
24 FUJITSU Sci. Tech. J., Vol. 50, No. 1, pp. 24–29 (January 2014)

StreamStorage: High-throughput and
Scalable Storage Technology
for Streaming Data

 Munenori Maeda Toshihiro Ozawa

Real-time analytical processing (RTAP) of vast amounts of time-series data from sensors,
server logs, and other sources has come to be widely used in recent years. To make thorough
use of such streaming data, it is essential that the same data be analyzed iteratively from di-
verse viewpoints, which has increased the need for loss-free storage and data reconstruction
functions for large volumes of data. Since individual items of data targeted for storage are
generally small in size and repeatedly received from multiple sources, it is difficult for exist-
ing storage systems to simultaneously satisfy throughput and capacity demands. Additionally,
high-speed access optimized for the chronologically ordered data characteristic of streaming
data has not yet been achieved for such vast amounts of data. StreamStorage developed by
Fujitsu Laboratories is a new storage technology that manages time-series data in units of
streams, enabling high-speed storage and data reconstruction. It achieves high throughput
and scalability by using distributed storage technology in which streaming data is partitioned
into blocks and data is input and output in a parallel and asynchronous process. This paper
presents an overview of the StreamStorage architecture and an application example.

1. Introduction
Real-time analytical processing (RTAP) of vast

amounts of streaming data from sensors, server logs,
and other sources has come to be widely used in a
variety of fields including smart grids, wireless sensor
networks, and algorithmic trading.

Conventional RTAP systems use databases in
the form of a relational database (RDB) or Hadoop
Distributed File System (HDFS) for storing streaming
data and analysis results, taking into account links with
various types of analysis applications. These types of
storage, however, have difficulty keeping up with high
throughput and capacity demands.

If vast amounts of streaming data can be stored
in full without loss, it should be possible to use data in
ways that go beyond conventional real-time analysis:
• Analysis of the same data stream from different

viewpoints, enabling cycles of hypothesis testing
that can lead to new findings

• Flexible setting of the analysis technique and
the range of target data, enabling the skipping
of analysis up to a certain point in time, partial

changing of the analysis technique after winding
back the clock to a previous point in time, etc.
We can therefore consider that there are many

needs to be satisfied in storing vast amounts of stream-
ing data.

One of main issues in storing vast amounts of
streaming data is how to achieve high write through-
put. An item of data targeted for RTAP is from several
tens of bytes to tens of thousands of bytes, which is ex-
tremely small compared to the I/O size (several MB) for
eliciting good performance from hard disk drives. It is
therefore essential that appropriate schemes be used,
such as grouping multiple items of data for input/out-
put and accessing them in a parallel and asynchronous
way.

Two requirements are proposed for facilitating
ease of use:
• Handle semantically related streaming data as a

single, logical entity such as a file or RDB table.
• Enable an application program to access stream

data sequentially in chronological order without
having to be particularly aware of the order.

25FUJITSU Sci. Tech. J., Vol. 50, No. 1 (January 2014)

M. Maeda et al.: StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

For data storage and reconstruction to be pro-
vided as a service, it must be possible to increase or
decrease the performance of that service by chang-
ing the amount of resources on the service platform
(scalability). This will enable the service to be used
continuously from when it is still a “small start” service
to when it has expanded into a large-scale service,
with the corresponding changes in the volume and fre-
quency of accesses.

StreamStorage, developed by Fujitsu Laboratories,
is a storage technology with a natural application pro-
gram interface (API) that achieves scalability and high
throughput. It handles data streams as units of stor-
age and accesses each piece of data inside a stream in
chronological order.

This paper first outlines the architecture of
StreamStorage and then describes the linking of
StreamStorage with complex event processing (CEP) as
an application example.

2. Architecture
As the name implies, streaming data in

StreamStorage is managed in logical units called
“streams,” which correspond to files in conventional
storage systems. The content of a stream is arranged
in some order such as the order of transmission or the
order of reception.

A StreamStorage user allocates, from among the
data received from various sources, a single stream
to a group of data that the user would like to treat
as a series of information items in some order. For
example, data-transmission sensors can be divided

into groups, and a stream can be allocated to each
group, or received data can be divided into streams in
accordance with the content of that data. In short, a
variety of usage formats are possible. An example of a
StreamStorage usage format as seen from the applica-
tion side is shown in Figure 1.

StreamStorage, as seen from the application side,
must be able to do three things:
• Store and reconstruct small-size items of data at

high throughput
• Enable a stream to be simultaneously accessed

from multiple applications (users)
• Raise performance by increasing the number of

servers (scale out) so that huge volumes of data
can be handled.
Three guiding principles on architecture design

were adopted to meet these functional requirements:
1) Data shall be recorded in parallel and asynchro-

nously without completely ordering the data so
that the connection times with sources can be
shortened and the number of simultaneous con-
nections can be increased.

2) Small-size items of data shall be buffered in
memory, and I/O size shall be increased to raise
throughput.

3) It shall be possible to flexibly increase or decrease
storage capacity and performance.
Principles 1) and 2) mean that the logical (chron-

ological) order of streaming data is separated from
the physical storage locations and storage order. This
means that the order of streaming data must be pre-
served within StreamStorage when each data item in a

Figure 1
StreamStorage usage format as seen from application side.

Operational/Analytical server #m
“Stream A”

Operational/Analytical server #0

read (“Stream A”) ;

HTTP server #0

write (“Stream A”, d0) ;
d0

write (“Stream B”, d1) ;
d1

HTTP server #n

write (“Stream A”, d2) ;
d2

StreamStorage

“Stream B”

Data

Connection

Write processing
Stream persistence

Read processing

26 FUJITSU Sci. Tech. J., Vol. 50, No. 1 (January 2014)

M. Maeda et al.: StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

stream is read by an application program.
Principle 3) means that a storage infrastructure

capable of scale out is required and that a distributed
object storage system capable of high throughput and
large data capacity is needed for such an infrastructure.

The StreamStorage architecture consists of the fol-
lowing elements (Figure 2).
1) StreamStorage client

The StreamStorage client is a software library that
enables the HTTP servers and operational/analytical
servers to access StreamStorage. It provides a write
buffer for temporarily saving streaming data. When the
buffer becomes full, the buffered data are integrated
and transferred in bulk to a storage proxy and the buf-
fer is flushed. This set of data is called an event block.
When a stream is subsequently needed, it is recon-
structed from multiple event blocks and saved in a read
buffer. The reconstruction mechanism is explained in
detail in the following section.

2) Metadata server
The metadata server mainly manages the infor-

mation needed to reconstruct the stream. Specifically,
it associates a stream name and a time interval with
the event blocks that comprise the stream during that
interval, enabling it to respond to an inquiry from a
StreamStorage client.
3) Storage proxy

Positioned on a connecting layer between storage
nodes and the StreamStorage client, the storage proxy
routes access requests from the client to appropriate
storage nodes.
4) Storage nodes

The storage node element is a distributed key-
value store (KVS) made up of commodity-grade servers.
It stores event blocks in a redundant configuration,
such as data replication.

Constituent elements 1)–4) achieve high avail-
ability through data redundancy and standby-system
switching (failover function) to prevent breakdown due

Figure 2
StreamStorage architecture.

Indexed chronological
ordering

Metadata server

Storage proxy

Storage nodes

StreamStorage client

. . .
. . .

Streams Load balancer

Routing

HTTP servers Operational/Analytical
servers

StreamStorage

Data transmission

Storage Reconstruction

27FUJITSU Sci. Tech. J., Vol. 50, No. 1 (January 2014)

M. Maeda et al.: StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

to hardware or software faults.

3. Stream reconstruction mechanism
Reconstructing a data stream that has been di-

vided into event blocks and stored as such requires that
event blocks within the specified time interval be read
out and that data within those blocks be arranged in
their correct order. This is accomplished by using the
stream reconstruction procedure (Figure 3).
1) The StreamStorage client specifies a time interval

for reconstruction and sends an inquiry to the
metadata server [1) in Figure 3].

2) The metadata server looks up the event blocks
overlapping the specified time interval and re-
turns the names of those blocks [2) in Figure 3].

3) The StreamStorage client sends read requests to
the storage proxy specifying the names of those
event blocks [3) in Figure 3].

4) The storage proxy routes a read request to an
appropriate storage node, which reads out and
returns the specified event block [4) in Figure 3].

5) The StreamStorage client merges the event blocks
read out and returned by the storage nodes [5) in

Figure 3] into one stream. Since the data within
each event block has already been chronologi-
cally ordered upon storage, the merging process
has much lower cost than a total sort.
Several practical mechanisms have been devel-

oped to achieve data reconstruction:
1) Preloading (smooth reconstruction)

Event blocks from storage nodes are read out
before that data is actually needed to make data read
time (latency) more uniform.
2) Incremental stream reconstruction

The buffer used by the StreamStorage client for
reconstruction is limited in size. To prevent memory
depletion during lengthy reconstruction, the specified
interval is first divided into appropriately short sub-
intervals, and then the stream is incrementally
reconstructed, starting from the oldest subinterval.
3) Data filter

To reduce the amount of data transferred over
the network and the merge processing load, screening
rules are specified with respect to the data in step 3)
of the above reconstruction procedure. The storage
nodes then return event blocks that contain only data

Figure 3
Stream reconstruction procedure.

1) What blocks
lie in the interval

from time t to
t+∆?

StreamStorage
client

Metadata
server

2) The blocks
that you have
inquired about

are {A, B}.

3) I need
blocks A and B.

StreamStorage
client

Storage
proxy

4) Here they are.

Storage nodes

Blocks A and B

StreamStorage
client

A

B

Time (past→present)
5) First A-1,

then B-1, A-2,
and B-2

Followed by
B-3, A-3, A-4,

and B-4

A-1, A-2, ...

Block merging

B-1, B-2, ...

28 FUJITSU Sci. Tech. J., Vol. 50, No. 1 (January 2014)

M. Maeda et al.: StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

that pass through that filter. This mechanism is used to
achieve elastic-parallelism reconstruction described in
the next section.

4. Application example of
StreamStorage
We conducted a trial in which StreamStorage

was coordinated with a CEP system, which analyzes
vast amounts of streaming data and draws inferences
at high speed in accordance with predefined rules.
This trial was performed as part of the Project for the
Program to develop and demonstrate basic technology
for next-generation high-reliability, energy-saving IT
equipment1),2) supported by the Ministry of Economy,
Trade and Industry (METI). In this trial, we used two
distinctive features of StreamStorage—chase reconstruc-
tion and elastic-parallelism reconstruction—to achieve
high-availability, i.e., shorten downtime, of a system.
1) Chase reconstruction

This function performs reconstruction from some
point in the past to the present while storing received
data. By making the speed of reconstruction greater
than the speed of storage, reconstruction eventually
catches up with storage in the present and then termi-
nates at that point in time. Then, the latest received
data is passed directly to the operational or analytical
application servers instead of being stored and then
reconstructed.
2) Elastic-parallelism reconstruction

This function splits a reconstructed stream into
substreams and then distributes them across multiple
application servers to increase total throughput. The
number of substreams is variable and determines the
degree of parallelism that the application servers can
provide at runtime. A rule is specified for creating a
possible remainder set by dividing the degree of paral-
lelism at the time of reconstruction by that at runtime.
This rule acts as a data filter.

Applying a CEP rule that determines output over a
certain range of streaming data from some point in the
past to the present is a routine practice. Consequently,
if a hardware or software fault should temporarily inter-
rupt operations on a CEP server in which such a rule is
being applied, there will be some period during which
erroneous or less-than-accurate output will continue to
be produced even if the server is rebooted. This, in ef-
fect, will make it difficult for operational and analytical

applications using CEP output to continue operations
during that period.

StreamStorage, however, makes it possible to
return to the time during which output following the
fault occurrence was affected and to perform chase
reconstruction from that point so that operations can
continue without the operational and analytical ap-
plications having to take any special countermeasures.
In addition, the duration of chase reconstruction can
be shortened by increasing parallelism at the time
of reconstruction and performing elastic-parallelism
reconstruction.

A fiscal year 2011 commissioned report2) stated
that the application of chase reconstruction and elas-
tic-parallelism reconstruction to CEP system used for
monitoring the water levels of rivers has been shown
to be effective.

5. Conclusion
This paper introduced StreamStorage as a storage

technology targeting streaming data. StreamStorage
enables scalable, high-throughput storage and re-
construction of large numbers of data sets that are
individually small in size. It features flexible recon-
struction functions including chase reconstruction and
elastic-parallelism reconstruction.

Development is still in progress to provide suf-
ficient quality as a component of FUJITSU Software
Interstage,3) a business application platform.

This research was supported in part by the
Ministry of Economy, Trade and Industry's Project for the
Program to develop and demonstrate basic technology
for next-generation high-reliability, energy-saving IT
equipment for FY2010 and FY2011.

References
1) Ministry of Economy, Trade and Industry: FY2010 Work

Report on Program to develop and demonstrate basic
technology for next-generation high-reliability, energy-
saving IT equipment, 2011, pp. 187–276 (in Japanese).

 http://www.meti.go.jp/policy/mono_info_service/joho/
cloud/2010/02.pdf

2) Ministry of Economy, Trade and Industry: FY2011 Work
Report on Program to develop and demonstrate basic
technology for next-generation high-reliability, energy-
saving IT equipment, 2012, pp. 173–255 (in Japanese).

 http://www.meti.go.jp/policy/mono_info_service/joho/
cloud/2011/02.pdf

http://www.meti.go.jp/policy/mono_info_service/joho/cloud/2011/02.pdf
http://www.meti.go.jp/policy/mono_info_service/joho/cloud/2010/02.pdf

29FUJITSU Sci. Tech. J., Vol. 50, No. 1 (January 2014)

M. Maeda et al.: StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

3) Fujitsu: FUJITSU Software Interstage: Helping Sense and
Respond to Business Changes.

 http://www.fujitsu.com/global/services/software/
interstage/

Munenori Maeda
Fujitsu Laboratories Ltd.
Mr. Maeda is engaged in research of dis-
tributed storage systems.

 Toshihiro Ozawa
Fujitsu Laboratories Ltd.
Mr. Ozawa is engaged in research of dis-
tributed storage systems.

http://www.fujitsu.com/global/services/software/

