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Advances in information and communications technology (ICT) are expected to help 
people lead healthier lives amidst the many stressors in today’s fast-paced society.  While 
smartphones and tablets continue to overtake desktops and laptops, the next computing 
revolution—Human-Centric Computing—is taking root.  This shift in computing is enabled by 
the increasing ubiquity of sensors that are around us, on us, and even in us.  Deploying in-
telligent, human-centric services using these connected sensors requires advancements in 
the underlying IT infrastructure itself.  In this paper, we describe various novel services built 
atop a general-purpose mobile platform developed by Fujitsu Laboratories of America, Inc.  for 
continuous mobile monitoring.  Our platform was developed with next-generation healthcare 
services in mind but has broad applicability as an extensible platform for deploying real-time 
services that incorporate data from arbitrary sensors.  We provide an overview of our platform, 
and highlight several services that act as new points of contact between a user and the IT in-
frastructure.  In the domain of health and wellness, we show how continuous bio-monitoring 
enables us to measure stress and to provide stress management services.  We describe how 
such services may be used in a typical day, contributing to a new and improved quality of life.

1. Introduction
Imagine with us, if you will, a day in the future.  

After a refreshing shower, by habit, you step on a con-
nected body composition scale, which automatically 
records various body indices and sends them immedi-
ately to your cloud-based electronic medical record.  As 
you get dressed for the day, you put a small patch on 
your chest that will continuously record your cardiac ac-
tivity and other biomarkers during the day.1)  Putting on 
such sensors is second nature for you by now, akin to 
putting on socks.  You grab your smartphone and head 
to the train station for your daily commute to work.note)i

Your smartphone is connected with your chest 
patch and receives a continuous electrocardiogram 
(ECG) signal from it.  A real-time application running on 
your smartphone processes the ECG signal to compute 
your real-time psychophysiological stress level.  The 
same smartphone has also been keeping track of your 

note)i This paper is an updated version of an article 
presented at the Universal Village Conference in 
Beijing in 2013.

location, as well as usage of calls, texts, e-mails, and 
other applications.  As a phone call comes in, the call 
application makes you aware of your current stress in a 
helpful manner so that you are better prepared to take 
the call or possibly ignore it.  You have also set your 
smartphone radio app to dynamically select content 
that is most appropriate given your current bio-state.  
You arrive at work refreshed and ready for the day.

During the day, an application running on your 
desktop provides a continuous customizable visual-
ization of biomarkers of interest to you.  It tracks your 
posture, as computed by your chest patch, and sug-
gests personalized interventions.  Being connected to 
your electronic activity enables it to suggest matches 
between your bio-state and your task list as you sched-
ule and carry out your day.  A medication adherence 
application running on your smartphone uses your 
chest patch data to detect anomalies attributable to 
missed doses and reminds you to take your medica-
tion.  As you head back home at the end of a productive 
day, your smartphone and chest patch sensor work in 
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conjunction to guide you so that you feel as little stress 
as possible.  

That night, a sleep manager application encour-
ages you to get the right amount of sleep; it has been 
tracking how sleep affects your stress the next day, 
and it makes recommendations on the basis of your 
expected workload the following day.  As you go to bed, 
you give silent thanks to the continuous guidance on 
living well you’ve received throughout the day.

The scenarios depicted above have been 
imagined by researchers in the fields of ubiquitous 
computing for quite some time.2)–8)  One may argue 
that wearable ubiquitous sensing was first made 
mass-affordable through on-smartphone sensors, and 
the trend continues through standalone sensors that 
keep getting cheaper and smaller in accordance with 
Moore’s law.9)  Given these cost trends, we are starting 
to see the introduction of a diverse set of standalone 
mobile sensors with vertically integrated services in a 
variety of domains.10)–13)  Such services have demon-
strated the readiness of the market for sensor-centric 
services but suffer from the inability to share data with 
each other, which makes it difficult to build richer and 
novel services.  As an example, a diabetic who is try-
ing to modulate his activity to best maintain his insulin 
levels and who uses a pedometer and glucometer regu-
larly has to correlate data collected by these sensors 
manually.  Emerging platforms being developed to 
address this problem typically do not support real-time 
data collection and synchronization of continuous data 
streams or real-time access to multi-sensor data for 
third-party applications.14),15) 

As sensors get smaller and cheaper, personal 
quantification will become easier and widespread.  It 
will be common to have sensors on us, around us, and 
even in us.16)–19)  In this paper, we give an overview of a 
platform that supports easy collection and coordination 
of heterogeneous streams of sensor data.  We describe 
how several of the applications described in the “day in 
the life” narrative have been built on top of it.  Our plat-
form supports continuous real-time storage, analysis, 
and visualization of arbitrary sensor streams.  It sup-
ports the general abstraction of a sensor stream, can 
be integrated with arbitrary sensors that communicate 
over compatible wireless protocols, and time synchro-
nizes data coming off of all the integrated sensors.  We 
designed our platform to be mobile and pocketable; we 

call it “Sprout” in deference to the adage that from good 
small things, good things will grow.

The rest of this paper is organized as follows.  In 
Section 2, we provide detailed specifications of the ca-
pabilities of our platform.  Sections 3 through 6 each 
describe a single application built on top of the plat-
form and the corresponding experiential touchpoints 
for the user.  Section 7 discusses the themes and para-
digm shifts enabled by our platform and outlines our 
ongoing and future work.

2. The “Sprout” platform
The Sprout platform is a combination of hardware 

and software designed to support mobile, real-time 
collection, analysis, and storage of heterogeneous data 
streams.  The current version of the hardware prototype 
is depicted in Figure 1.

2.1 Hardware
The current version of the Sprout hardware is 

based on a 600-MHz ARM Cortex A8 CPU with 512-MB  
RAM.  The entire software stack is run off a Secure 
Digital (SD) card, which also stores all sensor data.  
Sprout supports Bluetooth 2.1, 802.11g WiFi, and 
Texas Instruments’ low-power SimpliciTI RF.  The wire-
less protocol support enables integration of compatible 
wireless sensors.  Sprout also supports wired sensors 
through three USB 2.0 ports and an analog port.  The 
analog port was designed to integrate a respiration 
sensor, which, in combination with other wearable 
sensors, permits the remote diagnosis of medical con-
ditions like sleep apnea.20)  This version of the Sprout 
is 70 × 55 mm and houses a 10-Wh cylindrical battery.  

Figure 1
The Sprout device.
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Why did we build our own hardware platform? 
The answer lies in the limitations of past and current 
mobile platforms.  To support real-time storage of mul-
tiple sensor data streams, we needed to build a native 
custom backend, and the application platforms avail-
able on mobile devices at the time limited our ability 
to do so.  That limitation still exists on some current 
mobile platforms.  Next, no support was available for 
certain networking modes that we needed to support 
for serving data from the platform to off-Sprout data 
visualization clients, which continues to be the case.  
Finally, the battery life of general purpose mobile 
devices is a limiting factor, and having specialized hard-
ware enabled us to support a longer battery life when 
collecting data from sensors or serving data to clients.

Sensor evolution has brought with it broader sup-
port for wireless transmission of collected data through 
protocols such as Bluetooth Low Energy (BLE).21) 

Accordingly, in our next iteration of the Sprout hard-
ware, we have chosen to forego the USB ports entirely 
and provide support for BLE.

2.2 Software
The Sprout software stack is built on top of Linux 

(currently Linux 3.0).  A custom backend provides sup-
port for continuous sensor data stream storage and 
inter-sensor synchronization using the Sprout clock.  As 
an application platform, Sprout supports a general ab-
straction of a sensor stream, enabling easy integration 
of sensor data from new hardware or software sensors.  
In addition, it provides an application programming 
interface (API) that enables access to the stored multi-
sensor data streams in real time.  An application that 
uses stored data streams as input and creates its own 
data stream as output is considered a “meta-sensor” 
by the system.  That is, the application’s output data 
stream is viewed as yet another sensor stream by other 
applications.  This modular architecture supports the 
easy creation and composition of multi-sensor data-
based services.

Beyond the general API, we provide particular 
support for Web-based applications wanting to access 
and visualize multi-sensor data in real time.  Sprout 
runs an Apache Web server, which responds to such 
requests in real time.  We have built various Web-based 
customized visualizations using the Web interface to 
Sprout data; one of those is described in Section 6.

Last but not least, Sprout supports real-time cloud 
synchronization, e.g., synchronization of bio-data with 
cloud-based electronic medical records (EMRs).

3. Real-time remote monitoring
Given Sprout’s ability to “talk” to a variety of sen-

sors and its real-time cloud capabilities, it is quite 
straightforward to use it for remote monitoring appli-
cations.  We have integrated Sprout into a cloud-based 
personal health record (PHR) system as a data collec-
tion, storage, and forwarding device.  This PHR system 
was developed and is maintained by Jardogs Inc., a 
subsidiary of Springfield Clinic in Illinois in the U.S.  This 
system connects to the various EMRs where a patient’s 
data can be accessed by the patient’s care team.  This 
is only one example of a PHR system that could be 
used with Sprout.  The flexibility of the Sprout platform 
enables the transmission of data to other cloud-based 
PHR systems and EMRs.  

We carried out a test deployment of this system 
with nine users over a three-week period.  The users 
were given PHR accounts and instructed to measure 
three biomarkers on a daily basis: 1) weight, once in 
the morning and once in the evening, 2) blood pres-
sure, three times a day, and 3) pulse-ox level, once a 
day (three-minute reading).22)  They were given Sprout 
sets that were pre-paired with their set of sensors 
(weight scale, blood pressure cuff, and pulse oximeter).  

As depicted in Figure 2, the simple act of a user 
getting on a weight scale to take a reading would au-
tomatically send the reading to his or her Sprout, which 
would then forward the data to the cloud-based PHR 
system.  This system could then be accessed through a 
Web-based interface by the user and by members of his 
or her care team.

Users were generally positive when they reflected 
on the new insights into their personal health this sys-
tem provided.  As expected, the easy recording of their 
biomarkers made them more aware of their health 
conditions.  In some cases, this prompted changes in 
behavior, as exemplified by some of their comments: 
• “I would definitely use Sprout to self-report my 

health to my physician.” 
• “…the data gathered helped me to understand 

the effect of caffeine on my heart rate.” 
• “Through daily measurement via Sprout, I came to 

realize that my blood pressure was high and that 
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my health would continue to degrade unless I 
changed my behaviors.  Since my Sprout monitor-
ing, began I have started making healthier food 
choices and begun a daily exercise routine in an 
effort to curb my high blood pressure.”
In addition, user feedback provided suggestions 

for new features and improvements that have been 
incorporated into the newest generation of Sprout 
hardware and software.23)

4. Real-time stress assessment
While Sprout can be used as a store-and-forward 

platform, as described in the previous section, it is at 
heart a computational platform as it was designed to 
support real-time analysis of high-frequency time series 
input.  It is thus able, for example, to host stress algo-
rithms that take as input a high-frequency biomarker 
data stream and output a continuous data stream of 
instantaneous stress values.  Here we describe the im-
plementation of such algorithms for mobile real-time 
stress assessment.

Stress is a psychophysiological phenomenon.  
That is, regardless of the cause, the body's response 
to stress consists of a set of physiological mechanisms 
that are regulated primarily by the central nervous 
system and the endocrine system.  The effects of these 
mechanisms are directly evident in changes in heart 
activity.  In particular, heart rate variability—which mea-
sures how much the instantaneous heart rate varies 

from heartbeat to heartbeat—is directly affected by 
stress.

State-of-the-art measures of stress use various 
mathematical models of heart rate variability (HRV), 
and they typically require as input a continuous in-
terbeat interval stream.  We integrated the Zephyr 
BioHarness chest strap sensor, which transmits vari-
ous bio-variables over Bluetooth in real time, into the 
Sprout platform.24)  In particular, the Zephyr sensor 
records an ECG signal sampled at 250 Hz as well as 
an “R2R” data stream.  The R2R data stream is the se-
quence of time differences between successive R-wave 
peaks in the ECG signal.25)  This data stream therefore 
provides the interbeat interval stream needed as input 
by various algorithmic models of stress.

We started by implementing various existing 
time domain and frequency domain algorithms on the 
Sprout platform.  These currently run as C++ programs 
that utilize the Sprout backend data access and storage 
APIs.  We found that the state-of-the-art HRV measures 
are susceptible to noise, which typically appears in am-
bulatory settings; however, they are relatively robust 
when interbeat intervals are captured in a static set-
ting.  Moreover, they do not work well for people across 
different disease states, e.g., diabetes, hypertension, 
and cardiovascular disease.  

Given these limitations of existing state-of-the-art 
HRV measures, we designed our own HRV measure.  
While the description of our HRV measure is beyond the 

Figure 2
Real-time cloud synchronization.

EMR
Data
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scope of this paper, we found that it is robust to noise 
and works uniformly well across a wide range of dis-
ease states.  The measure was validated quantitatively 
in a study of 250+ subjects with different disease states 
as well as in a qualitative study that used advanced 
medical imaging equipment to measure the direct ef-
fect of stress on the body.  We will be reporting on the 
underlying details in upcoming biomedical and bioen-
gineering venues.

5. During the commute: Stress maps
With a robust, real-time ambulatory stress metric 

implemented on the Sprout platform, we can measure 
and visualize stress in the context of other variables 
that are also captured on the platform.  In general, 
these variables can include the entire spectrum of bio-
variables such as weight, activity, and blood sugar level 
as well as environmental variables such as location, 
calendar event, and desktop and mobile device activ-
ity.  Because such data streams are time synchronized 
when stored on the Sprout platform, we can compute 
accurate correlations between real-time ambulatory 
stress and other variables.  These correlations can then 
be mined further to contextualize stress patterns, to 
anticipate stress occurrences, and to generate person-
alized plans for stress management.  

In this section, we look at one example of such 
correlations—that between stress and location.  In 
our experiment, one of the authors—who lives in San 
Francisco and works in Sunnyvale in Silicon Valley—
wore a Zephyr chest strap sensor during his drive to and 
from work.  A Sprout in the vehicle used the sensor data 
to compute real-time stress values and then stored 
them on the device.  A software sensor running on an 
iPhone 4S sent a continuous GPS data stream collected 
at about 1 Hz to the Sprout.  

After each drive, the stress and GPS data were 
extracted from Sprout, and the GPS Visualizer Web ser-
vice26) was used to generate an interactive map of the 
drive.  The two extracted data streams were quantized 
such that we had a GPS and stress value pair for each 
time quantum, which was set to one second.  Each dot 
on the map represented one GPS data point during the 
drive.  The size of the dot was varied in accordance with 
the corresponding stress value; the higher the stress, 
the smaller the dot.  

Figure 3 shows a map of one of these drives.  The 

narrower portions of the plotted route were the more 
stressful portions while the wider portions were the less 
stressful portions.  In this case, the driver was returning 
from work in Sunnyvale to his home in San Francisco 
during the late evening.  (San Francisco is at the top 
left of the fi gure, and Sunnyvale is at the bottom right.) 
The visualization makes it clear that, during the fi rst 
half of the drive, the stress levels were moderately high 
but trending downwards.  The second half of the drive 
was markedly more relaxed.  

Figure 4 shows the same drive in reverse, the next 
morning, on the way to work.  The stress levels were 
markedly different, with many segments of high stress 
distributed throughout the drive.  Both drives were not 
affected by heavy traffi c and slowdowns.  

In both cases, the data revealed personal patterns 
of stress that were also evident in other drives by the 
same driver on other days.  The driver’s subjective in-
terpretation of these patterns was that he was starting 
to think about work as soon as the drive to work started 
and that the occasional work calls made during the 
drive also had an effect.   On the way home, there was 
a mental “cool down” period during which the events of 
the day were being processed and put aside.  The driver 
was aware that thinking about potential stressors alone 
triggers the body’s stress response even in the absence 

Figure 3
Stress map–Sunnyvale to San Francisco.
Wider areas depict lower stress.

9 pm
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of those stressors and perceived this as a signifi cant 
contributor to the driving stress patterns.27)  The drive-
to-work pattern stood out primarily for the driver, who 
was unaware of it prior to the experiment.  The data 
brought the driver the insight that experimenting with 
stress management measures at the beginning of the 
day could provide signifi cant benefi t throughout the 
day.

One can also imagine that such real-time psycho-
physiological data streams could be shared with the 
car’s navigational, communication, and media systems, 
enabling them to adjust to the driver’s bio-state.  

6. Continuous daytime monitoring and 
guidance
Many of us spend a signifi cant portion of our work 

day in a sedentary manner, with several attendant 
health risks.  Apart from the longer term risks to car-
diovascular health,28) such work patterns are also costly 
in terms of short- to long-term musculoskeletal health.  
Costs related to back and neck pain are among the big-
gest contributors to corporate health costs in the U.S.29) 

Continuous personal monitoring has the potential 
to make us more aware of ourselves during the work 
day.  With a platform like ours, mobile health and well-
ness applications can be deployed that motivate us to 

engage in benefi cial changes.
To gather some experience with the daytime set-

ting, we carried out a pilot experiment with fi ve offi ce 
workers over a couple of weeks.  Each participant was 
given a Zeo sleep sensor30) for the fi rst week to enable 
them to get comfortable within the paradigm of con-
tinuous sensing and wearable sensors.  For the second 
week, each of our volunteer participants additionally 
wore a Zephyr BioHarness chest strap sensor during 
the work day.  This sensor captures other data streams 
beyond the cardiac ones described in Section 4, includ-
ing breathing and activity.  Each participant was given 
a tablet to be placed in a visually accessible area of 
their work space.  It displayed their sensed heart rate, 
breathing rate, and activity level as well as their stress 
levels as computed in real time on the Sprout platform.  
Two stress levels were computed and reported—one 
computed using inter-beat differences over the last 120 
beats and one over the last 3600 beats.  These corre-
spond roughly to the stress levels calculated over the 
last two minutes and over the last hour, respectively.  
The values were updated every second.  Figure 5 shows 
an example display.

At the end of the fi ve day period, each participant 
underwent a “data counseling” session during which 
we looked at their bio-variable patterns over the course 
of the week.  Figure 6 shows an example visualization 
used during these sessions.  Like the tablet visualiza-
tion, it is a Web page that is hosted on the Apache Web 
server running on Sprout.  This visualization consists 
of a series of panels, each of which can be set to any 

Figure 4
Stress map–San Francisco to Sunnyvale.
Wider areas depict lower stress.
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Stress and physiology data display.
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sensor stream.  Three panels are included in the ex-
ample shown: the ECG signal, the computed heart rate, 
and the two stress values.  Each panel can be custom-
ized in various ways, for example, in terms of how the 
data is visualized (e.g., line vs. bar) and in terms of the 
time scale.  All panels are time synchronized on the far 
right side of the display.  Therefore, dragging any of the 
panels will shift all three panels in unison.

The data counseling sessions were very revealing, 
both of the participants and to the participants.  Stress 
events—which we visually identified as occasions where 
short-term stress markedly increased or decreased over 
the long-term stress—were invariably correlated with 
meaningful events in the person’s day.  We should note 
that stress itself is not a harmful thing.  We all respond 
to many stimuli during each day, and the body's stress 
response mechanisms enable us to deal with those 
stimuli effectively.  Chronic stress—where our stress 
response mechanisms continue to fire even when an 
external stressor is not present and is only imagined—is 
well recognized as a major contributor to the majority 
of chronic diseases.  An example of a chronic stress pat-
tern can be seen in the bottom panel of Figure 6; our 
platform can identify such patterns automatically.

The participants were uniformly fascinated by 
being able to look within themselves in this way.  
Everyone reported higher degrees of awareness about 
their biomarkers, a curiosity about how these bio-
markers were affected by non-work situations such as 
socializing, parenting, and exercising, and the desire 
to experiment with apps and other tools for stress 

management.

7. Conclusion
The ubiquity of connected sensors and continu-

ous analytics will redefine our everyday interactions 
with the ICT infrastructure supporting our lives.  A 
platform like Sprout—which supports real-time storage 
and analysis of multiple data streams—enables each 
of those data streams to be analyzed using the context 
provided by the others.  When these streams include 
biomarker data, users can obtain a richer awareness 
and understanding of their own health and the factors 
that affect it.  Applications built on top of the Sprout 
platform with continuous access to such real-time data 
streams enable a variety of novel experiences, some of 
which we described in this paper.  With access to our 
biomarker streams, applications can now modulate our 
interactions with our infrastructure, as well as provide 
real-time awareness and personalized interventions 
to motivate self-action.  As we become increasingly 
quantified, it will become possible to quantify the 
communities in which we live as well.  Our experi-
ences deploying the applications reported on in this 
paper have consistently demonstrated the power of 
the Sprout data-driven platform to guide us towards a 
higher quality of life.

We are actively addressing research and develop-
ment problems related to the platform and applications 
outlined in this paper in various ways.  On the hardware 
side, we have developed a newer version of Sprout that 
is cheaper, supports energy-efficient wireless protocols, 
and is more wearable on the go.  On the analytics side, 
we continue to develop and refine our stress metrics.  
On the software platform side, we have recently ported 
the software system to Android.  We plan to provide 
an API for the 'open Sproutʼ for internal use in the near 
future.
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