem. First, the program is divided
into processing blocks, each with a feasible number of

paths, by analyzing the structure of the program. Next,
each block is analyzed using symbolic execution, and
a decision table for each block is extracted. Finally, a
complete decision table for the program is created by
merging the tables from each block (Figure 5). This
approach reduces the number of paths extracted. For
example, with the conventional method, the number
of paths extracted in the case of subroutine calls equals
the product of the number of subroutine levels while
with our technique, the number is equal to the sum
of the number of subroutine levels. This reduction in-
creases with the degree of subroutine call nesting. For
example, for a subroutine call that has been nested
three times, the conventional technique extracts 3,060
paths while our technique extracts 41.

Use of decision tables will shorten the time it
takes to analyze a system and improve the accuracy of
the results. Furthermore, BRMS rules can be effectively
extracted by translating the decision tables into BRMS
rule sets.

6. Conclusion
We introduced an approach to program trans-

formation that extracts partial components from the
programs in a system and determines the best trans-
formation solution for each one in accordance with its

Figure 5
Merging tables created for each block.

Complete table for program
No Condition Output

1
((var_A + 1) > 20)
AND (((var_A + 1) + 2) <
30)

var_A = (((var_A + 1) +
2) + 3)

2 (((var_A + 1) + 2) NOT <
30)

var_A = (((var_A + 1) +
2) - 3)

3

4

(var_A > 10) AND
((var_A + 1) <= 20)

var_A = (((var_A + 1) - 2)
+ 3)

(var_A <= 10) var_A = (((var_A - 1) - 2)
+ 3)

Block 1
(Caller)

Block 2
(Callee)

Uninteresting
 blocks are
excluded

Analyze
each part

Large-scale program

Table of caller
No

1

2

3

4

Condition

((var_A > 10) AND (var_A < 30))

((var_A > 10) AND (var_A NOT < 30))

((var_A <= 10) AND (var_A < 30))

((var_A <= 10) AND (var_A NOT < 30))

Output

var_A = (var_A + 3)

var_A = (var_A - 3)

var_A = (var_A + 3)

var_A = (var_A - 3)

No

1

2

Condition

(var_A > 10)

(var_A <= 10)

Output

var_A = (var_A + 1)

var_A = (var_A - 1)

No

1

2

Condition

(var_A > 20)

(var_A <= 20)

Output

var_A = (var_A + 2)

var_A = (var_A - 2)

Table at call

Tables from each block

Merge
tables

Table of callee

77FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

Y. Maeda et al.: An Approach to Transforming Systems for Execution on Cloud Computing Systems

©2017 FUJITSU LIMITED

characteristics. We also introduced three analysis tech-
niques to support system modernization. The software
map technique is provided as an application manage-
ment service by Fujitsu and is already in practical use.

In an internal trial of selecting programs with high
values of business logic complexity, we demonstrated
that the quantifi cation of the business logic complexity
agreed well with the results of manual analysis done by
systems engineers. The technique for creating a deci-
sion table was found to require approximately 33% less
time than the time required to generate specifi cation
documents. We also demonstrated that the tables can
be accurately translated into BRMS rules.

The novel approach and three analysis techniques
described in this paper enable the analysis of current
systems, which must have high stability and reliability
because systems of record (SoR) must be robust against
change. The approach also enables planning for the
transformation of individual functions extracted as par-
tial components, such as transforming functions into
a service or BRMS or continuing to use them as they
are. Our system also enables cooperation with systems
of engagement (SoE), which will become increasingly
necessary for connecting customers and enterprises.

References
1) IPA/SEC: A user guide that leads to successful recon-

struction of the system.
 http://www.ipa.go.jp/sec/reports/20170131.html, in

Japanese.
2) K. Kobayashi et al.: Feature-Gathering Dependency-

Based Software Clustering Using Dedication and
Modularity. ICSM2012, pp. 462–471 (2012).

3) K. Kobayashi et al.: SArF Map: Visualizing Software
Architecture from Feature and Layer Viewpoints.
ICPC2013, pp. 43–52 (2013).

4) M. Kamimura et al.: Measuring Business Logic
Complexity in Software Systems. APSEC2015, pp. 370–
376 (2015).

5) Y. Maeda et al.: Testcase Generation based on Symbolic
Execution for COBOL Applications. Foundation of
Software Engineering XIX, pp. 196–200, 2012 (in
Japanese).

6) Y. Maeda et al.: A Testcase Generation Method to
Cover Branches for Business Applications. Foundation
of Software Engineering XXII, pp. 65–70, 2015 (in
Japanese).

Yoshiharu Maeda
Fujitsu Laboratories Ltd.
Mr. Maeda is currently engaged in the
research of software testing and software
analysis.

Manabu Kamimura
Fujitsu Laboratories Ltd.
Dr. Kamimura is currently engaged in the
research of software analysis and software
metrics.

Keisuke Yano
Fujitsu Laboratories Ltd.
Mr. Yano is currently engaged in the re-
search of software analysis and software
visualization.

http://www.ipa.go.jp/sec/reports/20170131.html

