
300 FUJITSU Sci. Tech. J., Vol. 49, No. 3, pp. 300–306 (July 2013)

Network Infrastructure Technology
Supporting Parallelization and Multiplexing
of Services

 Yuzuru Iida  Hiroaki Tanaka

The increasingly fierce competition between information and communications technology (ICT)
companies is increasing the need for them to carefully cultivate markets, by first starting small
and then later expanding processing power so as not to affect existing services. Parallelizing
services is an important technology in this process while multiplexing is an essential technol-
ogy in building highly reliable systems. Furthermore, services are being added and modified
with increasing frequency in order to handle diversifying customer needs in a timely manner,
and the number of service users and smart devices, such as smartphones, is increasing rap-
idly. For these reasons, packet data traffic on IP networks is growing and diversifying more and
more quickly. This paper describes network infrastructure technologies for creating scalable
infrastructures that can appropriately distribute diverse and high-volume packet data to paral-
lelized and multiplexed server systems providing highly reliable and high-volume services and
that enable services to be added and modified frequently. It also discusses initiatives at Fujitsu
in this area.

1. Introduction
High-performance processing is increasingly

needed by application services to handle the continu-
ing increase in the amounts of data being handled.
Furthermore, the growing importance of social infra-
structure means that it needs to be highly reliable.
Conventionally, it has been possible to increase per-
formance and reliability in a single server, but with
services diversifying ever more quickly, the increases
in packet data traffic of these services are exceeding
the rate at which server performance can be increased.
Under such conditions, server parallelization and
multiplexing are effective technologies for implement-
ing systems with both high performance and high
reliability.

Generally, for systems providing services, servers
are multiplexed and run in parallel to maintain quality
of service while avoiding over-investing in equipment.
In such cases, packet data must be processed to enable
it to be distributed to a server (distribution process-
ing). In doing so, service performance and reliability
can be improved by modifying the distribution destina-
tions in accordance with the load state of each server

and the state of service quality. In the past, this has
been done by providing the necessary distribution logic
individually, when a service is first provided. However,
as services are being added and changed more often,
establishing a mechanism that will enable the distribu-
tion logic to be changed without interrupting services
has become important.

In this paper, we describe technologies for build-
ing a scalable network infrastructure for operating
highly reliable, high-volume services on parallel, mul-
tiplexed server systems. This infrastructure enables
effective distribution of packet data, which is ever in-
creasing in diversity and volume, and enables services
to be added and modified reliably without interrupting
services. We also describe Fujitsuʼs initiatives in this
area.

2. Programmable network
infrastructure component
technologies
The processing flow for the network infrastructure

is shown in Figure 1. Four main technologies are used
to distribute the packet data to the servers.

301FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

1) Packet data analysis
Contents of received packets are analyzed, and

protocol type to be used for packet data is identifi ed.
2) Packet flow identification

Flows of packet data related to various services
are identifi ed on basis of identifi ed protocol type.
3) Distribution decision

Distribution of packet data to servers is decided
in accordance with service quality parameters such as
workload and response time of each server.
4) Packet data conversion

Contents of received packets are converted so that
they can be transferred to target server.

Programmable network infrastructure component
technologies are needed for distributing packets to
servers, and these components should be implemented
as functions. Fujitsu is making the packet distribution
process programmable so that the distribution logic
can be changed without interrupting services.

Our objective is to develop a network infra-
structure in which the packet distribution process is
programmable so that the network is not susceptible
to service interruptions due to such actions as soft-
ware rebuilding and equipment restarting and so that
the packets can be distributed in accordance with the
server load and service quality.

To implement a programmable network infra-
structure, we used a structure that divides each function
into defi nition fi les, which regulate details of operation,
and a processing engine, which operates in accordance
with these defi nition fi les. This structure enables ser-
vices to be added or modifi ed by simply changing the
defi nition fi les. Existing services are not affected and
continue running, resulting in stable operation.

The four component functions of the

programmable network infrastructure are explained
below.

2.1 Programmable packet data analysis
function
The programmable packet data analysis func-

tion uses a “protocol format defi nition fi le” to identify
the protocol type to be used for the received packet
data. This fi le includes the protocol format information
needed to analyze the packet data such as the fi eld
starting positions. When a new protocol is defi ned, pro-
tocol information is added to this fi le to enable the new
protocol to be used.

An overview of this function is shown in Figure 2.

2.2 Programmable packet fl ow
identifi cation function
The programmable packet fl ow identifi cation

function uses packet fl ow identifi cation defi nition fi les
and specifi es a fl ow identifi er for the protocol type
specifi ed by the packet data analysis function. This fi le
describes identifi ers for fl ows using a protocol. When a
new protocol is defi ned, fl ow identifi er information for
the new protocol is added to this fi le.

An overview of this function is shown in Figure 3.

2.3 Programmable distribution decision
function
The programmable distribution decision func-

tion uses distribution logic defi nition fi les and decides
where to distribute packets as specifi ed by the packet
fl ow identifi cation function. It also maintains sessions
by managing the correspondence between fl ow identi-
fi ers and distributions that have been decided while the
fl ow or session is valid (i.e., the packet data continues

Figure 1
Network infrastructure processing fl ow.

Network infrastructure

Packet data analysis
Packet flow

identification
Distribution

decision
Packet data
conversion

Figure 1
Network infrastructure processing flow.

302 FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

to be distributed). The programmable distribution de-
cision function first checks this managed data, and, if a
received flow identifier is already being managed (i.e.,
the received flow identifier has already been registered
in the database), it uses the distribution already under
management.

The distribution logic definition files describe
distribution logic such as how to distribute the load for
each flow identifier in accordance with the server loads.

Optimal packet distribution can be achieved after add-
ing servers for a new service by changing the logic in
the distribution logic definition files. If the available
servers become congested, the number of servers used
for the service can be increased by, for example, chang-
ing the distribution logic definition files from using an
N+M redundancy control multiplexing scheme to using
an N+1 scheme.

An overview of this function is shown in Figure 4.

Figure 2
Programmable packet data analysis function overview.

Programmable packet data analysis function

Packet data Protocol
classification

Name:ethernet
Size:24
Next:etype=4,ip
Format:

8-13:dst_addr
14-19:src_addr

Name:ip
Size:header_len*4
Next:proto=6,udp
Next:proto=17,tcp
Format:

8-13:dst_addr
14-19:src_addr

Name:tcp
Size:header_len*4
Format:

0-15:dst_port
16-31:src_port
32-63:seq

Protocol format definition file

Packet data

Name:new_proto
Size:header_len*4
Format:

8-13:id
14-19:seq

Reference

Add

Figure 2
Programmable packet analysis function overview.

0-7:preamble

0-7:version

0-7:version

Figure 3
Programmable packet flow identification function overview.

Programmable packet flow identification function

Packet data Flow
identifier

Packet flow identification definition files

Packet data

Protocol classification

Service Name: Proprietary protocol

Service Name: HTTP
ethernet.ip.udp.dst_portService Name: SIP

ethernet.ip.udp.dst_port
ethernet.ip.udp.sip.header.call_id

Protocol classification: SIP

Service Name: new_service
ethernet.ip.new_proto.id

Add

Reference

Figure 3
Programmable packet flow identification function overview.

303FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

2.4 Programmable packet data conversion
function
The programmable packet data conversion func-

tion uses packet data conversion logic definition files
and performs the packet data conversion necessary to
send the packets to the target server.

The packet data conversion logic definition files
describe the rewriting logic (i.e., which fields to rewrite
and how) for each protocol type needed to convert
packet data to be sent to the target server and the logic
for other modifications necessary due to the conversion
of the packet data. When a new protocol is defined,
packet data rewriting logic is added to this file.

An overview of this function is shown in Figure 5.

3. Platform
We implemented the four functions described

above for the programmable network infrastructure and
used the FlowEngine data plane software as a platform
for this implementation. FlowEngine runs on Linux
and was developed to support a variety of customer
needs related to traffic control. It supports flexible
business development in stages, taking services from a
small start-up to full-fledged operation. It also makes
it easy to build in the particular processing required for

a variety of services.
FlowEngine also supports flexible hardware

updates, enabling developed software assets to be uti-
lized effectively. Another reason for using FlowEngine
is that allocation of network functions across CPU cores
can be optimized in accordance with performance
requirements.

FlowEngine comprises three components. The
internal structure of FlowEngine is shown in Figure 6,
and an overview of the processing is shown in Figure 7.
1) FlowEngine framework

This component has functions for controlling ex-
ecution of data plane processing, such as running the
engine thread and pipelining add-ons, as well as I/O
functions.
2) Included add-ons

These are extension functions provided by
FlowEngine. They include standard add-ons, which
provide standard network processing, and service add-
ons, which execute service functions.
3) Add-on API

This is the application programming interface
(API) provided for installing user add-ons. With
FlowEngine, customer requirements are implemented
by installing user add-ons that match particular

Figure 4
Programmable distribution decision function overview.

Programmable distribution decision
function

Flow
identifier

Distribution logic definition files

— User-defined logic 2 —

— User-defined logic 1 —

— Traffic load distribution logic —
For server = 1-10

if sent_packet_cnt_rate(server) < 100 then

Distribution
 destinationDistribution

management data

Distribution
decision

Managed

Unmanaged

— new logic for xxx —
For server = 11-15

if sent_packet_byte_rate(server) < 2000 then

Reference

Add

Load state of
each server

Service quality state

Figure 4
Programmable distribution decision function overview.

304 FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

Figure 5
Programmable packet data conversion function overview.

Packet data conversion logic definition files

— User-defined logic 2 —

— User-defined logic 1 —

— SIP header rewriting logic —
If ethernet.ip.udp.ship.header.route = “”

ethernet.ip.udp.ship.header.route = xxx

Programmable packet data conversion function

Packet data

Sent packet

— New protocol header rewriting logic —
If ethernet.ip.new_proto.header.s_route = “”

ethernet.ip.new_proto.header.s_route = xxx

Add

Packet data
conversion

Rewrite

Re
fe

re
nc

e

Figure 5
Programmable packet data conversion function overview.

Packet data

Protocol
classification

Distribution
destination

Figure 6
FlowEngine internal structure.

FlowEngine

General/Embedded Linux

FlowEngine Framework

User
add-ons

Install

Link

Standard
add-ons

Service
add-ons

Included add-ons

Add-on API

User
application

Figure 6
FlowEngine internal structure.

requirements to FlowEngine and by linking their opera-
tion to user applications.

4. Scripting engines
The programmable network infrastructure func-

tions consist of definition files that prescribe the
operations, and scripting engines (processing engines)
that operate in accordance with the definition files.
Use of the scripting language to specify a definition file
enables the creation of functions that support new ser-
vices and new protocols through simple editing of the

appropriate definition file, without the need to re-build
the entire program. The scripting engines are built into
FlowEngine using the add-on functionality, creating a
programmable network infrastructure.

An image of the programmable network infra-
structure with embedded scripting engines is shown
in Figure 8. The packet data analysis, packet flow
identification, and packet data conversion functions ex-
ecute using the scripting engine in the corresponding
FlowEngine add-on. The distribution decision function
forwards distribution requests from the distribution

305FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

Figure 8
Programmable network infrastructure with embedded scripting engines.

Engine thread

FlowEngine

Packet buffer + Control data

Packet data analysis
function

Packet flow identification
function

Packet data conversion
function

User
application

Add-on

Protocol format
definition file

Packet flow identification
definition file

Add-on

Distribution decision
function

Packet conversion
logic definition file

Add-on

Scripting
engine

FlowEngine Framework

Scripting
engine

Decision logic
definition file

General/Embedded Linux

Add-on

Decision
request

Load state of each server
Service quality state

Figure 8
Programmable network infrastructure with embedded scripting engines.

Scripting
engine

Scripting
engine

Figure 7
FlowEngine processing overview.

Engine thread

General/Embedded Linux

FlowEngine

Add-on Add-on

FlowEngine Framework

Add-on

Packet buffer + Control data

Packet
reception

Packet
transmission

Ethernet Ethernet

Packet

I/O
abstraction

Engine thread executes
pipelined add-on
processing

Add-on pipelining is determined by
configuration definition information
upon launch

Figure 7
FlowEngine processing overview.

306 FUJITSU Sci. Tech. J., Vol. 49, No. 3 (July 2013)

Y. Iida et al.: Network Infrastructure Technology Supporting Parallelization and Multiplexing of Services

request add-on within FlowEngine to the distribution
decision function within the user application, and
the distribution decision is performed by the scripting
engine within the user application. The result is then
returned to the add-on that sent the distribution re-
quest. When deciding packet data distribution, service
quality information such as the load state and response
time of each server is used, but this information must
be gathered from the available servers as it is not man-
aged by FlowEngine. Thus, the distribution decision
function is positioned as a user application.

5. Future issues
Since the programmable network infrastructure

is implemented with definition files run by scripting
engines, the quality and performance of distribution
processing is greatly affected by the content of these

files. Issues needing to be addressed include simplify-
ing the syntax of the definition files to reduce errors,
creating a system for verifying the correctness of the
logic described in the files, and coding the files so that
they are resistant to degradation in performance.

To further increase capacity, we plan to scale out
the programmable network infrastructure itself.

6. Conclusion
We have described networking infrastructure

technologies needed to build a scalable platform for
implementing high-capacity, highly reliable services as
well as initiatives at Fujitsu in this area.

Since services will continue to diversify, we will
continue our technology and product development ef-
forts and actively promote creation of high-capacity,
highly reliable services.

Yuzuru Iida
Fujitsu Ltd.
Mr. Iida is currently engaged in the
development of network solutions for
communications operators.

Hiroaki Tanaka
Fujitsu Ltd.
Mr. Tanaka is currently engaged in the
development of network solutions for
communications operators.

