
104 FUJITSU Sci. Tech. J., Vol. 49, No. 1, pp. 104–109 (January 2013)

Hardware—Software Codesign for Graphic LSIs

 Hirohisa Kotegawa Naonobu Hasumi

The field of image processing LSIs that are mounted in devices such as digital cameras is one
in which the improvement in performance is very remarkable. It is important to have an archi-
tecture design that is suitable for the application so as to lower the cost of developing chips for
LSIs, and reduce their power consumption and the chip area. Semiconductor and EDA vendors
have proposed hardware-software (HW/SW) codesign via electronic system level (ESL) as a way
to develop chip architecture and designs. However, it has not been used much in actual de-
velopment sites because of various issues such as the cost of developing models. Under these
circumstances, at Fujitsu Semiconductor we have steadily applied architecture design tech-
nology to LSI development based on HW-SW coverification in the ESL methodology in Cedar
service, which is a design service for customers to develop ASSPs and ASICs. In this way, we
have found that the most important point is to optimize the quality of service (QoS) of on-chip
buses and access to external memory such as DDR memory. And, as a result of focusing on this
point of optimization and investigating ways to tackle the issues with ESL, we have created a
new HW/SW codesign solution that uses ESL. It has come to be used in design sites more than
ever before. This paper introduces the technical aspects of this new approach and its effect,
and also describes future developments.

1. Introduction
Catalogs of digital cameras and other products

that integrate image-processing LSIs1) often show de-
scriptions such as the effective pixel count of CCD and
CMOS sensors being 10 megapixels. These pixel counts
are increasing year by year and, with some of the top-
class models of single-lens reflex cameras, the counts
may exceed 30 gigapixels. In addition, the degree of
complexity is increasing not only in image process-
ing itself, including various types of image correction,
image effect and image scaling, but also in functions
such as graphical user interfaces using Android OS
and various external interfaces. For this reason, circuit
scales are expanding due to the enhanced functionality
and performance of CPU cores and intellectual property
(IP) cores that constitute imaging LSIs and increase in
RAM size, which has also caused increased LSI power
consumption.

While dealing with these increases in circuit
scales and power consumption, mobile products such

as digital cameras must satisfy requirements includ-
ing minimization of chip areas and reduction of power
consumption in view of battery life and packaging
cost, and these are in a trade-off relationship with the
scale of circuits. Up to now, these requirements have
been handled by integration and voltage reduction
technologies. However, catching up with Moore's law
is becoming difficult with the recent cutting-edge pro-
cess technologies, and improving power consumption
is also growing increasingly difficult due to limitations
of voltage reduction and increased leakage current and
wiring capacity. Accordingly, evaluating architecture to
decide whether performance, power consumption and
chip area have been optimized in line with the system
use case in the architecture design phase, which is an
upstream process, is gaining importance.

In reality, however, architecture evaluation in an
upstream process has not spread much in the actual
design sites. The reasons for this include, in addition
to the difficulty in establishing an environment that

105FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013)

H. Kotegawa et al.: Hardware—Software Codesign for Graphic LSIs

facilitates architecture evaluation in an upstream pro-
cess, the development flow does not allow architecture
evaluation. Generally, an image-processing LSI is de-
veloped as a system-on-a-chip (SoC), which integrates
various IP cores such as one or more CPU cores, graphics
processing units (GPUs) and digital signal processors
(DSPs) into a single chip. For that reason, operation as
an image processing system cannot be realized without
installing the software. This means that both software
and an SoC are required for evaluating the performance
and power consumption as a system. In the actual
development flow, however, software is generally de-
veloped on a production board after an engineering
sample (ES) of an SoC has been made and software
does not exist in the architecture design phase. That is
why architecture evaluation of an SoC has been impos-
sible in an upstream process.

Fujitsu Semiconductor has built a hardware-
software (HW/SW) codesign flow that makes use of
electronic system level (ESL) techniques to address this
issue of inability to evaluate architecture.

This paper describes this HW/SW codesign.

2. Outline of and issues with ESL
Before going into the main theme, this section

describes ESL and the abstraction level of models and
presents issues that have hindered the application of
ESL up to now.

2.1 What is ESL?
ESL refers to an environment in which an SoC is

modeled by using a hardware description language
such as SystemC based on C/C++ to conduct virtual
simulation on a computer that is used for advanced
development of software and architecture evaluation.2)
In the electronic design automation (EDA) industry, ESL
may also refer to using a hardware description written
in a language such as SystemC to generate a register-
transfer level (RTL) description by high-level synthesis
but, in this paper, it means the simulation environment
mentioned above.

2.2 Abstraction level of models
In this way, ESL is used for two purposes, namely

advanced development of software and architecture
evaluation, and the modeling method may differ de-
pending on the purpose.

Software development requires a simulation
performance closer to that of a production device and
modeling with a high abstraction level is necessary.
For architecture evaluation, data read and write must
be carried out in a manner similar to the actual hard-
ware communication protocol, which requires modeling
with a low abstraction level. Modeling methods suited
for different applications have been standardized as
transaction-level modeling (TLM) by the Open SystemC
Initiative (OSCI), a systemC standardization organiza-
tion. In TLM, a model with a high abstraction level
suitable for software development is called a loosely
timed (LT) model and that with a low abstraction level
suitable for architecture evaluation is called an approxi-
mately timed (AT) model.

2.3 Issues with ESL
In this way, environments with two degrees of

abstraction — LT and AT — must be prepared according
to the application as the ESL environment, and this
accordingly requires person-hours and money to estab-
lish. In addition, development of a model with a low
abstraction level used for architecture evaluation needs
person-hours equivalent to that for RTL development
and it may seem like duplicate development unless
an RTL description can be generated by high-level
synthesis or other means. This problem becomes con-
spicuous in SoC development because RTL descriptions
often use IPs that already exists. Furthermore, with
IPs introduced from other companies or legacy IPs, the
specifications required for modeling are unclear and
modeling is practically impossible in many cases. That
has raised the barrier to introducing models in the ac-
tual design sites and hindered acceptance.

3. Points of evaluation of architecture
design
To overcome the issues described in the previous

section, Fujitsu Semiconductor has utilized its past ex-
perience to sort out important points of evaluation in
architecture design and taken measures. This section
describes those points of evaluation.

In LSI development up to now, there have often
been cases in which IPs as they are meet the perfor-
mance requirements but, after they are built into SoCs,
they fail to satisfy the requirements.

Focusing on such difficulties, we conducted

106 FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013)

H. Kotegawa et al.: Hardware—Software Codesign for Graphic LSIs

analysis while reproducing the conditions that caused
problems by such means as emulation. As a result, we
have found out that on-chip buses relating to IPs and
external memory controllers for DDR and other mem-
ory are unable to optimally handle data and other IPs
in contention in terms of data fl ow cause hindrance,
which obstruct performance enhancement. That is, it
has been revealed that the primary cause of hindering
performance enhancement is the failure to optimize
on-chip buses and external memory controllers for DDR
and other memory and that their optimization is key to
improving performance.

Based on this result, we have assumed AXI
(AMBA3) interconnect bus, which is currently often
used for the on-chip buses of Fujitsu Semiconductor’s
image-processing LSIs, and, of the external memory
controllers, DDR memory controller, which requires
read/write latency optimization by various types of
command control and identifi ed specifi c points of
evaluation, as shown in Table 1.

4. HW/SW codesign fl ow
Table 1 also lists the points of evaluation and

degrees of abstraction of the design environment and
input required for the evaluation. In view of those
points, we have established a new HW/SW codesign
fl ow, which is shown in Figure 1. This section describes
the respective environments that constitute this design
fl ow.

First, to focus on the abstraction levels of design
environments in Table 1, a level called cycle accurate
(CA), which has not been common as an abstraction

level of models in ESL up to now, is included. This
abstraction level is equivalent to RTL and even lower
than AT and more faithfully represents operation of
the actual hardware. Based on Fujitsu Semiconductor’s
past experience in architecture evaluation, it has
been found that the CA abstraction level is required
for bus arbitration to handle AXI requests in conten-
tion and command control (ordering control for hiding
precharge and refresh control) to effectively use the
memory channel bandwidth of DDR memory control-
lers. Otherwise, operation signifi cantly differs from
the actual operation, which considerably distorts the
results of architecture evaluation. However, not all
of the abstraction levels of design environments for
the respective points of evaluation in Table 1 have to
be CA. As described earlier, a lower abstraction level
means a lower simulation speed and it is impossible
to execute software in a manner similar to that with an
SoC in full confi guration. Accordingly, we have built a

Initial architecture evaluation

Initial
architecture

Detailed architecture evaluation

Evaluation
program

Architecture
evaluation input

Final architecture

Figure 1
HW/SW codesign flow.

Figure 1
HW/SW codesign fl ow.

Table 1
Points of performance evaluation.

Point of evaluation Requirement Abstraction level

On-chip bus

Topology System
operation AT

Operating frequency

Number of FIFO stages

Data fl ow CAArbitration

Priority control

DDR memory
controller

Number of ports System
operation AT

Operating frequency

Number of FIFO stages

Data fl ow CAArbitration

Command control

107FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013)

H. Kotegawa et al.: Hardware—Software Codesign for Graphic LSIs

design fl ow combining two evaluation environments:
initial architecture evaluation environment, in which
the AT abstraction level is used to determine the base
architecture and obtain information required for the
subsequent evaluation; and detailed architecture eval-
uation environment, in which the architecture is fi nally
determined with the CA abstraction level.

4.1 Initial architecture evaluation
environment
In the initial architecture evaluation environment,

the points of evaluation to be evaluated with the AT
abstraction level in Table 1 are evaluated. As shown
in Figure 2, this environment is characterized by the
use of LT models for hardware that is less important
for performance evaluation but necessary for opera-
tion as a system, such as the peripherals, and use of AT
models only for hardware that is important for perfor-
mance evaluation such as the CPU cores and AXI bus.
In addition, those that cannot be modeled by Fujitsu
Semiconductor such as GPUs and other IPs introduced
from outside and customer logic are mapped to an
FPGA and the SCE-MI technology is used to allow high-
speed connection between the FPGA and ESL on the
PC. In this way, we have minimized AT models, which
degrades the simulation performance, and mapped to
an FPGA and connected IPs that are diffi cult to model.

This has made it possible to evaluate architecture as a
system by using evaluation software close to an appli-
cation in a reasonable manner in terms of simulation
performance and development person-hours.

In this environment, the basis of the de-
tailed architecture is determined including the AXI
topology, memory size required for the DDR and speci-
fi cation of the DDR memory controller interface. In
addition, information required for evaluation in the
detailed architecture evaluation environment can be
obtained including the data fl ow needed for identifying
performance bottlenecks, which provide points of per-
formance evaluation, and evaluating the bottlenecks
and related master transaction behavior.

4.2 Detailed architecture evaluation
environment
As a result of evaluation in the initial architecture

evaluation environment, important master and slave
IPs are identifi ed based on the performance bottle-
necks and related data fl ow. Then, RTL models of
the IPs are converted with an EDA tool equipped with
a technology called carbonization, which is capable
of conversion into C models with the CA abstraction
level maintained. With the C models resulting from
the conversion, a simulation environment that is fi ve
to ten times faster than RTL can be built. However,

CPU core
ISS

AXI bus (AT)

CPU core
ISS

GPU
(RTL)

SCE-MI Lib

SCE-MI transactor (RTL)

FPGA

RAM
(AT)

DDR (AT)

Memory
controller

(AT)

OS

OpenGLES driver

Evaluation application

Peripherals (LT)

ESL tool

B

SCE-MI transactor (AT)

Point of evaluation

AR
R0 Rn・・

AW
W0Wn・・

wait

Figure 2
Environment for initial architecture evaluation.

Figure 2
Environment for initial architecture evaluation.

108 FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013)

H. Kotegawa et al.: Hardware—Software Codesign for Graphic LSIs

when conversion into C models is diffi cult due to the
circuit scale or microarchitecture or when a few tens of
seconds are required as the real time of the actual ap-
plication operation for running the IPs and realizing the
data fl ow that causes a bottleneck, the environment
cannot be practically used even if it is faster than RTL by
fi ve to ten times. This problem can be solved by using a
general-purpose transaction generation model, which
is shown in Figure 3. This model is capable of fl exibly
controlling transaction generation in the C language,
which allows easy generation of a transaction that
causes a bottleneck and representation of the state of
a performance bottleneck as a system more easily than
connecting the actual IPs.

Evaluation in this environment for detailed archi-
tecture evaluation has made it possible to make fi nal
adjustments including determination of the number
of FIFO stages and arbitration of the AXI bus and the
adjustment of the number of command queue stages
and determination of the command control method of
the DDR memory controller in a short time before the
entire RTL is built up.

5. Effect of application
By using the HW/SW codesign fl ow that utilizes

this new ESL technology, performance problems, which
could not be detected until the emulation or production

device evaluation phase, have now become detectable
in the architecture design phase.

With AXI and other protocols, requests and data
are independently controlled and throughput and la-
tency check with a single transaction alone often does
not reveal problems. As in image processing, perfor-
mance problems may not be exposed before multiple
image frames have been processed. To address this
issue, long-time simulation of about 10 seconds in real
time can be conducted as the initial architecture evalu-
ation to identify the problem trends in multiple-frame
processing and the problems can be simulated in the
detailed architecture evaluation environment. In this
way, essential causes of performance problems can
now be detected in a short period of time in the phase
of architecture specifi cation establishment and can be
avoided.

As a specifi c example, there was a case in which
a legacy IP that had poor response but did not cause
any performance problem as it was, was run against
another IP that contended with it in the data fl ow and
processed a large amount of data. Over time, the poor
response gradually caused an adverse effect, and even-
tually led to performance degradation. This problem
was detected and solved in the specifi cation phase and
the image-processing LSI developed in this way was
put into full operation without any issues.

Pseudo GPU
(CA)

Peripherals (LT)

AXI bus (CA)

Carbon model

Memory
controller

(CA)

RAM
(AT)

PHY
(CA)

CPU core
ISS

CPU core
ISS

Evaluation scenarioEvaluation scenario

Model for generating
general-purpose transactions

Figure 3
Environment for detailed architecture evaluation.Figure 3

Environment for detailed architecture evaluation.

109FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013)

H. Kotegawa et al.: Hardware—Software Codesign for Graphic LSIs

6. Future issues
As described above, the HW/SW codesign fl ow

making use of the ESL technology has started to pro-
duce tangible results but it still has the following issues.
1) Modeling of outside of high-speed interface IPs

High-speed interface macros such as USB and PCI
Express macros are connected with the outside of an
SoC in various use cases. For that reason, it is almost
impossible to model the outside in view of use cases.
At present, the worst-case pattern of the use of the
SoC is assumed and the general-purpose transaction
generation model mentioned earlier is used for simula-
tion. However, it may lead to excessive performance,
circuit scale expansion or increased power consumption
caused by having too many transactions compared to
the actual use case or, conversely, performance degra-
dation due to having too few transactions.
2) Feedback to low-power design

Optimization of architecture design by the HW/
SW codesign fl ow presented in this paper is believed to
help reduce power consumption in terms of preventing
excessive performance. However, how much optimiza-
tion was achieved in terms of the actual power value

has not been quantitatively visualized and not prepared
as design data to be fed back to RTL implementation or
layout design.

In the future, we intend improve the HW/SW code-
sign fl ow to resolve the two issues described above.

7. Conclusion
The HW/SW codesign fl ow presented in this paper

has come to be applied to various ASSPs and ASICs in
addition to image-processing LSIs. We are commit-
ted to making continued efforts to utilize the valuable
feedback from customers of ASICs and designers of
Fujitsu Semiconductor so that we can establish an even
better upstream design fl ow.

References
1) H. Kaneko: Image Processing LSIs Supporting a Whole

Range of Products from Digital Cameras to Mobile
Phones behind the Scenes. (in Japanese).

 http://i.impressrd.jp/fi les/images/bn/pdf/
im200602-108-solution.pdf

2) M.Omura et al.: VLSI Design by C/C++. (in Japanese),
Kyoritsu Shuppan, 2003.

Hirohisa Kotegawa
Fujitsu Semiconductor Ltd.
Mr. Kotegawa is currently engaged in
development of upstream design verifi ca-
tion environment and assistance with
upstream design verifi cation.

Naonobu Hasumi
Fujitsu Semiconductor Ltd.
Mr. Hasumi is currently engaged in devel-
opment of upstream design verifi cation
environment and assistance with up-
stream design verifi cation.

http://i.impressrd.jp/files/images/bn/pdf/im200602-108-solution.pdf

