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Performance Profiling and Debugging on  
the K computer

 Keiichi Ida      Yasuyuki Ohno      Shunsuke Inoue      Kazuo Minami

We have developed application-development support tools for the K computer.  This 
paper describes profiling functions for raising the performance of applications and 
debugging functions for testing applications as main functions of these tools.  In 
developing these tools, we first defined the work procedure that a user would follow 
for improving the performance of an application and testing it.  We then investigated 
the form that these application-development support tools should take for each 
task in that procedure.  We here introduce these tools in conjunction with those 
tasks.  Additionally, while the large-scale configuration of the K computer is one 
of its major features, existing profilers and debuggers for large-scale applications 
still have problems that have yet to be solved, and we here describe new measures 
for addressing those problems.  We also touch upon profiling functions specifically 
developed for the advanced hardware of the K computer such as the high-
performance SPARC64 VIIIfx processor and Tofu interconnect.

1. Introduction
The K computernote)i is a massively parallel 

supercomputer consisting of more than 80 000 
nodes using advanced hardware such as the 
high-performance SPARC64 VIIIfx processor 
and Tofu interconnect.  We have developed 
application-development support tools for this 
supercomputer.

This paper describes the main functions 
of these support tools: profiling functions 
for achieving high-performance applications 
and debugging functions for testing those 
applications.  In setting out to develop these 
profiling and debugging functions, we first 
defined the work procedure that a user would 
follow for achieving and debugging a high-
performance application.  We begin this paper by 

note)i “K computer” is the English name 
that RIKEN has been using for the 
supercomputer of this project since July 
2010.  “K” comes from the Japanese word 
“Kei,” which means ten peta or 10 to the 
16th power.

presenting our development objectives and then 
introduce various development support tools 
corresponding to the defined work procedure.  

2. Development objectives
We established three major objectives in 

our development of profiling and debugging 
functions: support large-scale parallel-processing 
applications and advanced hardware, make use 
of standard interfaces, and achieve advanced 
graphical user interface (GUI) functions.  

Like the system itself, application software 
for the K computer is large-scale in nature 
and thus must use the cutting-edge hardware 
making up this supercomputer.  For this reason, 
our first development objective was to support 
large-scale, parallel-processing applications 
and new functions geared to various types 
of new and advanced hardware.  Though 
explained in detail later in this paper, these 
functions include profiling and debugging 
functions supporting applications running tens 
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of thousands of processes in parallel, a large-
scale data display function for presenting the 
performance information of tens of thousands 
of processes, self-check functions for the run 
time system (RTS) library and Message Passing 
Interface (MPI) library, profiling functions 
supporting the performance instrumentation 
counters of the SPARC64 VIIIfx processor, and a 
communications-cost display function taking the 
Tofu interconnect into account.

At the same time, the current environment 
surrounding development support tools 
is dominated by a trend toward standard 
interfaces, the use of open source software for 
tool components, and the construction of software 
platforms independent of hardware.  With this 
in mind, our second development objective was 
to give due consideration toward open systems 
and implement as much as possible application-
development functions on standard interfaces.  
To be more specific, we adopted the DWARF 21) 
debugging file format as an interface between 
the compiler and various tools, which makes 
it possible to employ a variety of debug tools 
provided in open-source format.  Additionally, 
we adopted the Performance Application 
Programming Interface (PAPI)2) as the interface 
for obtaining information from the SPARC64 
VIIIfx performance instrumentation counters 
that enable various types of CPU performance, 
such as number of executing instructions 
and number of cache misses, to be precisely 
measured.  Finally, to implement a log output 
function supporting various types of events, we 
adopted VampirTrace3) specifications considering 
their status as a de facto standard.

A high-performance GUI is needed to 
display the profiling and debugging information 
of large-scale parallel-processing applications.  
Our third development objective was therefore to 
achieve advanced GUI functions.  Many existing 
application-development support tools use X 
Window System (X11) as a GUI, but this system 
cannot easily take advantage of performance 

improvements in user terminals and is limited in 
GUI functions and performance.  To resolve these 
issues, we adopted Adobe System’s AIR4) runtime 
environment as a new GUI platform owing to its 
foundation in Rich Internet Applications (RIA) 
technology and its rapid evolution in the field 
of Web applications.  With AIR, an AIR client 
receives only as much data as needed from the 
server and locally performs all processing for 
redrawing—such as when the image viewpoint 
changes—so that the graphic performance of the 
user’s terminal can be fully exploited.

3. Application performance 
improvement steps
The significance of a supercomputer lies in 

its ability to perform high-speed calculations, and 
determining the performance of an application 
running on a supercomputer is therefore an 
essential and important endeavor.  Moreover, 
if the performance so determined turns out to 
be inadequate, it is imperative that the source 
of such performance degradation be analyzed 
and efforts be made to improve the application’s 
performance.  This work for determining and 
improving an application’s performance consists 
of multiple steps beginning with performance 
characteristics analysis (basic profiling) and 
continuing with a set of mutually independent 
performance improvement steps (detailed 
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profiling), as shown in Figure 1.  Among the 
three steps in the detailed profiler, we here take 
up performance improvement in CPU-operation 
processing and performance improvement in 
process-parallelization processing.  

3.1 Performance characteristics analysis
The objective of this first step is to obtain 

a comprehensive understanding of application 
performance under normal operating conditions.  
To this end, we developed a “basic profiler” with 
four basic functions.
1) Obtain performance information simply on 

the basis of highly optimized object code 
without re-compilation

2) Obtain basic performance information 
by simply adding an fipp command to an 
ordinary job-run script

3) Display processing conditions in terms 
of CPU-operation processing, thread-
parallelization processing, and process-
parallelization processing 

4) Obtain performance information by 
sampling run-time data at fixed intervals, 
thereby minimizing and fixing overhead.
Once the basic profiler has uncovered 

the processing necessary to raise application 
performance, it is time to move on to the next 
steps.  CPU-operation processing, thread-
parallelization processing, and process-
parallelization processing are mutually 
independent from the viewpoint of performance, 
and each one requires a separate approach 
to improving performance.  Nevertheless, the 
detailed profiler that we have developed is used 
as the main tool for raising performance in each 
case.  This profiler has three basic functions.
1) Specify the beginning and end of a 

measurement interval by calling a service 
library from within the application in order 
to perform detailed analysis of a specific 
program location

2) Obtain detailed and accurate performance 
information for every measurement interval 

by making rigorous measurements of 
the times that CPU processing, thread-
parallelization processing, and process-
parallelization processing are executed 
within a measurement interval in contrast 
to sampling

3) Individually analyze measured times 
instead of processing them as statistical 
averages, thereby supporting even cases in 
which performance characteristics change 
every time a user function is called.

3.2 Performance improvement in CPU-
operation processing
The high-performance SPARC64 VIIIfx 

processor incorporates various types of 
performance instrumentation counters, which 
can be used to classify the total execution time 
of an instruction sequence in terms of CPU 
operating states (executing instructions, waiting 
for memory access, waiting for an operation to 
complete, etc.).  This method, which is commonly 
called cycle accounting,5) enables developers to 
determine where in the processor bottlenecks are 
occurring and to analyze and improve processor 
performance.  If a performance problem is 
known to exist in CPU-operation processing, the 
developer can use the hardware monitor function 
of the detailed profiler to analyze the problem 
using the cycle accounting method (Figure 2).

To give an example of a performance-
improvement procedure, more effective use of the 
cache would have to be achieved if it was found by 
cycle accounting that waiting for memory access 
was occupying a high percentage of execution 
time.  Specifically, this could be done by changing 
the application’s data structure (spatial measure) 
and the order of data referencing (temporal 
measure) and increasing the reusability of data 
(cache-line measure), thereby improving the 
cache hit rate and decreasing memory access.  
The SPARC64 VIIIfx extensions include single 
instruction multiple data (SIMD) instructions, 
which enable multiple operations to be executed 
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at one time.  Attention should therefore be paid 
to the ratio of SIMD instructions used in order to 
obtain high performance.  If it is determined that 
the SIMD-instruction ratio is low, efforts should 
be made to optimize the compiler by selecting 
appropriate compiler options and/or rewriting 
program source code.

3.3 Performance improvement in process-
parallelization processing
As described earlier, the K computer 

is a massive system consisting of more than 
80 000 nodes, but, in addition to this huge 
array of hardware, it also supports large-scale 
applications.  For example, a job consisting of 
more parallel processes than the total number of 
nodes can be run on the K computer.  There are 
two main approaches to improving performance 
in process-parallelization processing as described 
below.

The first approach is to achieve good load 
balance in process parallelization.  In general, an 
MPI library is used to run application processes 
in parallel, but, if loads differ among the 
processes, communication and synchronization 
waits can prevent high operating performance 
from being achieved.  Disorder in load balance 
can occur for various reasons.  For example, it can 

be a problem inherent to the application, such as 
different degrees of computational complexity 
among the subdivided regions of the application 
created for parallel processing.  This can cause 
subtle differences in the layout of virtual memory 
between nodes, resulting in variation in cache 
miss rates and chaotic application performance.  
Of course, an application that runs processes 
in parallel generates much communication 
processing, which means that communication-
related variation can also occur due, for example, 
to collisions in the communication network.

It is important that a comprehensive 
understanding of current performance values 
be obtained to correct these various types of 
disturbances in load balance.  Both the basic 
profiler and detailed profiler incorporate new 
means of providing large-scale visualization 
of various types of performance data to give 
developers an overall view of application 
conditions.  Examples of cost-distribution 
displays as provided by the basic profiler are 
shown in Figures 3 and 4.  In these screen 
shots, the basic profiler is analyzing performance 
when running the CG kernel (conjugate gradient, 
irregular memory access, and communication) 
the NAS Parallel Benchmarks.6)  The lower 
half of these screens shows sampling cost 

Figure 2
Example of analysis using cycle accounting method.
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Figure 3
Screen shot 1 of cost analysis by basic profiler (topology display).

Upper-left frame: cost information for each process (partial close-up)
Upper-right frame: list of performance values for each program loop
Bottom frame: cost information for each process (complete 3D topology display)

Figure 4 
Screen shot 2 of cost analysis by basic profiler (1D display). 

Upper-left frame: cost information for each process (partial close-up)
Upper-right frame: list of performance values for each program loop
Bottom frame: cost information for each process (complete 1D display)
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corresponding to elapsed time of one program 
loop (rows 1128–1148 of conj_grad) in a parallel 
application running on 1024 processors.  In 
Figure 3, the format of the display is “application 
topology” having a 16×4×16 three-dimensional 
torus structure running along the x-axis (i.e., 
in the horizontal direction in the figure).  Here, 
the magnitude of sampling cost for each process 
is expressed in color.  An application topology 
display of this type makes it easy to see how 
the cost of executing this loop changes along the 
x-axis.  In Figure 4, the same data is converted 
into one dimension and shown in the form of a bar 
graph, which enables a developer to accurately 
determine the extent of load imbalance among 
the processes.  The lower portion of this screen 
shows a histogram representing sampling-cost 
distribution above a legend explaining the color 
usage.  Displaying performance data in this way 
(application topology, one-dimensional display, 
or histogram) gives the developer a bird’s-eye 
view of cost-balance conditions across the entire 
application.

The second approach to improving 
performance in process-parallelization processing 
is to reduce MPI library cost.  When running 
a parallel application that involves frequent 
communication among processes, MPI-library 
processing increases, which increases costs and 
degrades performance.  The countermeasure to 
this problem is to revise the method of using the 
MPI library such as by reducing communication 
processing and reducing the number of messages 
(through message aggregation).  In the detailed 
profiler, specifying a certain interval returns 
detailed information on MPI-library functions 
executed in that interval (such as number of calls, 
processing time, and average message length for 
each function).  This information can be used to 
check the effect of the performance-improvement 
measures described above.  In addition to using 
the detailed profiler, MPI library cost can also 
be obtained via the “MPI statistical information” 
function in the MPI library.  This function logs 

information on MPI-library internal processing 
and outputs statistical information when 
execution of the target application completes.

Optimizing communication processing 
in the K computer requires that the 3D torus 
network (Tofu interconnect) and advanced 
barrier communication function of this 
supercomputer be taken into account.  For this 
reason, the detailed profiler and MPI statistical 
information function have additional routines 
for measuring communication distance (number 
of communication hops in the torus) and for 
measuring the performance of the advanced 
barrier communication function.

Finally, the state of packet processing on 
the Tofu interconnect must be understood to 
optimize MPI-library communication processing.  
To this end, we developed a function called “Tofu 
performance analysis (PA) information” for 
measuring the number of send/receive packets, 
the number of send/receive bytes, the remaining 
capacity of send/receive buffers, etc.  for each 
network router on the Tofu interconnect.  These 
measurements can be initiated by specifying 
a certain interval in the detailed profiler.  
Analyzing the results of these measurements 
and taking appropriate measures to balance out 
communication processing in the interconnect 
network and avoid packet collisions can raise 
the interconnect usage efficiency and therefore 
improve the performance of the application.

4. Application testing steps
As mentioned above, the significance of 

a supercomputer lies in its ability to perform 
high-speed calculations, but it must also be able 
to perform those calculations correctly.  It can be 
said that calculations in an application are being 
performed correctly if the application is operating 
in line with the specifications established at 
design time.  Checking that this is so is called 
“testing.” For ultra-large-scale parallel systems 
like the K computer, the work of testing becomes 
increasingly difficult as system complexity 
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increases.  This situation calls for new measures 
such as the self-check functions described below.

Among the steps making up application 
testing, the work of debugging, which begins 
with the occurrence of a bug or bugs, consists of 
problem analysis and troubleshooting followed 
by several mutually independent debug steps 
(Figure 5).  We here introduce a debugging 
technique made up of these steps and take an 
in-depth look at debugging of CPU-operation 
processing and process-parallelization 
processing.

4.1 Problem analysis and troubleshooting
Bug phenomena can be classified into a 

variety of types such as abnormal termination 
caused by a SIGnal SEGmentation Violation 
(SIGSEGV) or other event, deadlock, and 
mistakes in calculation results.  The process 
of analyzing such phenomena in detail and 
isolating the position where the bug occurred is 
called “troubleshooting.” Here, we first consider 
troubleshooting of CPU-operation processing, 
thread-parallelization processing, and process-
parallelization processing.  

The troubleshooting procedure begins by 
analyzing the bug, such as by executing the 
program while varying compilation-time options 
and run-time options or using a debugger utility.  

The procedure can therefore be complicated, 
but it is systematic just the same.  Typical 
troubleshooting techniques are presented below.

For an abnormal termination arising 
from a SIGSEGV error, the location of the 
abnormal occurrence can be displayed by using 
a “traceback map,” which shows the function 
calling relationships in the application.  Using it, 
a developer can troubleshoot the problem on the 
basis of the calling relationships.  For example, 
if the traceback map shows that an abnormal 
termination occurred in the MPI library, the 
developer can conclude that the problem is one 
inherent to process-parallelization processing.

Next, one effective means of dealing with an 
application deadlock is to attach an interactive 
debugger to the application using the job ID.  
With this technique, the interactive debugger 
is attached to the halted application from the 
outside, and control of the application is passed 
to the debugger.  This enables the developer to 
use interactive operations to investigate why 
the application has stopped running.  A screen 
shot of debugging using an interactive debugger 
is shown in Figure 6.  The upper-left frame 
shows the stop location for each halted process or 
thread.  The developer can troubleshoot the cause 
of the deadlock by analyzing this information.

4.2 Debugging of CPU-operation 
processing 
As described above, the work of testing 

becomes increasingly difficulty as system 
complexity increases in a large-scale application, 
which calls for new testing measures.  As 
one such measure, we focused on enhancing 
and improving the performance of the “built-
in debugging function,” which is used to 
automatically detect problems such as mistakes 
in array subscripts and variables, initialization 
leaks, and inappropriate memory release.  We 
have developed a new, high-speed detection 
mode that improves the performance of this 
function by several tens of times in actual 

Figure 5
Application debugging steps.
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applications, as described elsewhere in this 
issue.7)  This enhancement enables developers 
to apply the built-in debugging function to even 
more applications in actual operations.

At the same time, bugs that originate 
in faulty software logic such as mistakes in 
calculation results may often go undetected by 
the built-in debugging function.  To deal with 
bugs of this type, checking on the application 
side must be intensifi ed, and one effective means 
of doing so has been the “printf debug” technique.  
Using the printf function, an application 
programmer displays intermediate values to test 
calculation results on the basis of execution logic 
(also called “Debugging by WRITE statements” 
in Fortran language).  As applications increase 
in scale with a degree of parallelism in excess 
of 1000, the effectiveness of debugging using an 
interactive debugger utility becomes limited.  
This has forced developers to embed test code 
in the application itself in many cases.  To 
therefore simplify the printf debug technique, 
we have prepared a new “hook function.” This is 

a mechanism by which the language processing 
system (compiler or RTS) automatically calls 
a specifi c user subroutine at appropriate times 
such as at the entrance/exit points of subroutines, 
the beginning and ending of thread parallel 
processes, and the calling of MPI functions.  
Executing application test code at hook locations 
in this way enables more accurate printf-debug 
results to be achieved while minimizing the 
number of changes to program code.

4.3 Debugging of process-parallelization 
processing
If troubleshooting has determined that 

the problem in question is inherent to process-
parallelization processing, there is a high 
possibility of a bug in parallelization processing 
using the MPI.  For this reason, we have 
incorporated a new function in the MPI library 
called “dynamic debug during MPI program 
execution.”

This dynamic debug function detects 
deadlocks (suspension of communication 

Figure 6
Screen shot of MPI-application debugging using an interactive debugger.

Upper-left frame:  run state of each parallel process and thread 
 (showing location of stop where applicable)
Upper-right frame:  breakpoint locations and present location of stop in source code 
Bottom frame:  stack trace 

Figure 6
Screen shot of MPI-application debugging using an interactive debugger.

Upper-left frame: run state of each parallel process and thread (showing location of stop where applicable)
Upper-right frame: breakpoint locations and present location of stop in source code 
Bottom frame: stack trace 
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waiting), monitors for corruption of the MPI 
communication buffer by overwriting, and checks 
the arguments of each MPI function call.  It 
enables mistakes in the use of the MPI library 
to be automatically detected on the MPI-library 
side.  

Furthermore, to facilitate the tracing of 
MPI function calls, we have developed an “MPI 
function hook” as a means of applying the 
printf debug function described above to MPI 
processing.  This hook provides a mechanism for 
calling a specifi c subroutine at the time of an MPI 
function call.  It enables even source-program 
line numbers to be obtained, making it possible 
to create advanced test code for debugging 
purposes.  We have also prepared a VampirTrace 
event log function that outputs MPI-library 
usage history in Open Trace Format (OTF)8) so 
that testing can be performed by checking a trace 
log.

5. Conclusion
This paper introduced application-

development support tools for the K computer.  
The development of these tools began by 
fi rst defi ning the work procedure that a user 
would follow for achieving and testing a high-
performance application and investigating the 

form that the tools should therefore take.  We 
found that approaches that addressed the ease-
of-use of the GUIs for the profi lers, interactive 
debugger, and other tools and the diverse 
problems associated with advanced hardware 
and a large-scale confi guration made it possible 
to achieve our initial objectives.  

We take pride in the fact that these 
application-development support tools will 
contribute to the enhanced performance and 
testing of the world-class “Grand Challenge” 
applications slated to be run on the K computer.  
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