
331FUJITSU Sci. Tech. J., Vol. 48, No. 3, pp. 331–339 (July 2012)

Performance Profiling and Debugging on
the K computer

 Keiichi Ida Yasuyuki Ohno Shunsuke Inoue Kazuo Minami

We have developed application-development support tools for the K computer. This
paper describes profiling functions for raising the performance of applications and
debugging functions for testing applications as main functions of these tools. In
developing these tools, we first defined the work procedure that a user would follow
for improving the performance of an application and testing it. We then investigated
the form that these application-development support tools should take for each
task in that procedure. We here introduce these tools in conjunction with those
tasks. Additionally, while the large-scale configuration of the K computer is one
of its major features, existing profilers and debuggers for large-scale applications
still have problems that have yet to be solved, and we here describe new measures
for addressing those problems. We also touch upon profiling functions specifically
developed for the advanced hardware of the K computer such as the high-
performance SPARC64 VIIIfx processor and Tofu interconnect.

1. Introduction
The K computernote)i is a massively parallel

supercomputer consisting of more than 80 000
nodes using advanced hardware such as the
high-performance SPARC64 VIIIfx processor
and Tofu interconnect. We have developed
application-development support tools for this
supercomputer.

This paper describes the main functions
of these support tools: profiling functions
for achieving high-performance applications
and debugging functions for testing those
applications. In setting out to develop these
profiling and debugging functions, we first
defined the work procedure that a user would
follow for achieving and debugging a high-
performance application. We begin this paper by

note)i “K computer” is the English name
that RIKEN has been using for the
supercomputer of this project since July
2010. “K” comes from the Japanese word
“Kei,” which means ten peta or 10 to the
16th power.

presenting our development objectives and then
introduce various development support tools
corresponding to the defined work procedure.

2. Development objectives
We established three major objectives in

our development of profiling and debugging
functions: support large-scale parallel-processing
applications and advanced hardware, make use
of standard interfaces, and achieve advanced
graphical user interface (GUI) functions.

Like the system itself, application software
for the K computer is large-scale in nature
and thus must use the cutting-edge hardware
making up this supercomputer. For this reason,
our first development objective was to support
large-scale, parallel-processing applications
and new functions geared to various types
of new and advanced hardware. Though
explained in detail later in this paper, these
functions include profiling and debugging
functions supporting applications running tens

332 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

of thousands of processes in parallel, a large-
scale data display function for presenting the
performance information of tens of thousands
of processes, self-check functions for the run
time system (RTS) library and Message Passing
Interface (MPI) library, profiling functions
supporting the performance instrumentation
counters of the SPARC64 VIIIfx processor, and a
communications-cost display function taking the
Tofu interconnect into account.

At the same time, the current environment
surrounding development support tools
is dominated by a trend toward standard
interfaces, the use of open source software for
tool components, and the construction of software
platforms independent of hardware. With this
in mind, our second development objective was
to give due consideration toward open systems
and implement as much as possible application-
development functions on standard interfaces.
To be more specific, we adopted the DWARF 21)
debugging file format as an interface between
the compiler and various tools, which makes
it possible to employ a variety of debug tools
provided in open-source format. Additionally,
we adopted the Performance Application
Programming Interface (PAPI)2) as the interface
for obtaining information from the SPARC64
VIIIfx performance instrumentation counters
that enable various types of CPU performance,
such as number of executing instructions
and number of cache misses, to be precisely
measured. Finally, to implement a log output
function supporting various types of events, we
adopted VampirTrace3) specifications considering
their status as a de facto standard.

A high-performance GUI is needed to
display the profiling and debugging information
of large-scale parallel-processing applications.
Our third development objective was therefore to
achieve advanced GUI functions. Many existing
application-development support tools use X
Window System (X11) as a GUI, but this system
cannot easily take advantage of performance

improvements in user terminals and is limited in
GUI functions and performance. To resolve these
issues, we adopted Adobe System’s AIR4) runtime
environment as a new GUI platform owing to its
foundation in Rich Internet Applications (RIA)
technology and its rapid evolution in the field
of Web applications. With AIR, an AIR client
receives only as much data as needed from the
server and locally performs all processing for
redrawing—such as when the image viewpoint
changes—so that the graphic performance of the
user’s terminal can be fully exploited.

3. Application performance
improvement steps
The significance of a supercomputer lies in

its ability to perform high-speed calculations, and
determining the performance of an application
running on a supercomputer is therefore an
essential and important endeavor. Moreover,
if the performance so determined turns out to
be inadequate, it is imperative that the source
of such performance degradation be analyzed
and efforts be made to improve the application’s
performance. This work for determining and
improving an application’s performance consists
of multiple steps beginning with performance
characteristics analysis (basic profiling) and
continuing with a set of mutually independent
performance improvement steps (detailed

Performance
characteristics

analysis

Detailed profilerBasic profiler

Performance improvement
in CPU-operation processing

Performance improvement
in thread-parallelization processing

Performance improvement
in process-parallelization processing

Figure 1

Application performance improvement steps.

Figure 1
Application performance improvement steps.

333FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

profiling), as shown in Figure 1. Among the
three steps in the detailed profiler, we here take
up performance improvement in CPU-operation
processing and performance improvement in
process-parallelization processing.

3.1 Performance characteristics analysis
The objective of this first step is to obtain

a comprehensive understanding of application
performance under normal operating conditions.
To this end, we developed a “basic profiler” with
four basic functions.
1) Obtain performance information simply on

the basis of highly optimized object code
without re-compilation

2) Obtain basic performance information
by simply adding an fipp command to an
ordinary job-run script

3) Display processing conditions in terms
of CPU-operation processing, thread-
parallelization processing, and process-
parallelization processing

4) Obtain performance information by
sampling run-time data at fixed intervals,
thereby minimizing and fixing overhead.
Once the basic profiler has uncovered

the processing necessary to raise application
performance, it is time to move on to the next
steps. CPU-operation processing, thread-
parallelization processing, and process-
parallelization processing are mutually
independent from the viewpoint of performance,
and each one requires a separate approach
to improving performance. Nevertheless, the
detailed profiler that we have developed is used
as the main tool for raising performance in each
case. This profiler has three basic functions.
1) Specify the beginning and end of a

measurement interval by calling a service
library from within the application in order
to perform detailed analysis of a specific
program location

2) Obtain detailed and accurate performance
information for every measurement interval

by making rigorous measurements of
the times that CPU processing, thread-
parallelization processing, and process-
parallelization processing are executed
within a measurement interval in contrast
to sampling

3) Individually analyze measured times
instead of processing them as statistical
averages, thereby supporting even cases in
which performance characteristics change
every time a user function is called.

3.2 Performance improvement in CPU-
operation processing
The high-performance SPARC64 VIIIfx

processor incorporates various types of
performance instrumentation counters, which
can be used to classify the total execution time
of an instruction sequence in terms of CPU
operating states (executing instructions, waiting
for memory access, waiting for an operation to
complete, etc.). This method, which is commonly
called cycle accounting,5) enables developers to
determine where in the processor bottlenecks are
occurring and to analyze and improve processor
performance. If a performance problem is
known to exist in CPU-operation processing, the
developer can use the hardware monitor function
of the detailed profiler to analyze the problem
using the cycle accounting method (Figure 2).

To give an example of a performance-
improvement procedure, more effective use of the
cache would have to be achieved if it was found by
cycle accounting that waiting for memory access
was occupying a high percentage of execution
time. Specifically, this could be done by changing
the application’s data structure (spatial measure)
and the order of data referencing (temporal
measure) and increasing the reusability of data
(cache-line measure), thereby improving the
cache hit rate and decreasing memory access.
The SPARC64 VIIIfx extensions include single
instruction multiple data (SIMD) instructions,
which enable multiple operations to be executed

334 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

at one time. Attention should therefore be paid
to the ratio of SIMD instructions used in order to
obtain high performance. If it is determined that
the SIMD-instruction ratio is low, efforts should
be made to optimize the compiler by selecting
appropriate compiler options and/or rewriting
program source code.

3.3 Performance improvement in process-
parallelization processing
As described earlier, the K computer

is a massive system consisting of more than
80 000 nodes, but, in addition to this huge
array of hardware, it also supports large-scale
applications. For example, a job consisting of
more parallel processes than the total number of
nodes can be run on the K computer. There are
two main approaches to improving performance
in process-parallelization processing as described
below.

The first approach is to achieve good load
balance in process parallelization. In general, an
MPI library is used to run application processes
in parallel, but, if loads differ among the
processes, communication and synchronization
waits can prevent high operating performance
from being achieved. Disorder in load balance
can occur for various reasons. For example, it can

be a problem inherent to the application, such as
different degrees of computational complexity
among the subdivided regions of the application
created for parallel processing. This can cause
subtle differences in the layout of virtual memory
between nodes, resulting in variation in cache
miss rates and chaotic application performance.
Of course, an application that runs processes
in parallel generates much communication
processing, which means that communication-
related variation can also occur due, for example,
to collisions in the communication network.

It is important that a comprehensive
understanding of current performance values
be obtained to correct these various types of
disturbances in load balance. Both the basic
profiler and detailed profiler incorporate new
means of providing large-scale visualization
of various types of performance data to give
developers an overall view of application
conditions. Examples of cost-distribution
displays as provided by the basic profiler are
shown in Figures 3 and 4. In these screen
shots, the basic profiler is analyzing performance
when running the CG kernel (conjugate gradient,
irregular memory access, and communication)
the NAS Parallel Benchmarks.6) The lower
half of these screens shows sampling cost

Figure 2
Example of analysis using cycle accounting method.

Wait for floating-point-load memory access

Wait for integer-load cache access

Wait for floating-point-load cache access

Wait for floating-point operation

Wait for barrier synchronization

1 instruction committed

2 or 3 instructions committed

4 instructions committed

0

100

50

25

75

Thread0 Thread1 Thread2 Thread3

Figure 2

Example of analysis using cycle accounting method.

B
re

ak
do

w
n

of
 e

xe
cu

tio
n

tim
e

(%
)

335FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

Figure 3
Screen shot 1 of cost analysis by basic profiler (topology display).

Upper-left frame: cost information for each process (partial close-up)
Upper-right frame: list of performance values for each program loop
Bottom frame: cost information for each process (complete 3D topology display)

Figure 4
Screen shot 2 of cost analysis by basic profiler (1D display).

Upper-left frame: cost information for each process (partial close-up)
Upper-right frame: list of performance values for each program loop
Bottom frame: cost information for each process (complete 1D display)

336 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

corresponding to elapsed time of one program
loop (rows 1128–1148 of conj_grad) in a parallel
application running on 1024 processors. In
Figure 3, the format of the display is “application
topology” having a 16×4×16 three-dimensional
torus structure running along the x-axis (i.e.,
in the horizontal direction in the figure). Here,
the magnitude of sampling cost for each process
is expressed in color. An application topology
display of this type makes it easy to see how
the cost of executing this loop changes along the
x-axis. In Figure 4, the same data is converted
into one dimension and shown in the form of a bar
graph, which enables a developer to accurately
determine the extent of load imbalance among
the processes. The lower portion of this screen
shows a histogram representing sampling-cost
distribution above a legend explaining the color
usage. Displaying performance data in this way
(application topology, one-dimensional display,
or histogram) gives the developer a bird’s-eye
view of cost-balance conditions across the entire
application.

The second approach to improving
performance in process-parallelization processing
is to reduce MPI library cost. When running
a parallel application that involves frequent
communication among processes, MPI-library
processing increases, which increases costs and
degrades performance. The countermeasure to
this problem is to revise the method of using the
MPI library such as by reducing communication
processing and reducing the number of messages
(through message aggregation). In the detailed
profiler, specifying a certain interval returns
detailed information on MPI-library functions
executed in that interval (such as number of calls,
processing time, and average message length for
each function). This information can be used to
check the effect of the performance-improvement
measures described above. In addition to using
the detailed profiler, MPI library cost can also
be obtained via the “MPI statistical information”
function in the MPI library. This function logs

information on MPI-library internal processing
and outputs statistical information when
execution of the target application completes.

Optimizing communication processing
in the K computer requires that the 3D torus
network (Tofu interconnect) and advanced
barrier communication function of this
supercomputer be taken into account. For this
reason, the detailed profiler and MPI statistical
information function have additional routines
for measuring communication distance (number
of communication hops in the torus) and for
measuring the performance of the advanced
barrier communication function.

Finally, the state of packet processing on
the Tofu interconnect must be understood to
optimize MPI-library communication processing.
To this end, we developed a function called “Tofu
performance analysis (PA) information” for
measuring the number of send/receive packets,
the number of send/receive bytes, the remaining
capacity of send/receive buffers, etc. for each
network router on the Tofu interconnect. These
measurements can be initiated by specifying
a certain interval in the detailed profiler.
Analyzing the results of these measurements
and taking appropriate measures to balance out
communication processing in the interconnect
network and avoid packet collisions can raise
the interconnect usage efficiency and therefore
improve the performance of the application.

4. Application testing steps
As mentioned above, the significance of

a supercomputer lies in its ability to perform
high-speed calculations, but it must also be able
to perform those calculations correctly. It can be
said that calculations in an application are being
performed correctly if the application is operating
in line with the specifications established at
design time. Checking that this is so is called
“testing.” For ultra-large-scale parallel systems
like the K computer, the work of testing becomes
increasingly difficult as system complexity

337FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profiling and Debugging on the K computer

increases. This situation calls for new measures
such as the self-check functions described below.

Among the steps making up application
testing, the work of debugging, which begins
with the occurrence of a bug or bugs, consists of
problem analysis and troubleshooting followed
by several mutually independent debug steps
(Figure 5). We here introduce a debugging
technique made up of these steps and take an
in-depth look at debugging of CPU-operation
processing and process-parallelization
processing.

4.1 Problem analysis and troubleshooting
Bug phenomena can be classified into a

variety of types such as abnormal termination
caused by a SIGnal SEGmentation Violation
(SIGSEGV) or other event, deadlock, and
mistakes in calculation results. The process
of analyzing such phenomena in detail and
isolating the position where the bug occurred is
called “troubleshooting.” Here, we first consider
troubleshooting of CPU-operation processing,
thread-parallelization processing, and process-
parallelization processing.

The troubleshooting procedure begins by
analyzing the bug, such as by executing the
program while varying compilation-time options
and run-time options or using a debugger utility.

The procedure can therefore be complicated,
but it is systematic just the same. Typical
troubleshooting techniques are presented below.

For an abnormal termination arising
from a SIGSEGV error, the location of the
abnormal occurrence can be displayed by using
a “traceback map,” which shows the function
calling relationships in the application. Using it,
a developer can troubleshoot the problem on the
basis of the calling relationships. For example,
if the traceback map shows that an abnormal
termination occurred in the MPI library, the
developer can conclude that the problem is one
inherent to process-parallelization processing.

Next, one effective means of dealing with an
application deadlock is to attach an interactive
debugger to the application using the job ID.
With this technique, the interactive debugger
is attached to the halted application from the
outside, and control of the application is passed
to the debugger. This enables the developer to
use interactive operations to investigate why
the application has stopped running. A screen
shot of debugging using an interactive debugger
is shown in Figure 6. The upper-left frame
shows the stop location for each halted process or
thread. The developer can troubleshoot the cause
of the deadlock by analyzing this information.

4.2 Debugging of CPU-operation
processing
As described above, the work of testing

becomes increasingly difficulty as system
complexity increases in a large-scale application,
which calls for new testing measures. As
one such measure, we focused on enhancing
and improving the performance of the “built-
in debugging function,” which is used to
automatically detect problems such as mistakes
in array subscripts and variables, initialization
leaks, and inappropriate memory release. We
have developed a new, high-speed detection
mode that improves the performance of this
function by several tens of times in actual

Figure 5
Application debugging steps.

Problem analysis
and

troubleshooting

Debugging and correction in
CPU-operation processing

RTS/MPI self-check functions, hook functions,
interactive debugging

Debugging and correction in
thread-parallelization processing

Debugging and correction in
process-parallelization processing

Figure 5

Application debugging steps.

338 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profi ling and Debugging on the K computer

applications, as described elsewhere in this
issue.7) This enhancement enables developers
to apply the built-in debugging function to even
more applications in actual operations.

At the same time, bugs that originate
in faulty software logic such as mistakes in
calculation results may often go undetected by
the built-in debugging function. To deal with
bugs of this type, checking on the application
side must be intensifi ed, and one effective means
of doing so has been the “printf debug” technique.
Using the printf function, an application
programmer displays intermediate values to test
calculation results on the basis of execution logic
(also called “Debugging by WRITE statements”
in Fortran language). As applications increase
in scale with a degree of parallelism in excess
of 1000, the effectiveness of debugging using an
interactive debugger utility becomes limited.
This has forced developers to embed test code
in the application itself in many cases. To
therefore simplify the printf debug technique,
we have prepared a new “hook function.” This is

a mechanism by which the language processing
system (compiler or RTS) automatically calls
a specifi c user subroutine at appropriate times
such as at the entrance/exit points of subroutines,
the beginning and ending of thread parallel
processes, and the calling of MPI functions.
Executing application test code at hook locations
in this way enables more accurate printf-debug
results to be achieved while minimizing the
number of changes to program code.

4.3 Debugging of process-parallelization
processing
If troubleshooting has determined that

the problem in question is inherent to process-
parallelization processing, there is a high
possibility of a bug in parallelization processing
using the MPI. For this reason, we have
incorporated a new function in the MPI library
called “dynamic debug during MPI program
execution.”

This dynamic debug function detects
deadlocks (suspension of communication

Figure 6
Screen shot of MPI-application debugging using an interactive debugger.

Upper-left frame: run state of each parallel process and thread
 (showing location of stop where applicable)
Upper-right frame: breakpoint locations and present location of stop in source code
Bottom frame: stack trace

Figure 6
Screen shot of MPI-application debugging using an interactive debugger.

Upper-left frame: run state of each parallel process and thread (showing location of stop where applicable)
Upper-right frame: breakpoint locations and present location of stop in source code
Bottom frame: stack trace

339FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Ida et al.: Performance Profi ling and Debugging on the K computer

waiting), monitors for corruption of the MPI
communication buffer by overwriting, and checks
the arguments of each MPI function call. It
enables mistakes in the use of the MPI library
to be automatically detected on the MPI-library
side.

Furthermore, to facilitate the tracing of
MPI function calls, we have developed an “MPI
function hook” as a means of applying the
printf debug function described above to MPI
processing. This hook provides a mechanism for
calling a specifi c subroutine at the time of an MPI
function call. It enables even source-program
line numbers to be obtained, making it possible
to create advanced test code for debugging
purposes. We have also prepared a VampirTrace
event log function that outputs MPI-library
usage history in Open Trace Format (OTF)8) so
that testing can be performed by checking a trace
log.

5. Conclusion
This paper introduced application-

development support tools for the K computer.
The development of these tools began by
fi rst defi ning the work procedure that a user
would follow for achieving and testing a high-
performance application and investigating the

form that the tools should therefore take. We
found that approaches that addressed the ease-
of-use of the GUIs for the profi lers, interactive
debugger, and other tools and the diverse
problems associated with advanced hardware
and a large-scale confi guration made it possible
to achieve our initial objectives.

We take pride in the fact that these
application-development support tools will
contribute to the enhanced performance and
testing of the world-class “Grand Challenge”
applications slated to be run on the K computer.

References
1) The DWARF Debugging Standard.
 http://dwarfstd.org/
2) Performance Application Programming Interface

(PAPI).
 http://icl.cs.utk.edu/papi/
3) VampirTrace.
 http://www.tu-dresden.de/zih/vampirtrace
4) Adobe AIR.
 http://www.adobe.com/jp/products/air.html
5) SPARC64 VIIIfx Extensions (April 26, 2010).
 http://www.fujitsu.com/downloads/TC/

sparc64viiifx-extensions.pdf
6) NAS Parallel Benchmarks.
 http://www.nas.nasa.gov/publications/npb.html
7) K. Taki et al.: Compiler Technology That

Demonstrates Ability of the K computer. Fujitsu
Sci. Tech. J., Vol. 48, No. 3, pp. 317–323 (2012).

8) Open Trace Format (OTF).
 http://www.tu-dresden.de/zih/otf/

Keiichi Ida
Fujitsu Ltd.
Mr. Ida is engaged in the development
of application development support
tools.

Shunsuke Inoue
RIKEN
Mr. Inoue is engaged in research and
development of application software for
speeding-up.

Yasuyuki Ohno
Fujitsu Ltd.
Mr. Ohno is engaged in the development
of application development support
tools.

Kazuo Minami
RIKEN
Mr. Minami is engaged in research and
development of application software
for high parallelization and high
performance.

http://dwarfstd.org/
http://icl.cs.utk.edu/papi/
http://www.tu-dresden.de/zih/vampirtrace
http://www.adobe.com/jp/products/air.html
http://www.fujitsu.com/downloads/TC/sparc64viiifx-extensions.pdf
http://www.nas.nasa.gov/publications/npb.html
http://www.tu-dresden.de/zih/otf/

