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Real-time analytical processing (RTAP) of vast amounts of time-series data from sensors, 
server logs, and other sources has come to be widely used in recent years.  To make thorough 
use of such streaming data, it is essential that the same data be analyzed iteratively from di-
verse viewpoints, which has increased the need for loss-free storage and data reconstruction 
functions for large volumes of data.  Since individual items of data targeted for storage are 
generally small in size and repeatedly received from multiple sources, it is difficult for exist-
ing storage systems to simultaneously satisfy throughput and capacity demands.  Additionally, 
high-speed access optimized for the chronologically ordered data characteristic of streaming 
data has not yet been achieved for such vast amounts of data.  StreamStorage developed by 
Fujitsu Laboratories is a new storage technology that manages time-series data in units of 
streams, enabling high-speed storage and data reconstruction.  It achieves high throughput 
and scalability by using distributed storage technology in which streaming data is partitioned 
into blocks and data is input and output in a parallel and asynchronous process.  This paper 
presents an overview of the StreamStorage architecture and an application example.

1.	 Introduction
Real-time analytical processing (RTAP) of vast 

amounts of streaming data from sensors, server logs, 
and other sources has come to be widely used in a 
variety of fields including smart grids, wireless sensor 
networks, and algorithmic trading.

Conventional RTAP systems use databases in 
the form of a relational database (RDB) or Hadoop 
Distributed File System (HDFS) for storing streaming 
data and analysis results, taking into account links with 
various types of analysis applications.  These types of 
storage, however, have difficulty keeping up with high 
throughput and capacity demands.

If vast amounts of streaming data can be stored 
in full without loss, it should be possible to use data in 
ways that go beyond conventional real-time analysis:
•	 Analysis of the same data stream from different 

viewpoints, enabling cycles of hypothesis testing 
that can lead to new findings

•	 Flexible setting of the analysis technique and 
the range of target data, enabling the skipping 
of analysis up to a certain point in time, partial 

changing of the analysis technique after winding 
back the clock to a previous point in time, etc.
We can therefore consider that there are many 

needs to be satisfied in storing vast amounts of stream-
ing data.

One of main issues in storing vast amounts of 
streaming data is how to achieve high write through-
put.  An item of data targeted for RTAP is from several 
tens of bytes to tens of thousands of bytes, which is ex-
tremely small compared to the I/O size (several MB) for 
eliciting good performance from hard disk drives.  It is 
therefore essential that appropriate schemes be used, 
such as grouping multiple items of data for input/out-
put and accessing them in a parallel and asynchronous 
way.  

Two requirements are proposed for facilitating 
ease of use:
•	 Handle semantically related streaming data as a 

single, logical entity such as a file or RDB table.
•	 Enable an application program to access stream 

data sequentially in chronological order without 
having to be particularly aware of the order.
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For data storage and reconstruction to be pro-
vided as a service, it must be possible to increase or 
decrease the performance of that service by chang-
ing the amount of resources on the service platform 
(scalability).  This will enable the service to be used 
continuously from when it is still a “small start” service 
to when it has expanded into a large-scale service, 
with the corresponding changes in the volume and fre-
quency of accesses.

StreamStorage, developed by Fujitsu Laboratories, 
is a storage technology with a natural application pro-
gram interface (API) that achieves scalability and high 
throughput. It handles data streams as units of stor-
age and accesses each piece of data inside a stream in 
chronological order.

This paper first outlines the architecture of 
StreamStorage and then describes the linking of 
StreamStorage with complex event processing (CEP) as 
an application example.

2.	 Architecture
As the name implies, streaming data in 

StreamStorage is managed in logical units called 
“streams,” which correspond to files in conventional 
storage systems.  The content of a stream is arranged 
in some order such as the order of transmission or the 
order of reception.  

A StreamStorage user allocates, from among the 
data received from various sources, a single stream 
to a group of data that the user would like to treat 
as a series of information items in some order.  For 
example, data-transmission sensors can be divided 

into groups, and a stream can be allocated to each 
group, or received data can be divided into streams in 
accordance with the content of that data.  In short, a 
variety of usage formats are possible.  An example of a 
StreamStorage usage format as seen from the applica-
tion side is shown in Figure 1.

StreamStorage, as seen from the application side, 
must be able to do three things:
•	 Store and reconstruct small-size items of data at 

high throughput
•	 Enable a stream to be simultaneously accessed 

from multiple applications (users)
•	 Raise performance by increasing the number of 

servers (scale out) so that huge volumes of data 
can be handled.
Three guiding principles on architecture design 

were adopted to meet these functional requirements:
1)	 Data shall be recorded in parallel and asynchro-

nously without completely ordering the data so 
that the connection times with sources can be 
shortened and the number of simultaneous con-
nections can be increased.

2)	 Small-size items of data shall be buffered in 
memory, and I/O size shall be increased to raise 
throughput.

3)	 It shall be possible to flexibly increase or decrease 
storage capacity and performance.  
Principles 1) and 2) mean that the logical (chron-

ological) order of streaming data is separated from 
the physical storage locations and storage order.  This 
means that the order of streaming data must be pre-
served within StreamStorage when each data item in a 

Figure 1
StreamStorage usage format as seen from application side.
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stream is read by an application program.
Principle 3) means that a storage infrastructure 

capable of scale out is required and that a distributed 
object storage system capable of high throughput and 
large data capacity is needed for such an infrastructure.

The StreamStorage architecture consists of the fol-
lowing elements (Figure 2).
1)	 StreamStorage client

The StreamStorage client is a software library that 
enables the HTTP servers and operational/analytical 
servers to access StreamStorage.  It provides a write 
buffer for temporarily saving streaming data.  When the 
buffer becomes full, the buffered data are integrated 
and transferred in bulk to a storage proxy and the buf-
fer is flushed.  This set of data is called an event block.  
When a stream is subsequently needed, it is recon-
structed from multiple event blocks and saved in a read 
buffer.  The reconstruction mechanism is explained in 
detail in the following section.

2)	 Metadata server
The metadata server mainly manages the infor-

mation needed to reconstruct the stream.  Specifically, 
it associates a stream name and a time interval with 
the event blocks that comprise the stream during that 
interval, enabling it to respond to an inquiry from a 
StreamStorage client.
3)	 Storage proxy

Positioned on a connecting layer between storage 
nodes and the StreamStorage client, the storage proxy 
routes access requests from the client to appropriate 
storage nodes.
4)	 Storage nodes

The storage node element is a distributed key-
value store (KVS) made up of commodity-grade servers.  
It stores event blocks in a redundant configuration, 
such as data replication.

Constituent elements 1)–4) achieve high avail-
ability through data redundancy and standby-system 
switching (failover function) to prevent breakdown due 

Figure 2
StreamStorage architecture.
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to hardware or software faults.

3.	 Stream reconstruction mechanism
Reconstructing a data stream that has been di-

vided into event blocks and stored as such requires that 
event blocks within the specified time interval be read 
out and that data within those blocks be arranged in 
their correct order.  This is accomplished by using the 
stream reconstruction procedure (Figure 3).
1)	 The StreamStorage client specifies a time interval 

for reconstruction and sends an inquiry to the 
metadata server [1) in Figure 3].

2)	 The metadata server looks up the event blocks 
overlapping the specified time interval and re-
turns the names of those blocks [2) in Figure 3].

3)	 The StreamStorage client sends read requests to 
the storage proxy specifying the names of those 
event blocks [3) in Figure 3].

4)	 The storage proxy routes a read request to an 
appropriate storage node, which reads out and 
returns the specified event block [4) in Figure 3].

5)	 The StreamStorage client merges the event blocks 
read out and returned by the storage nodes [5) in 

Figure 3] into one stream.  Since the data within 
each event block has already been chronologi-
cally ordered upon storage, the merging process 
has much lower cost than a total sort.
Several practical mechanisms have been devel-

oped to achieve data reconstruction:
1)	 Preloading (smooth reconstruction)

Event blocks from storage nodes are read out 
before that data is actually needed to make data read 
time (latency) more uniform.
2)	 Incremental stream reconstruction

The buffer used by the StreamStorage client for 
reconstruction is limited in size.  To prevent memory 
depletion during lengthy reconstruction, the specified 
interval is first divided into appropriately short sub-
intervals, and then the stream is incrementally 
reconstructed, starting from the oldest subinterval.
3)	 Data filter

To reduce the amount of data transferred over 
the network and the merge processing load, screening 
rules are specified with respect to the data in step 3) 
of the above reconstruction procedure.  The storage 
nodes then return event blocks that contain only data 

Figure 3
Stream reconstruction procedure.
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that pass through that filter.  This mechanism is used to 
achieve elastic-parallelism reconstruction described in 
the next section.

4.	 Application example of 
StreamStorage
We conducted a trial in which StreamStorage 

was coordinated with a CEP system, which analyzes 
vast amounts of streaming data and draws inferences 
at high speed in accordance with predefined rules.  
This trial was performed as part of the Project for the 
Program to develop and demonstrate basic technology 
for next-generation high-reliability, energy-saving IT 
equipment1),2) supported by the Ministry of Economy, 
Trade and Industry (METI).  In this trial, we used two 
distinctive features of StreamStorage—chase reconstruc-
tion and elastic-parallelism reconstruction—to achieve 
high-availability, i.e., shorten downtime, of a system.
1)	 Chase reconstruction

This function performs reconstruction from some 
point in the past to the present while storing received 
data.  By making the speed of reconstruction greater 
than the speed of storage, reconstruction eventually 
catches up with storage in the present and then termi-
nates at that point in time.  Then, the latest received 
data is passed directly to the operational or analytical 
application servers instead of being stored and then 
reconstructed.
2)	 Elastic-parallelism reconstruction

This function splits a reconstructed stream into 
substreams and then distributes them across multiple 
application servers to increase total throughput.  The 
number of substreams is variable and determines the 
degree of parallelism that the application servers can 
provide at runtime.  A rule is specified for creating a 
possible remainder set by dividing the degree of paral-
lelism at the time of reconstruction by that at runtime.  
This rule acts as a data filter.

Applying a CEP rule that determines output over a 
certain range of streaming data from some point in the 
past to the present is a routine practice.  Consequently, 
if a hardware or software fault should temporarily inter-
rupt operations on a CEP server in which such a rule is 
being applied, there will be some period during which 
erroneous or less-than-accurate output will continue to 
be produced even if the server is rebooted.  This, in ef-
fect, will make it difficult for operational and analytical 

applications using CEP output to continue operations 
during that period.

StreamStorage, however, makes it possible to 
return to the time during which output following the 
fault occurrence was affected and to perform chase 
reconstruction from that point so that operations can 
continue without the operational and analytical ap-
plications having to take any special countermeasures.  
In addition, the duration of chase reconstruction can 
be shortened by increasing parallelism at the time 
of reconstruction and performing elastic-parallelism 
reconstruction.  

A fiscal year 2011 commissioned report2) stated 
that the application of chase reconstruction and elas-
tic-parallelism reconstruction to CEP system used for 
monitoring the water levels of rivers has been shown 
to be effective.

5.	 Conclusion
This paper introduced StreamStorage as a storage 

technology targeting streaming data.  StreamStorage 
enables scalable, high-throughput storage and re-
construction of large numbers of data sets that are 
individually small in size.  It features flexible recon-
struction functions including chase reconstruction and 
elastic-parallelism reconstruction.

Development is still in progress to provide suf-
ficient quality as a component of FUJITSU Software 
Interstage,3) a business application platform.

This research was supported in part by the 
Ministry of Economy, Trade and Industry's Project for the 
Program to develop and demonstrate basic technology 
for next-generation high-reliability, energy-saving IT 
equipment for FY2010 and FY2011.  
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